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5 JARDEN

INTRODUCTION AND DEFINITIONS

Let S be an integral domain with quotient field
L. Recall that an S-submodule & of L is said to be a
fractional ideal of § if it is non-zero and there is an
element a # 0 of S such that aa = S. The set of
all fractional ideals of S forms an abelian semi-group
under multiplication with S as the unit (c.f. Gilmer
[8, p. 23]). We denote it by J(8). If & ¢ J(S) then
@t = {xe L|xa < S} belongs also to J(S). The fraction-
al ideal @ is said to be invertible if aa”t = s
Recall that S is said to be a Dedekind domain if every
fractional ideal of S is invertible. Correspondingly,
S 4is said to be a Priifer domain if every finitely gene-
rated fractional ideal of § is invertible. In this case
the subset J¥(s) of all finitely generated fractional

ideals of S forms a subgroup of the semi-group J(S).
From now on we assume that S is a Prifer domain. The
subset of all principal fractional ideals of S, i.e. all
the S-modules of the form aS, where ae L and a # 0,
forms a subgroup JZ(S) of J%(8). Two elements of J*(S)
are said to be linearly equivalent if they are congruent
modulo Jg(S). A finite subset {“l,...,az} of J¥(3)

n n Y
is said to be linearly independent if <%f N CL; J;(S)
always implies n; = ... =mng = 0. The quotient group

C(s) = J*(S)/JZ(S) is known as the ideal class group of
S. Clearly every class can be represented by a finitely
generated ideal of S. In the case where c(s) = 1, i.e.
when every finitely generated ideal of § 1is principal,

S is known as a Bezout domain.

Consider now a Priiffer domain R with quotient field
K. Then R is integrally closed (c.f. Cassels and
Fréhlich [3, p. 71). On the other hand, if L is an
algebraic extension of K then the integral closure,
I(L), of R in L is a Priifer domain (c.f. Gilmer
[8, p. 2571). We put J(L), J¥(L) and C(L) for
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JARDEN 3

*
J(I(L)), J (I(L)) and C(T(L)) respectively. In
addition we denote by P(L) +the set of all non-zero proper

prime ideals of I(L).

Further, write i, K. and S(KS/K) for the alge-
braic closure of K, the separable closure of K, and the
Galois group of K, over K, respectively. Consider, for
a fix positive integer e, an e-tuple (o) = (ol,...,ce)

€ g(K/K)®. Let K_(o) be the fixed field of (o) in
K, and put I(o0), J(o), J*(o) and C(o) and C(o) for
I (0)), J(K (o)), T¥(K (o)) and C(K_(0)), respectively.
In the first three paragraphs we study properties of the
group C(g) that are valid for almost all (g) in
ﬁ(KS/K)e. Here "almost all" is used in the sense of the
Haar measure of the compact group S(KS/K)e (e.f. 10, Sec.

1.31). This study is motivated by the fact that I(Q)

is a Bezout domain. (c.f. Kaplanski [12, p. 721).

Our main results in these sections are:
A) If R=2Z or R = KO[XJ, where K, is an algebraic
extension of a finite field and x i1s a transcendental

element over K, , then I(c) is a Bezout domain, for

almost all (o) € 8(KS/K)e.
B) If K is not an algebraic extension of a finite field

then rank C(g) is infinite for almost all (o) € S(KS/K)e.

The crucial point in the proof of (B) is the existence
of an elliptic curve A defined over Ko with a K-

rational point of infinite order,

In section 4 we give an example of a high algebraic
extension L of @ such that I(L) is not a Bezout

domain.
In sections 5-9 we consider a denumerable Dedekind ring

R with a hilbertian quotient field K and we study

properties of the semi-group J(o) that are valid for

almost all (o) € S(KS/K)e. At first we prove:

D) Almost all (o) € S(KS/K)e have the following two

properties:
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4 JARDEN

1) For every non-trival real valuation v of Ks(o) the

completion KS(O)V is algebraically closed.

2) For every finite extension L of K which is
contained in KS(O) and for every prime ideal p of
I(L) there exist in I(c) at least two different prime
ideals which lie over [ .

In sections 6-9 we deduce some more properties of J(o)
which follow directly from (1) and (2) of (D). More
precisely, we prove that every separable extension M of
K which has the properties (1) and (2) of (D) has

also the following properties:

E) 1) Every prime ideal @ of I(M) is idempotent.

2) If & is a @ -primary ideal then £ is not finitely
o
generated. If in addition O #@ , then [ J)n = 0.
n=1

3) The semi-group J(M) and the group J¥(M) are

uniquely divisable.

In deducing (3) we follow Krull [13] and deduce
a parametrization of J(M) and J*(M) which generalizes
the usual representation of fractional ideals in a

Dedekind domain as a product of powers of prime ideals.

The author wishes to acknowledge his indebtness to
P. Roquette for his constant encouragement and especially
for calling his attention to Hasse's argument which is
used in the proof of Lemma 1.3. He also thanks W.D. Geyer

for his contribution to sections 2 and 3.
1. The C(g) as torsion-free groups

We recall that an integral domain R with the quotient
field K is said to be hilbertian if every K-hilbertian
set contains points with coordinates in R (c.f. Lang
[14, p. 1ull). A sequence Kl’KQ’K3"" of extensions

of K is said to be linearly disjoint over K if

Kl"'Kn is linearly disjoint from K .4 for every
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JARDEN 5

positive integer n (e.f. [10, section 1.21). Finally,
we say that an algebraic element o over K 1is integral

over R (resp. an algebraic unit) if it is integral over

R (resp. a unit in the ring I(K) of all integral algebraic

elements). With these definitions we have the following
lemma:

LEMMA 1.1: Let R be a hilbertian integral domain with
the quotient field K. Consider an element a € R,

a# 0 and let o e % be an element for which o = a.
Then there exists an infinite sequence 61,82,83,..., of

separable algebraic integral elements such that

i) B/a is an algebraic unit;
ii) [K(Bi) : K] = n

iii) the sequence K(Sl), K(Bz), K(B3), ... is linearly

disjoint over K.

