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INTRODUCTION

Let K be a field. Denote by G(K,/K) the Galois group of the separable
closure K, of K over K. This group is equipped with a normalized Haar
measure p with respect to its Krull topology. We are interested in
fields of the form K o) which are, by definition, the fixed fields of
e-tuples (¢) = (oy ..., 0,) € G(K/K)°. In [3, p. 76] we have proved the
following Theorem:

Turorem A. If K is a denumerable hilbertian field then almost all
(0) € O(K[K)® have the following property: For every nonvoid abstract variety
V' defined over K (o)t he set V(K (o)) of all K, (o)~rational points of V is
Zariski K-dense in V(K).

In this note we consider a denumerable hilbertian field K equipped with
an absolute value v which is either the usual absolute value induced by that
of the complex numbers or a non-archimedean valuation with values in a
commutative ordered group I'. The absolute value v is assumed to have been
extended in some fixed way to the algebraic closure K of K. The purpose of
this note is to strengthen Theorem A for such K in the following way.

TueorEM B. Let K be a denumerable hilbertian valued field. Then almost
all (0)e ®(K[K) have the following property: V(Ko)) is v-dense in
V(K) for every abstract variety V defined over K (o).

* This work was done while the author was at Heidelberg University.
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179 FIELDS WITH THE DENSITY PROPERTY
1. VaLuep FigLps

In this note we consider valued fields (K, v) of the following two types:

(i) The archimedean type: K is a subfield of the field of the complex
numbers C and v is the usual absolute value.

(ii) The non-archimedean type: K is an arbitrary field and » is a non-
trivial valuation of K, i.e., a homomorphism of K* into an ordered multi-
plicative abelian group I” such that

v(a - b) < max{v(a), v(b)},

and ¢(a) 5= 1 for some a € K* (c.f. Ribenboim [7, p. 27]). As usual we add
an element O to I' as a first element with the rule 0 - y = 0 for every ye I’
and put 2(0) = 0.

We shall use the notation | a | instead of v(a) for elements @ of K and we
keep the notation v(A4) for the value set of a subset 4 of K.

In cach case v induces a field topology on K, the basis sets of which are
{#eK||x —a| <e where ac K and e . We shall refer to it as the
v-topology. We denote by K,, , K, and K the v-completion of K, its separable
closure and its algebraic closure respectively. We always assume that v has
been extended first to K and then to its completion K, . Every extension of K
will be assumed to lie in K, and thus to be a valued field too. I" will stand
for o(K, — {0}). Then for every e e I there exists an element a € K* such
that | @ | <C e. This is clear in the archimedean case, since Q is dense in R.
In the non-archimedean case it suffices to consider the case 0 << e = | x| << 1,
where » € K. Now « lies in a finite extension L of K. Let ¢ = (o(L*): v(K*))
be the ramification index. Then e is finite (c.f., Ribenboim [7, p. 59]) and
hence there exists an a € K* such that |a| =[x |* < | x|

Levmma 1.1, Let K be an algebraically closed valued field and let
J(T, X) = fu(T) X" 4 f,4(T) X1 4= o 4 fo(T)

be a polynomial with coefficients in K in the variables (T, X) = (Ty ,..., T, , X).
Let (ty , %) be a K-rational zero of f for which f,(t;) = 0 for some 0 <L [ < n.
Then for every el there exists a d € I' such that for every iy ,..., t, € K which

satisfy
[, — fo | << 8 i= 1,7

there exists an x € K such that f(t, x) = 0 and | x — x,| < e.

Proof. Without loss of generality we can assume that (t,, &) = (0, 0).
Then f(0) = 0 and there exists an 1 </ < # such that f,(0) %= 0. Since
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Jo and f; are both w-continuous functions we can find a § el such that

[t) <8 i = 1,7 = fi(t) # Oand

S(0)

n
To(t) l P —E—'— in the arch. case

en in the non-arch. case.

Suppose now that | ;| << 8§ 7 = 1,..., 7. Let m be the greatest integer for
which f,,(t) 5 0. Then I <{ m < n and

m

£ X) = fu(®X7 + = HOX 4+ fo() = ful® [] (X — )
el
with @, ,..., %, € K. Then

JoO g MO s
g = CDmem s = (S S

where « runs over all the injective maps of the set {1,..., m — [} into the set
{1, m}. If fo(t) = O then x; == 0 for some 1 <7 < m and we are done.
Suppose therefore that fi(t) % 0 and extend every 7 uniquely to a permutation
of the set {1,..., m}. Then

fl(t) I (“})LZ l

fol) ~ X lmeit1) """ Xorlom)

It follows that in both cases there must exist an x; such that | x; | < e.

Lemma 1.2. A separably closed valued field K is v-dense in K.

Proof. We have to prove the Lemma only when char(K) = p # 0.
In this case v is non-archimedean.

Let ae K, a # 0. Then there exists a power ¢ of p such that a? = be K.
Let e e I'. 'Take an element ¢ € K* such that | ¢] << | a |1 ¢? and consider
the separable polynomial X - ¢X - b. It has ¢ roots %, ,..., x, in K. Now

4

ca=a'—ca—>b=1](a—wx)
i1

a
:>eq>nla~—xi|

{=1

= There exists an 1 {7 <{ gsuch that |a — x; | < e.
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Lemmva 1.3, If K is a complete separably closed valued field then K is
algebraically closed.

Proof. K is closed in K by completeness and dense in K by Lemma 1.2.
It follows that K = K.

LemMa 1.4, The completion K, of a separably closed valued field K is
algebraically closed.

Proof. By Lemma 1.3 we have only to prove that K, is separably closed.
Indeed let f(X) = X" 4 a, X' - -+ -+ a, be a separable polynomial
with coeflicients in K, and let & be a root of f in the algebraic closure L of
K, .Let ee I'. Then by Lemma 1.1 if we choose b, 4 ,..., b, in K sufficiently
v-close to a,_y ..., 4y, then the polynomial g(X) = X* + b,_ X" 4 -+ 4 b,
is separable and has a root y such that | ¥ — x| <C e. This y must belong to K.
It follows that x lies in the v-closure of K in L, i.e., in K, .

Remark. XKiirschdk proved this lemma for the case where K is an
algebraically closed field and » is a valuation of rank 1 (c.f. Ribenboim
[7, p. 207}).

2. Varieries OvER VALUED FIELDS

Let V be an abstract variety defined over a valued field K. The v-topology
of K induces in a natural way a v-topology on the set V(K) of all K-rational
points of V" (cf. Weil [9, p. 352]). In particular if V" is an affine variety and it is
contained in the affine space S* then the w-topology on V(K) is that which is
induced by the v-topology of K™. If V is a Zariski K-open subset of V' then
Vo(K) is a v-open subset of V(K). It follows that if L is an extension of K
and V(K)is v-dense in V(L) then V(K )is v-dense in V(L). Again we used the
notation Vy(K) to denote the set of all K-rational points of V.

Lemmva 2.1. Let K be an infinite field, let Z, ,..., Z,, be m sets in the affine
space S* and let (a)e K*. Assume that for every 1 < j < m there exists a
point (b;)e Z(K), (b;) # (a). Then there exists a hyperplane L which is
defined over K, passes through (a) and does not contain any of the Z;'s.

Proof. The polynomial f(Uy ,...y Zp) = [1jeq Sy Uslbys — a;) is, by our
assumptions, not identically zero. Hence we can find % ,..., %, € K such that
Sfluy ...y u,) = 0. The hyperplane L which is defined by the equation

n

Z u(X; —a;)) =0

i=1

fullfills the requirements.
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Lemma 2.2, Let K be an algebraically closed valued field and let v be an
abstract variety defined over K. If U is a nonempty Zariski K-open subset of V.
then U(K) is v-dense in V(K).

Remark. 'The lemma is well known in the archimedean case (cf. Mumford

[6, p. 111]). The following proof holds, however, for every valued field.

Proof. We can assume, without loss of generality that J is an affine
irreducible variety. The open set U can be represented in the form
U =V — Z, where Z is a Zariski K-closed subset of IV and dim Z < dim V.
We have to prove that if Pe V(K) and N is a v-open neighbourhood of P
in V(K), then there exists a point Q € U(K) N N. We prove this statement in
several steps.

(a) V is defined over K by an equation f(7, X) = 0, P = (¢, 5) and
J(T, X) = f(T) X" + -+ + f(T) is irreducible. In particular there exists
an 0 <</ < n such that fi(#) ¢ 0, since otherwise 7' — ¢t would divide
J(T, X). In this case Z is reduced to a finite number of points (£, , x,)
w == 1,..., m. We choose a t’ € K v-close to ¢ such that ¢’ 5 £, u = 1,..., m.
Then by Lemma 1.1 we can find an &’ € K such that f(#, &) = 0 and
(t", &) e N.

(b) V' is a smooth affine curve. In particular P is a simple point of V.
Hence there exists a plane curve W and a birational map @: V' — W which
are defined over K such that ¢ is biregular in P (cf., Mumford [6, p. 373]).
We are therefore reduced to the case (a) which was settled above.