Let b € R, b # 0 and consider an element B e K

which satisfies

n

B + abB - a = 0 .

Then B8 1s seperable and integral. Moreover, B/a and
a/B satisfy the relations
n
n n-1 o
_B‘ .@._ = + a ‘(>:O.
() +bag-1=0 and 1+ balg) B
Hence they are integral over R[a] which in turn is
integral over R. It follows that both B8/a and a/B

are integral, i.e. B/a 1is an algebraic unit.

In order to conclude the proof of the Lemma we
consider the absolutely irreducible polynomial
f(T,X) = X" + aTX - a. Since R 1is hilbertian we can
construct by induction a sequence of pairs {(bi,Bi)}?=l
such that b; e R, f(bi,Bi) = 0, [K(Bi) : K] = n and
such that the sequence {K(Bi)}:=l is linearly disjoint
over K (e.f. [10, the proof of Lemma 2.21). By the
first part of the proof, the sequence {Bi}§=l satisfies
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6 JARDEN

all the requirements of the Lemma.

LEMMA 1.2: Let 8§ be a Priifer domain and let @, b
be two fractional ideals of S which satisfy ol = p"
for some positive integer n. Then & = b.

PROQF': Tt suffices to consider the case where S 1is a

valuation ring, since in the general case the local rings
Sp of S with respect to prime ideals are valuation
rings (c.f. Gilmer [8, p. 254]1) and & = CLZSP

where p runs over all prime ideals of S. Let v be the

corresponding valuation of the quotient field of S and

let a € @. Then a' e b™  and hence a' = I bi ...bi

(1) "1 n
where the b. are in b . Among the bi there must
be one whose value is ¢ v(a), since otherwise we

would have

nv(a) 3 min {v(bi)+...+v(bi Y} > nv(a) ,
(i) n

which is a contradiction. For this b we have
a = % b e b. Hence @€ b . Symmetrically we have

bek . Hence &= b.

We note that Lemma 1.2 follows also from 2.0 of [sl

LEMMA 1.3: Let R be a hilbertian Priifer domain with
the quotient field K. Let ae€ J¥(R) be an element
which is of finite order modulo J;(R). Then for almost

all (o) € G(K /0®  aIle) € Jo0).

PROOT: By assumption there exists a positive integer n
and an element a € R, a # 0, such that a® = aR. Let

o € XK be an element for which o = a and consider

a corresponding sequence 81,82,83,... obtained by
Lemma 1.1. Then {K(Bi)/K}?=1 is a linearly disjoint
sequence of separable extensions of degree n and

€y = Bi/a is an algebraic unit. We use now an argument
of Hasse to show that aR; is a principal ideal in
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R; = T(K(B;)). Indeed, el = Bl/a € X(g;), hence el s

a unit in R, . Therefore, GkRi)n = (BiRi)n, and by

Lemma 1.2, we have that <1Ri = BiRi.

Now, by [10, Lemma 1.10], Ks(c) contains at least
one of the k(B;) for almost all (o) € SCKS/K)e. Since
& becomes principal in I(K(Bi)), it remains so in

I(o).

THEOREM 1.4: Let R be a denumerable hilbertian Prifer
domain with the quotient field K. Then for almost all
(o) ¢ S(KSAC)e, C(o) 1is a torsion-free abelian group.

PROOF: Let L be a finite separable extension of K and
let @ be a finitely generated ideal of I(L) for which
there exists an n » 1 such that @” is principal.
Denote by T(L,&) the set of the (o) € G(K_/K)® for
which @I{(g) is not a principal ideal in I(g). Then

by Lemma 1.3 T(L,@) has the measure O. Since K is
denumberable there are only countably many such T(L,®).
Hence their union T is of measure 0. It is clear now
that if (o) € g(Ks/K)e and if C(o) is not torsion-
free, then (o) must belong to one of the T(L,e) and
hence to T. It follows that the set of all the

(o) € E(KS/K)e for which C(g) is not torsion-free has

the measure 0.

COROLLARY 1.5:

a) If R = Z, then for almost all (o) € G(Q/Q°
I(o) is a Bezout domain.
by If K, is a countable field, x 1s a transcendental

element over K, R = Ko[x] and X = Ko(x), then for

almost all (o)€ S(KS/K)e C(o) is torsion-free abelian
group.

¢) In the notations of (b), if Kj is an algebraic
extension of a finite field, then for almost all

(0) € G(Kg/X0®, I(o) is a Bezout domain.
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8 JARDEN

PROOF: In each case R is a denumberable hilbertian
Dedekind domain (c.f. Lang [14, p. 155]), hence, in each
case C(o) is a torsion-free abelian group for almost
all (o) € 9(KS/K)e. Statement (b) 1is thus proved.

In order to complete the proofs of (a) and (c¢) we
note that in both cases C(L) is a finite abelian group
for every finite extension L of K (ec.f. [#, p. 7D.
Hence if L is an arbitrary algebraic extension of K
then C(L) is either trivial or a torsion group. Since
the C(cg) cannot be torsion group they are trivial;

i.e. I(o) 1is a Bezout domain.

PROBLEM 1: Is the following generalization of Corollary
1.5a true? "Let R = Z. Then for almost all
(o) € G(&/Q)® and for all fields Qo) = LE7Q, I(L)

is a Bezout domain."

2. The rank of C(o) in the one~variable-function

field case.

Let K, Dbe a field which is not algebraic over a
finite field, let x be a transcendental element over
K, and put R = Ko[x], K = Ko(x). Then R is a prin-
cipal ideal ring and hence a Dedekind ring, so that all
the conventions made in the introduction are valid for
R. We shall fix this notation throughout the whole

section.

LEMMA 2.1: Let R be a Priifer domain with the quotient
field K and let L be an algebraic extension of K.

If 4%1,...,Q£ are & 1linearly independent elements of
J*®) then @ I(L) ;... ,@,I(8) are & linearly
independent elements of J¥(L). In particular if C(R)

is not a torsion group then C(L) is also not a torsion

group.
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JARDEN 9

PROOF: Assume that lel(L),...,QQI(L) are linearly

dependent. Then there exists a finite extension L' of
K contained in L, such that CLlI(L’),...,GlI(L') are
linearly dependent. This means that there exists a non-
zero L-tuple (ml,...,mg) of integers and an element

o € L' such that

m.
@;T(L")) Tz q1C(L")

T

1

[
il

Applying the norm function Np, . to this equality we
get
m,[L':K]
i

%
MR YN
l:

(e.f. [%, pp. 15, 161). Hence the di's are linearly

dependent, which is a contradiction.

LEMMA 2.2: Let {K;/K}j_; be a linearly disjoint
sequence of finite Galois extensions. For every e 3 1
let @; Dbe an ideal in I(Ki) which is of infinite order
modulo principal ideals. Let L be an algebraic
extension of K which contains all the Ki's. Then the
sequence of ideals, ﬁ%iI(L)}z=l , of I(L) is linearly

independent.

PROOF: It suffices to prove that for every n, the first
n ideals <xlI(L),...,anI(L) are linearly independent,
and in order to do this, it suffices to prove, by

Lemma 2.1, that 4%8n,...,an8n are linearly independent,
where S = I(Kl"‘Kn)' Indeed, suppose that these ideals

satisfy a relation of the form
n m,
(L g:l«xisn) = uS_

where the m; € Z, u e Sn’ and not all of the mi's are

zero. Assume, for example, that m, # 0. Denote by N

the norm function from Kl"'Kn to Kn. Let
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10 JARDEN

1 ¢ i<« m1. Then NQxiSn)mi is an ideal which is
generated by elements belonging to Kl"'Kn—l N Kn’
hence to K, since X and Kq...K _, are linearly
independent over K. But, as R is a principal domain,

there exists a u; € R such that

m,
i
(2) N8 ) u, TCK ) -

On the other hand &, € I(Kn), hence

m. dmn
(3) N(anSn) X .

where 4 = [Kl...Kn:Kn] (c.f. 4, p. 1681). If we apply
now N on (1) we get by (2) and (3) that

O R |
le = uy ...un_l(Nu)Sn
which is a contradiction. //

For every prime p denote by Fp the field with p

elements.

LEMMA 2.3: There exists an elliptic curve E defined

over K which has a Ko-rational point P of infinite

order.

PROOF: We distinguish between several cases:

al Char(Ko) = 0.
E is given by the equation

Y2 = X3 + 2X + 4

and P = (;, 2+ %). By a theorem of Lutz, [15, p. 2ul,
Thm ITI] P has an infinite order since its coordinate
is not integral.

b) Char(Ko) = 2.

Let t € KO be transcendental over FZ' Then E 1is

given by
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v2 ¢ xy o= x3 4 x2 ¢ (234D

and P = (tz,(t+l)3). By Zimmer's Theorem [16] P has
an infinite order on E since the square tu of its
x coordinate does not divide (in 022[t]) the discrimi-

ant t3+1 of E.

c) Char(Ko) = 3,

Let t € KO be transcendental over Fg. Then E 1is given

by the equation

v2 = x3 ¢ 2e(e+1)X% 4 (erD)?
and P = (t—z,t_3+t+l). By Zimmer's Theorem, P has an
infinite order on E since its x-coordinate, t—Z, does

not belong to ng[t].

(d) Char(Ko) =p > 3.

Let t € Ko be transcendental over FP. Then E 1is
given by

v2 = %3 4 ox + t?

and P = (t-2,t+t—3). By Zimmer's Theorem, P has
infinite order on E, since its x-coordinate, t—2, does

not belong to Fp[t].

LEMMA 2.L4: Let E be an elliptic curve defined by a
cubic normal form (as in Lemma 2.3) over Kj and
suppose that E has a Ko-rational point P = (a,b) of
an infinite order. Let (x,y) be a generic point of E
over K_. Then [K(y):K] = 2, R[yl is the integral
closure of R in K(y) and p = R[yl(x-a)+R[yI(y-Db)

is a prime ideal of R[y] which has infinite order

modulo principal ideals.

PROOF: By assumption, y satisfies a monic quadratic
irreducible equation over K = Ko(x), hence [K(y):X1 = 2,

and y is integral over R = Ko[x]. The point (x,y)
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12 JARDEN

is normal on E, so that the ring R[y] = KO[x,y] is
integrally closed. It follows that R[y] is the
integral closure of R in K(y). Now, p 1is the kernel
of the K_-epimorphism KO[x,y] * Ky which is defined by
the specialization (x,y) » (a,b). Hence p is a prime
ideal. Let ¢ be the prime divisor of K(y) which

is induced by p and let ¢, be the prime divisor of
K(y) which corresponds to the infinite point of E.

If there were a positive integer m and an element

u ¢ R[y] such that Pm = R[yJu, then we would have
¢m¢;m = (u), where (u) is the principal divisor of

K(y) which corresponds to u. Hence mP = 0 (c.f.

Cassels [3, p. 2111); which is a contradiction. /7
LEMMA 2.5: Let A,B,C € KO and put for every a € Ko

£.(X) = (x+a)3 + Ax+a)? + B(x+a) + C .