(c) Vs an arbitrary affine irreducible curve.  Then the normalization
V' of V' is a smooth affine curve (cf., Weil [9, p. 343]) and there exists a
morphism ¢ from V'’ onto V. Since the statement has already been proved
for V" it holds also for V.

(d) We proceed now by induction on the dimension # of V. If r = 0
there is nothing to prove. The case » = 1 was proved in (c). Assume therefore
that » > 1 and that the Lemma has already been proved for » — 1.

Let Z, ..., Z,, be the irreducible components of Z. By Lemma 2.1 we can
find a hyperplane L which passes through P such that ¥ C L and such that
Z;CLforeveryl <j <mforwhichP #£ Z, . Let VnL =V, U - U ¥,
be the decomposition of ¥ N L into irreducible components. Assume, for
example, that Pe 7, . By the Dimension Theorem (cf., Lang [4, p. 36])
dimV; =7 —1 and dimZ;NL <7 — 1 for every 1 <j < m. Hence
dmZNL <r—1.Put U; = V;, — (ZN LN V,). Then U, is a nonempty
Zariski K-open subset of ¥, . By the induction hypothesis there exists a
point Q € U;(K) N N. This Q lies in U(K) N N.
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DerFINTTION. By a hyper surface we shall mean an absolutely irreducible
affine variety 7" which is contained in S7t! and has the dimension 7.

For every variety ¥V we denote by Vi the Zariski open subset of V7 of all
simple points.

Levma 2.3. Let KCL be a valued field and let M be an algebraically
closed extension of L which is contained in K, . If Wsim(L) is v-dense in Weim(M)
for every hyper surface W defined over K then V(L) is v-dense in V(M) for
every abstract variety V defined over K.

Proof. Let V be an absolute variety defined over K. Then there exists a
hyper surface W and a birational map ¢: V —> W defined over K. (cf.
I3, p. 75]). Let V, be a Zariski K-open subset of Vgim on which ¢ is biregular
and let W, be the set theoretic image of Vy by . Then W, C Wyim and ¢
induces v-homeomorphisms of Vy(L), V(M) onto Wy(L), Wy(M), respec-
tively. By assumption Weim(L) is v-dense in Wgim(M), hence Wy(L) is v-dense
in Wy(M) and hence V(L) is v-dense in V(). By Lemma 2.2 V(M) is
v-dense in V(M) Hence V(L) is v-dense in V(M).

Levma 2.4. Let K be a separably closed valued field. Then V(K) is v-dense
in V(K,) and hence in V(K) for every abstract variety V defined over K.

Proof. By Lemmas 1.4 and 2.3 it suffices to prove that Wym(K) is
v-dense in Wym(K,) for every hyper surface W defined over K. Indeed let
feK[Ty,..., T,, X] be an irreducible polynomial and let W be the hyper
surface defined by the equation f(T, X) == 0. Let (t, x) € Wsim(K,), then,
without loss of generality we can assume that (9f/0X)(t, x) % 0. This implies
that we can use Lemma 1.1 to approximate (¢, x) with points (t', &) € Wsm(K)
as in the proof of Lemma 1.4.

3. Tur DeNsITY PROPERTY

DrrINITION. A valued field L is said to have the density property if V(L)
is v-dense in V(L,) for every abstract variety I defined over L.

By Lemma 2.4 every separably closed valued field has the density property.
Lemma 2.3 reduces the problem of determining wheather a given valued
field has the density property to simple points on hyper surfaces. The next
Lemma will serve as a further reduction step.

LemmMa 3.1. Let K be a valued field and let L be a separable algebraic
extension of K. Then a sufficient (and obviously also necessary) condition for L
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to have the density property is that Vgm(L) is v-dense in Vam(L,) for every
hyper surface v defined over K.

Proof. Assume that the condition is satisfied, Then by Lemma 2.4,
Vaim(L) is v-dense in Vgm(K,) for every hyper surface ¥ defined over K.
Hence, by Lemma 2.3, V(L) is v-dense in V(K,) for every abstract variety
V defined over K.

Now let I be an abstract variety defined over L. Then- by descent theory,
there exists an abstract variety W defined over K and an epimorphism
@: W 17 which is defined over L (cf., Weil [8, p. 5]. By what was proved
above W(L) is v-dense in W(K,). Hence V(L) is v-dense in V(K,).

CoroLLARY 3.2.  Every separable algebraic extension of a valued field with
the density property has the density property too.