Then there exist only finitely many b € K, such that
fa(x) and fb(x) have a common factor in R.

PROOT: If there were infinitely many b € K such
that fy(x) 1s not relatively prime to fa(x) then
there would exist a c¢ € K, and infinitely many Db € K,
such that f,(c) = 0. But fb(c) = fc(b). Hence

fC(X) = 0 identically, which is a contradiction. //
LEMMA 2.6: There exists an infinite sequence {yi}?zl’

of elements of KS such that
a) [K(yi):KJ = 2.
b) Rfyi] is the integral closure of R in K(y.).

c¢) There exists a prime ideal Pi in R[yi], which

is of infinite order modulo principal ideals.

d) The sequence of lextensions I{K(yi)/K}?=l is

linearly disjoint.
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PROOF : We define by induction a sequence of pairs
(xi,yi) of KS such that they satisfy the conditions

l) KO[Xi] = R

ii) (xi,yi) is a generic point over K. of the elliptic
curve E which was defined in Lemma 2.3.

$11) For each i 3 2 ‘the fields K(yl""’yi—l) and
K(yi) are linearly disjoint over K.

Then Lemma 2.4 together with conditions (i) and (ii) imply
(a), (b) and (c). Condition (ii) is equivalent to (d).
Suppose that (xl,yl),...,(xi,yi) have already been
defined and they satisfy (i), (ii) and (iii). Write

L = K(yl,...,yi) and let D be the discriminant of

L over K. Then D is an element of R. We distinguish

between two cases:

CASE 1: Char(Ko) 4 72, In this case E is defined by an

equation of the form
v2 = x3 + ax? + BX + C

with A,B,C € K_. We choose an element a € Kj such
that the polynomial (x+a)3 + A(x+a)2 + B(xt+a) + C does
not divide D (in R). This is possible, by Lemma 2.5,

Let = x+a and let Yi+1 be an element of KS

i+l

which satisfies the equation

2 _ 3 2
yigq = (xta)” * A(xta)” + B(xta) + C

Then Ko[xi+l] = Ko[x] = R and (Xi+l’yi+l) is a
generic point of E over KO. It follows, by Lemma 2.4,
that [K(yi+l):K] = 2 and that R[yi+l] is the integral
closure of R in K(yi+l)' Hence the discriminant of

K(yi+1) over K is equal to 4f(x) and hence it
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14 JARDEN
is linearly disjoint from L over K.

CASE 2: Char(Ko) = 2. In this case E 1is defined by

the equation
v2 4 xy = x3 4 tx2 + (3D

with t in Ko' We choose an ae€e R such that (x+a)2
does not divide D. Write Xipq T x+a and let

Vi1 € Ks such that

2 3 3
Vi t (xtady., = (et o+ t(era)? o+ (2P

The discriminant of the extension K(yi+1)/K is equal to

(x+a)?. Hence we conclude as before that (Xi+1’yi+l)

satisfies (i), (ii) and (iii). /7
THEOREM 2.7: Let K, be a field which is not algebraic

over a finite field, let x be a transcendental element
over K  and write R = Ko[x], K = KO(X). Let e be a
positive integer. Then, for almost all (o) € G (K /KN
and for every field KS(G) € L & K, the class group

C(L) has an infinite rank.

PROOF: Let the yi's and the Pi's be as in Lemma 2.6.
Thenthe set of all (o) € G(K_/K)® for which X (o)
contains infinitely many K(yi)'s has measure 1, since
the K(yi)/K are quadratic extensions and since they
are linearly disjoint. (c.f. [10, Lemma 1.4]). Our

theorem follows now from Lemma 2.2.
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The author would like to thank Roquette for his idea of
translating x to =x+a in the proof of Lemma 2.6. This
idea made it possible to improve an earlier version of

this section.

3. Algebraic extensions of Q

In this section we take our ring R to be the ring
of integers Z and we consider its integral closure
I(L) in an algebraic extension L of Q. We have
already mentioned that C(L) is a torsion group. It
is therefore natural to look for conditions under which
I(L) is a Bezout domain. In this direction we have
already shown that I(@) and almost all the I(o) are
Bezout domains. We can further show that if o is an
involution in S(Q/Q), i.e. if 02 =1 and ¢ # 1, then
I(c) is a Bezout domain. The proof of this statement

uses ideas which appeared in section 1, so we omit it.

One is therefore led to the following question:

PROBLEM 2: Does there exist a o € 8(6/Q) such that

I(og) is not a Bezout ring?

G. Frey proved in [7, section 2] that for almost
all the (o) € 6(6/@)e all the completions of Q(o) are
algebraically closed. One can therefore ask whether this
is the reason for the I(g) to be Bezout domain. More

precisely we formulate the following problem:

PROBLEM 3: Does there exist a subfield L of 6 such

that I(L) is not a Bezout domain but such that all
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16 JARDEN

the completions of L are algebraically closed?

We give here an example of an algebraic extension L
of @ for which I(L) is not a Bezout domain but such
that all the complements Lg of L with respect to prime
ideals & of I(L) are infinite extensions of the

corresponding completions of Q.

We consider the field K = Q(/=5). Its class number
is 2 (c.f. Borevich and Shafarevich [2, p. 4251).
Therefore there exists a prime ideal p of I(K) which

has the order 2 modulo principal ideals.

Now, let p be an odd prime. For every prime

q € p we find a polynomial

-1
£ Xy = XP + b=t 4 .4
’q( ) X a X ap,q

p 1,9

with coefficients in Z which is irreducible modulo q.
By the Chinese Remainder Theorem there exists for every
1 s1i«p an integer a; such that a; = ai’q(mod q)
for every prime q € p. Put fp(X) = Xp+alXP_l+...+ap
By Lemma 4.1 we can choose the a; such that fp is
irreducible over Q(aq [q < p).

Then fp(X) is a monic polynomial of degree p and
it is irreducible moduloc q for every q € p. Let o
be a root of fp and denote by L the field generated

over K by all the ap. We show that K has the desired

properties.
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Indeed, fP(X) is certainly irreducible over @,
hence @(ap) : @] = p. By construction, the sequence of
fields K,Q(a3),Q(a5),Q(a7),... is linearly disjoint over
Q. Hence the sequence of fields K(a3),K(a5),K(a7),...
is linearly disjoint over K. In particular we have that
every finite subextension of L/K has an odd degree.
Assume that I(L) is a Bezout domain. Then pI(L) must
be a principal ideal of I(L). It follows, as in the
proof of Lemma 2.1, that there exists a finite sub-
extension K'/K of L/K such that p[K':K] is a
principal ideal in I(K). Since p has the order 2
modulo principal ideals we have that [K' : K] is an
even number, which is a contradiction.

Now, let q be a prime and let & be a prime ideal
of I(L) which extends qZ. Then for all primes p
greater than q the polynomial fP(X) is irreducible
modulo g and hence [LI;: Q@ 1> [Qq(up) : Qq] = p.

It follows that [Lo‘: Qq] = w,

PROBLEM u4: Is I(Qab) a Bezout domain? (Q_, denotes

the maximal abelian extension of Q.)

4. Prime ideals in I(c) over a Dedekind domain

In this section we consider a denumerable Dedekind
domain R with a hilbertian quotient field K and show
that for almost all (o) € (j(KS/K)e the prime ideals in
the ring I(c) behave like the prime ideals in the ring
I(i). We begin by proving a general Lemma on

hilbertian valuated fields.

LEMMA 4.1: Let v be a non-trivial valuation of a
hilbertian field K. Then every hilbertian subset H
of X 1is dense in K in the v-topology.
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PROOF': We write v additively and denote by [I' the

value group of K wunder v. Let H Dbe a hilbertian
set of KY¥. Then there exist irreducible polynomials

fx € K(Tl""’Tr)[Xl""’Xn]’ A= 1l,...,1, such that

H= {(t) € Krlfx(t,X) is defined and irreducible in
K[X] for every 1 € X € 1}.

Let (a) € K¥ and let vy € I'. Then there exists
c € K, ¢ # 0 such that v(e) > y. Consider the finite
set of all the polynomials of the form

£
& r

f)\(al + el T8, F T, ,X)

r

where 1 ¢ A ¢ 1 and e, = tl1 for i = 1l,...,r. All
these polynomials are defined and irreducible in K(T)[X].
Since K is hilbertian there exist Sqseves8, € K such

that all the polynomials

€ €,
fk(al tesyTy..sa, ooy, 4 X)
are defined and irreducible in KI[X]. For every
l1g<icgr we specify €; to be 1 or -1 according
to whether v(si) > 0 or v(si) < 0. Then we put

€ .
.z a. L1 1 | . = a.
ts a; + csg and it is clear that v(tl al) >y

for every 1 € i ¢ r and (t) € H.

It follows that H is v-dense in Kr' //
PROBLEM 65 Let R be a Kedekind domain with a hilber-

tian quotient field K. Is R itself a hilbertian

domain?

We recall that if L is a finite separable extension
of a hilbertian field K then every hilbertian subset
of LY contains a hilbertian subset of KT (c.f. Lang
[14, p. 1521). With this in mind we have the following

Lemma: .
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LEMMA 4,2: Let R be a Dedekind domain with a hilber-
tian field K. Let p be a prime ideal of R and let L'
be a finite separable extension of K. Then there exists
a quadratic separable extension L of X which is
linearly disjoint from L' over K such that p decom-
poses in L to a product of two different prime ideals.

PROOF: Consider the absolutely irreducible polynomial
X2 *TyX 4+ T,. By Lemma 4.1 there exist ti,ty € RP
such that

ty 21 (mod p ) , t, = 0 (mod p Y,

and such that the polynomial X2 Xt is drreducible
over L', Then X2 + th +t, decomposes modulo p to

a product of two different linear factors,

X2 4+ t.X + t, = X(X + 1) (mod pJ .

1 2
Hence, if x 1s a root of X% + X+t in K, then
L = K(x) is the desired quadratic extension of K

(c.f. Borevich-Shafarevich [2, p. 2031).

THEOREM 4.3: Let R be a Dedekind domain with a
denumerable hilbertian quotient field XK. Then almost
all (o) € g(KS/K)e have the following two properties:

1) For every nontrivial real valuation v of KS(O) the

completion KS(O)V is algebraically closed.

2) Tor every finite extension L of K which is con-
tained in K (o) and for every prime ideal p of I(L)

there exist in I(o) at least two distinct prime ideals

which lie over f.

PROOF: Define S, to be the set of all (o) € G(K /I0°
that have the property that every absolutely irreducible
algebraic variety which is defined over KS(O) has a
rational point over Ks(c). Fields with this property

321




20 JARDEN

are called PAC fields, In [10, Thm. 2.5] it was proved
that u(Sl) = 1, It follows, by a theorem of Frey

([7], Thm. 2) that if (o) € §; and v is a real
valuation of K (o) then K (o), 1is separably closed.
But if M is any complete field under a real valuation v
which is separably closed then it is algebraically closed.
Indeed let p = char(M), let a € M and let x € M such
that x% = a where q = p™, m > 1. Take a b€ M, b # 0,
such that v(b) is a big real number. Then ¥4 - by - a
is a separable polynomial over M. Its roots

must lie in M. Now

Yl,"'7Yq
q
bx = x3 + bx - a = [x - yi)
i=1
q
=> v(b) + v(x) = 2_vix - y;)
i=1

It follows that for at least one 1 between 1 and g,
v(x - y;) must be big. This means that M is dens€ in

)
M. Since M is also closed it must coincide with M.