4. HiLerTIAN VALUED FIELDS

Let K be a field. A hilbertian subset H of K" is a set of the form
H = {(t) e K" | fy(t, X) is defined and irreducible in K[X], A = 1,...,1},

where f; ,..., f; are irreducible polynomials in K(7} ,..., T,)[X; 5oer X,

The field K is said to be hilbertian if all its hilbertian sets are nonempty. It
is known that every number field and every function field is hilbertian (cf.,
Lang [5, p. 55]). Furthermore, if L is a finite separable extension of a hilbertian
field K, then every hilbertian set of L contains a hilbertian set of K (cf.,
Lang [5, p. 52]).

It follows from the definition that for a hilbertian field K, every hilbertian
subset H of K" is dense in K” in the Zariski K-topology. If K is also valued
we can strengthen this statement as follows.

Lemma 4.1. Let K be a hilbertian valued field. Then every hilbertian
subset H of K" is v-dense in K.

Proof. Let H be a hilbertian subset of K as above. Let (a) € K7 and let
y € I. Then there exists a c € K* such that | ¢ | < y. Consider the finite set
of all polynomials of the form

e, + T, a, + Ty, X),

where 1 <A </ and ¢; = -1 for i = 1,...,7. All these polynomials are
defined and irreducible in K(T)[X]. Since K is hilbertian there exist
81 5.0y 8 € K such that all the polynomials

fila, e, a, 4 esir, X)



185 FIELDS WITH THE DENSITY PROPERTY

are defined and irreducible in K[X]. For every 1 =< i < » we specify ¢; to
be 1 or —1 according to wheather |s;]| << 1 or |s;| > 1. Then we put
f; = a; - c%. and it is clear that |t, — a;| <y, { = 1,..,7 and (t)e H.
It follows that I is v-dense in K.

5. Tue Haar MEeasure or GB(K/K)

It is well known that the absolute Galois group G(K,/K) of a field K is
compact with respect to its Krull topology. There is therefore a unique way
to define a Haar measure p on the Borel field of subsets of G(K/K) such
that w(G(K,/K)) = 1. If L is a finite separable extension of K then
W(G(K L)) = 1j[L: K]. We complete 1 by adjoining to the Borel field all
the subsets having measure 0 and denote the completion also by u. More
generally, for a positive integer e, we consider the product space G(K/K)
and again denote by p the appropriate completion of the power measure.
One can show that it coincides with the completion of the normalized measure
of B(K,/K).

A sequence {K,;/K}7, of field extensions is said to be lhnearly disjoint if
K1 is linearly disjoint from K, -+ K, for every 7 > 1.

The following lemma is a special case of Lemma 1.10 of [3].

LevMA 5.1. Let L be a finite separable extension of a field K. If {L,/L}7
is a linearly disjoint sequence of finite separable extensions of the same degree
then

* 1
/J, e
# (91 OULY) = 17k
For an e-tuple (6) = (oy ,..., 0,) of elements of G(K,/K) we denote by K (o)
its fixed field in K.

Lemma 5.2. Let K be a denumerable hilbertain wvalued field. Then K (o)
is v-dense in K for almost every (o) € G(K JK)".

Proof. For xe K and eeo(K*) we denote by S(x,¢) the set of all
(6) € G(K,/K)® for which there exists an v € K (o) such that |y — x| <e.
We show that u(S(x, €)) = 1. This will suffice to prove the lemma, since the
set of all (¢) € B(K/K)® for which K(o) is v-dense is the intersection of all
the possible S(x, ¢)’s and it is clear that a countable intersection of sets of
measure 1 has again the measure 1.

Let f(X) = X» 4 ¢ X»1 | --- 1 g, be a polynomial with coeflicients
in K such that f(x) = 0. We construct by induction a linearly disjoint
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sequence, {K,/K}7, , of separable extensions of degree , such that in every
K, there exists a y which satisfies | y — x| < e.

Assume that we have already constructed K ,..., K; with the desired
properties, Put K’ = K -+ K, . Then K’ is a finite separable extension of K.
Now, the general polynomial of degree 7

f(T’ X) = X0 T, X e o 4 T,

is certainly irreducible over K’. Hence by Lemma 4.1 we can find b, ,..., b, € K
arbitrarily v-close to a; ,..., a,, so that f(b, X) will be separable and irreducible
over K'. If we choose by ,..., b, v-close enough to 4y ,..., a,, then, by Lemma 1.1
there exists a y € K such that f(b, y) == 0and | y — & | < e.Put Ky = K(¥).
Then K., is a separable extension of K of degree  and it is linearly disjoint
from K’ over K.