It follows that Ks(c;)V is algebraically closed.

2) Let I be a finite separable extension of KX and
let p € P(L). According to Lemma 5.2 we can construct
by induction a linearly disjoint sequence, {Li/K}?:l,
of quadratic separable extensions such that p
decomposes in every L. into a product of two different
primes. If (o) € S(KS/Li)e then KS(G) contains L;
and hence there exist in I(g) at least two different

prime ideals which lie over p. It follows that the

get L,]S(KS/Li)e is contained in the set S(L,p) of
et}

all the (o) € g(KS/L)e for which there exist in I(og)

at least two different prime ideals which lie over P.
oo

By (10, Lemma 1.107, é;g(S(KS/Li)e is almost equal

322




JARDEN 21

to G(K /L)®, hence w(G(K /L)® - S(L,p)) = 0. Denote

now by S, the set of all (a) € S(KS/K)e which have
the property (2)., It is clear that

(3) Gk /0% - 5, = U 16K /1) - S(L,p)]

L.p
where L runs over all finite separable extensions of K
and p runs over all elements in P(L). Since there are
only a countable number of pairs (L,P) we get that the
measure of the right hand side of (3) is 0. It follows
that u(Sz) = 1.

5. A fixed high field over a Dedekind domain

Let R be a Dedekind domain with the quotient field
K. Trom now on we consider a fixed infinite separable
algebraic extension M of K. Write T = I(M) for the
integral closure of R in M and let [ be the
family of all finite extensions L of K which are
contained in M. Then T is a Priifer domain in which

every non-zero prime ideal is maximal.

In particular, if ¢® € P(M) is a prime ideal of
T then its local ring T, is a valuation ring
(c.f. Gilmer [8, p. 2541). Let v, be the corres-
poinding (additive) valuation, normalized in such a way
that if P = & N R then the restriction v, of
Ve to K satisfies VP(K) = Z. Then VG(M) is a
subgroup of Q. Assume that M satisfies the following

two hypotheses which make it a "high" field:

(1) vé(M) = @ for every @ € P(M)

(II) For every LE€EL and for every p € P(L) there
exist at least two prime ideals of T which lie over Pp.

Using these two hypotheses we are able to give, with the
help of some results of Krull a description of the

structure of J(M) and deduce some interesting
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properties of it. Our interest in these high fields
comes from the fact that if X is denumerable and
hilbertian then for almost all (o) € G(K_/K)® the
field KS(G) satisfies hypotheses (I) and (II), as
follows from Theorem 5.3. This means that any result

which we prove for M is valid for the above KS(G).
We begin with the following Theorem:

THEOREM 5.1:

a) Let p € P(X) and let e be a positive integer.
Then there exists an L €L such that for every
® € P(M) which lies over p the ramification index
e(® N L/p) is divisible by e.

b) If LelL and p ¢ P(L), then there exist at
least 2”0 distinct prime ideals of T which lie over
P

¢) Every prime ideal & € P(M) is idempotent, i1.e.

¢’ ¢,

d) Tor every prime ideal @ € P(M), the prime ideal
OT,

not a noetherian domain.

of Tp is not finitely generated, hence T, is

e) Let ® € P(M). Then every @ -primary ideal & of

T is not finitely generated and hence is not invertible.

£) If & is a ®-primary ideal which is different from
® then MQ"=0.
n=1

g) Let Ot be an ideal of T. If ¢t has a @-primary

component which is properly contained in & then

[N)QLH = 0, otherwise /A]01n = (U .
n=1 n=1
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h) TIf Of is finitely generated then the @-primary
component OLTG N T of O is properly contained in
@® for every ® € P(M) which contains of ; hence, if

g # T then mc)(,n=0.
n=1

PROOT:

a) Suppose that for every Lel there exists a

® € P(M) which lies over p such that e(® N L/p)

is not divisible by e. Let S(L) be the set of all

p' € P(L) which lie over p for which e(p'/pP) is not
divisible by e. By our assumption S(L) 1is a finite
non-empty set. If L, € L » Ly 2 Ly and p, € S(Lf
then e(Pl/P) is divisible by e(Pl N L/p), and hence
Pl NL e s(L). It follows that the collection of the
sets S(L) together with the maps P, 4— Pl/W L

form an inverse system with respect to inclusion. The
inverse limit of this system is not empty (c.f. Eilenberg
and Steenord [5, Thm. 3.61). Every element of this limit
defines a ® € P’M) such that & N L € S(L) for every
L €L. TFor such a ® we have, by (I)

Hence there exists an L € L such that %~ € v@(L).

Tt follows that e divides (VG(L): VG(K)) = e(@ n L/p)

which is a contradiction.

b) According to (II) there exists an L € Lo, L2 L,
such that there exist two distinect prime ideals

PosPp € P(L) which lie over p. Each one of these
ideals can be extended in an appropriate extension

L, € L of L in two different ways, and so on. Since
this process continues indefinitely we get that there

are at least g(o ideals in P(M) which lie over PpP.
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c) We prove first that CPT(Y = O’ZTC?. Indeed, let
X € OTd, , where x # 0. Then there exists a z € M such
that vgy(z) = %—vcp(x). Hence u = z”%x is invertible

in T(P’ 2€® and x = uzle CYQTG, .

2 . . . . .
Now, @ is @ ~primary, since ¢ 1is maximal. Hence

6’2=<5’2Td, NT= 06T ,nT=0.

d) Since 0Ty = ®21,, ®T, is not invertible in Tp.
This means that (S’T(P is not finitely generated, since

T(P is a valuation ring.

e) If 8 were finitely generated then there would have

exist an LeL and an ideal ¢ of I(L) such
that ¢ T = . By (II) there exist at least two distinct
prime ideals of T which contain ¢. These prime ideals

must also contain & which is impossible.

£) By Gilmer [8, p. 2691 /N Q" 1is a prime ideal of T [
n=1

which is properly contained in . Hence it must be 0.

g) The @ -primary component of ¢t is OLTG, n T. If

O(,T(Y N T 1is properly contained in ¢ for at least one

@® ¢ P(M) then it follows from (f) that an = 0.
n=

Otherwise OtTa N T is equal to either T or to & . |
In both cases we have that ((’)iTG,)2 = OLTO,. Hence :

h) There exists an L ¢ L and an ideal <& of I(L)
such that 0t = &T. Let ®€¢P(M), & 20L. Put pP= CNL;
by (a) there exists an Lle L, L, 2 L such that
2
[ -
PI(Ll) = (@lﬁLl) . If @ = OfaT(y N T then

- 2
oy NLy = Q.Td n I(Ll)E (@ NLp)

which is impossible.
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REMARK: The method of proof of (g) is essentiallly
the same as that of Theorem 2.3 of [11].

6. Characterization of ideals by a pair of functions

Tt is well known that the set J(M) can be given
the Krull topology with a basis the sets of the form
{ote JM)| otNL =@} where LEL and @« is an ideal
of T(L). Unfortunately the multiplication in J(L) 1is
not continuous in this topology, as we shall see later.
Nevertheless it motivates the following parametrisation
of J(M), which is due to Krull, and which generalizes
the usual representation of ideals in a Dedekind domain

as products of powers of prime ideals.

Denote by ¥ the set of all pairs (¢,¥) of

functions
¢ : P(M) —— {0,1} Y @ P(M) —— R

which satisfy the following conditions:

1) ¢@) =1 => @) € Q.

2a) There exists only a finite number of prime ideals

p € P(K) which are contained in the prime ideals of T

belonging to the set

S(¢,p) = {® ¢ PAD|y(@) # 0 or $( ) = 0 and Y@ =0}

(which we call "the support of (¢,¥)").

2b) The function ¢ is bounded.

3a) If ¢(00) = 0 +then for every € > 0 there exists
an LeJL such that for every @ € P(M)

dnNL = NL => p@) € Y@L + & .
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3b) If ¢Q?O) = 1 +then there exists an L¢ [ such
that for every & € P(M)

$ (@)

1e ONL =G, ML => (8 < ¥(@,)

$ (@) 0 &8 ®NL =(PO NL = p@) < 11)((5’0) .

One easily verifies that J is an abelian semi-group

with respect to the composition law
(o,p) * (¢231P2) = (¢l¢25 Wl + ‘PQ)
The unit of F  is the pair (1,0) .

To every fractional ideal Ot € J(M) we attach two

functions

bp, P POM)—— {0,1} Vg } POD— R

by means of the following rules:

a) ¢y (@) = 1 if there exists an ae ¢t such that
vpla) = v @) = Inf{v@(a)laecn }, otherwise ¢, (@) = 0.

b) %m(ﬁ) = vg 0
THEOREM 6.1: The map 0t (¢, s¥y) 1s a unitary

isomorphism of the semi-group J(M) onto ¥ .

PROOF: The theorem 1s a consequence of a theorem of
Krull [13, Satz 23] which was proved for the case R = &
but is equally true over any Dedekind domain R. We note
that in deducing our Theorem from that of Krull's one

has to use hypothesis (I) and Theorem 5.1 d.

Corollary 6.2: For every dU € J(M) and for every
positive integer n there exists a unique @& €& J(M)

such that (Bn = (L.
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PROOF: This follows from the isomorphism established in
Theorenm 6.1 and from the fact that F has the correspon-

ding property.

7. Primary ideals

In this section we consider a fixed prime ideal
® €& P(M) and the set of all ®-primary ideals of T.
This is a semi-group which we denote by J(M,®) (c.f.
Gilmer [8, p. 2691). From the fact that each non-zero
prime ideal of T 4is maximal it follows that a proper
ideal & € J(M) is @-primary if and only if ¢&«9') =1
and w&“?') = 0 for every @' € P(M) which is different

from @.

Denote by JO(M,O) (Jl(M,G)) the set of all
o-primary ideals &, for which ¢350) = 0 (¢®f0) = 1),
In order to describe these sets we introduce two new
topologies in IR, the right topology and the left topology.
A basis for the right (resp. left) topology is the set of
all semi-closed intervals of the form (a,b] (resp.

[a,b)) where a < b are rational numbers. Obviously

both topologies are stronger then the usual topology.

THEOREM 7.1:

a) Jl(M,O) is a sub-semi-group of J(M,®) which is
algebraicaly and topologically isomorphic to the additive
semi-group Q. of the positive rational numbers with
the right topology. An ideal & € Jl(M,Q) corresponds
under this isomorphism to VGQQ). Conversely, »r € Q>O

corresponds to the ideal

0y o7 {xe Ty > v e [Ve! € POD ot = V=l
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b) JO(M,§) is a unitary sub-semi-group of J(M,F)

which is algebraically and topologically isomorphic to the
additive semi-group R>o of the non-negative real

numbers with the left topology. An ideal @€ J,(M,0)
corresponds to v@(Q). Conversely, s € R)o corresponds

to the ideal

%,s * {x € Tlvg(x) > 5 8 WO' #6  => vp,(x) = 01} .

c) For every 1r € Q>o and s € R, we have

PROOF:

a) The fact that the map d+—v,@) is an algebraic
isomorphism of Jl(M,@) onto Q. whose inverse is the
map rk—aill,r, follows easily from Theorem 6.1. In order
to prove that this map is also a homeomorphism we need

the following Lemma:

LEMMA: Let Lel , re Q and me Z . Then
Psiandobuduadi e} >0
% m-1 m == = ph
(*) = <r &g < >'D‘1,rn1‘ PL

where P; = ONL and e = e(pP/Py) -

PROOF OF THE LEMMA: Suppose that Jll r NL = F? .
3

There exists an L'€ L , L' 2 L such that VG(Ql " NnLY
- . G R
= r, Put e' = e(PL,/PL). Then &)1’r nLt'= PL' where

(m-1)e' + 1 ¢ i € me'

since &, , N L' lies over [?g. Hence
>

(m=Lde' + Dvg(p;4) ¢ v &) N LY € me'velpry)
]
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Since P lies over Py,

iy )_VG(PL) o1
¢ Ppr? = e’ T e’ *
It follows that
m- 1 (m - e’ + 1 m
e < ce’ ¢r g o

Thus, we have proved that the right hand side of (*)
implies its left hand side. Since this is true for every

m, the converse implication is also valid.

We peturn now to the proof of (1) and prove that
the map Qt————)v@(ﬂ) is continuous. Let &\ € Jl(M,G),
re ve(®) and a,b be two positive rational numbers'
such that a < r € b. We write r in the form 1 = %—
where m', 1€ Z>o' By Theorem 5.la there exists an
Lé L such that e = e(p;/py) 1is a multiple of 1,

e = kX1 and such that % <p-a., Put m=km'. Let
now ' € Jl(M,@) be an ideal which satisfies
Q'Nn L= PE. Then, by the lemma a < v (Q') ¢ b. It

follows that the map is continuous.

Conversely, let r € Q ., let LekL, e = e(PL/PK)
s m -1
Mdlef\L”PL' Then A

< r < g, by the Lemma.

If r' is any element of @, which satisfies

m~- 1 ' m !
= <r' gz then &ll,r' NL=py, by the lemma.

It follows that the map rk*&)l r is also continuous.
b

b) The algebraic part of the statement follows from
Theorem 6.1. The topological part follows as in (1) from

the following lemma:

LEMMA: For every s » 0 and for every positive integer m

(#%) m ; l¢esg <P D nNL =
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where e = e(P;/Py).

PROOF OF THE LEMMA:  Suppose that { NL = pl. Let
H

L'el , L'2 L and put e' = e(PL./PL). As before we
get that

m~- 1 ' it}
s <V6,(~DO’SAL)€'€ .

Now s = Inflv,(Q nLY|L'eL , L'2 L}. Hence
0,8

. . . m m
is not possible since VO(PL) =z

The equality s = g

1

m
Hence £ s < s

Thus, the right hand side of (%%) implies its left hand
side. Since this is true for every m, the converse
implication is also valid.

¢) This follows from Theorem 6.1.

COROLLARY 7.2:

a)®q = B for every Q € JO(M,(S’)

b) The multiplication in Jl(M,O) is continuous.

c) The multiplication in J_(M,®) and hence in JM

is not continuous.

PROOF: (a) and (b) are clear. For (c) one proves

that the addition in R>O is not continuous in the left

topology since there exist two irrational numbers

> 0 whose sum s, * s is rational. //

8157 2
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8. Finitely generated fractional ideals

Denote by g * the set of all functions ¢ : P(M)—1Q

which satisfy the following conditions:

1) There exists only a finite number of prime ideals
p & P(K) which are contained in prime ideals of T

belonging to the set {@ € P(M) |y(@) # 0}.
2) The function ¢ is bounded.

3) TFor every @, € P(M) there exists an L €L such
that for every @ € P(M)

CNL =0_NL=> 40 = v@,)

Obviously F % is an abelian group with respect to
addition and the map Yi—>(1,¥) is an imbedding of T

in T.

THEOREM 8.1: The map Ot t——> ¥ of J*(M) onto F*

is an isomorphism.

PROOT': By Theorem 6.1 we have only to prove that in the
isomorphism Otp————a(qn,wa) of J(M) onto ¥, J¥(M)
is mapped onto (1,7%).

Indeed let gt ¢ J®(M) and let 0() € P(M). Then,
by Theorem 6.1 there exists an LeL such that

®NnNL=C_NL=>y,0) <V @) wm_l(o) <y _ @)
o
=> q;m(o’) = \pa((yo) .

Hence ot satisfies condition (3). Obviously it satisfies

conditions (1) and (2). Hence wote §%. Also ¢, = 1.
Conversely it is clear that the map is surijective since

%% 1is a group.
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COROLLARY 8,2: For every odté J*(M) and for every
positive integer n there exists a unique ® in J*(M)
such that @®" =o¢,

DEFINITION: A fractional ideal « € J(M) is said to
be locally finitely generated if for every @, € POD
there exists an L € L and elements Aysecesdy € L
which generate 0T, for every @® € P(M) which satis-
fies ®NnL = O’O N L.

COROLLARY 8. 3: Every locally finitely generated

fractional ideal Ot e Jg(M) 1is finitely generated.
PROOF: Let (?O € P(M) and let L and ayseeesay

be as in the definition. Let ® ¢ P(M) be an ideal
which satisfies & n L =(90 N L. Then

g (@) = min vg(a.) = min v, (a;) = ¢y (@)
o 1cisn & % 1<isn %o %o

Hence v, € F *. By Theorem 8.1 0Ot € J*(M),

We note that an Ot € J(M) which is pointwise finitely

generated, i.e. one for which JtTe is finitely
generated for every ¢ € P(M), must not belong to J*(M).
Indeed, if (90 € P(M) then any ) € Jl((?O,M) is
pointwise finitely generated but is not finitely
generated, by Theorem 5.1, Such a £y does exist by

Theorem 7.1.
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