It is clear that

O O(K,/K,) C S(x, €).

i=1

By Lemma 5.1 the union has the measure 1, hence p(S(x, €)) = 1.

6. T Main THEOREM

Levma 6.1. Let K be a hilbertian valued field and let f € K[TY ,..., T, X]
be an absolutely irreducible polynomial. Let t, ,..., t, , x € K, such that f(t, x) =0
and (OffoX)(t, x) # 0. Let ee I" and suppose that § < ¢ is an element of I’
such that for every t,...,t,’ € K, which satisfy |t/ — ;| <8, i ==1,...,7,
there exists an element &' € K, such that f(t',x') =0, (offoX)t', %) %0
and | &' — x| < e. Let L be a finite separable extension of K and suppose that
there exist t',...,t," € L which satisfy |t — t;| << 8/2 in the archimedean
case and |t — t;| << 8 in the non-archimedean case i = 1,...,r. Then for
almost all (o) € G(K,JL)® there exist ay ..., a, , b € K (o) such that

f(a,b) =0,  (9f[oX)(a, b) # 0, M
la;, — t; ] < e i=1,..,7, [b— x| < e (2)

Progf. Let d be the degree of f in X, We construct by induction a linearly
disjoint sequence {L;/L};, of separable extensions of degree d such that for
every j there exist @ ,...,a,,bel; satisfying (1) and (2). Suppose that
we have already constructed L, ,...,L; ; with the desired properties. Put
L' =1L, L, ;. ThenL’ is a finite separable extension of L. By Lemma 4.1
there exist a4, ,..., a, € L such that | @, — #;/ | < 8/2 in the archimedean case
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and | a; — ¢,/ | < 8 in the non-archimedean case, £ = 1,..., 7, and such that
the polynomial f(a, X) is separable of degree d and irreducible over L',
In every case |a; — t;| << 8, ¢ == 1,..., 7. Hence by our assumption there
exists a b ¢ K, such that (1) and (2) are satisfied. Put L; == L{b). Then L; is a
separable extension of L of degree d and it is linearly disjoint from L’ over L.

Now, by Lemma 5.1 (J -, G(K,/L,)* is almost equal to G(K /L) and every
(o) in this union has the desired property.

TuasoreMm 6.2. Let K be hilbertian denumerable valued field k. Then K (o)
has the densily property for almost all (o) € G(k[/R)*.

Proof. Denote by S the set of all (o) € (K JK)* for which Viim(K (o))
is w-dense in Vgm(K,) for every hyper surface ¥ which is defined over K.
By Lemma 3.1 it suffices to prove that u(S) = 1.

Indeed let ¥ a hyper surface which is defined over K, let Pe Vam(K,)
and let e e I'. Denote by f(7,..., T, X) the absolutely irreducible poly-
nomial in K[Ty,..., T, , X], which defines 7 and let P = (t, ). We can
assume, without loss of generality, that (8f JaX)(t, x) ¢ 0. By Lemma 1.1
there exists a e I', 8 < ¢, such that for every #,,..., #,' € K which satisfy

[t — 8] <8 i=1,.,7, 3)

there exists an & € K such that & — x| < e f(t, ') =0 and
offoX(t', X) # 0. The last condition obviously implies that if #',..., £," € K
then »’ € K . Let now L be a finite separable extension of K and suppose that
there exist #;’,...,¢, €L for which |t/ —t;] < 8/2 in the archimedean
case and |t/ — #;| <& in the nonarchimedean case, 7 = 1I,..,7. Let
S(V, P, ¢, L) be theset of all (6) e ®(K /L) for which there exist
ay ,..., a, € K (o) such that

f(a,8) =0,  (9fjoX)(a, b) # 0 (4)
la; — ;] <, 1= 1,u..,7; jb—2x] <e (5)

By Lemma 5.1
wW(GK LY — SV, P, e, L)) = 0. (6)

Put T for the set of all (o) & G(K/K)* for which K(o) is v-dense in K.
By Lemma 4.1

w(T) = 1. (M
Clearly S C T. We claim that

T — SCJ[6K L)y — S(V, P, ¢, L)), (8)

where the union runs over all possible V, P, ¢, L.
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Indeed let ()& T'— S. Then there exists a hyper surface V' which is
defined over K, a point P e Vym(K,) and an e € 9(K*) such that for every
P’ e Vgm(K (o)) the maximal value of the differences of the corresponding
coordinates of P and P’ is not smaller then e. Let (7Y ,..., T, X) be the
absolutely irreducible polynomial which defines 7 and let 8 € I" as above.
Then there exist t,',..., 7, " € K(o) which satisfy the condition (3). Put
L = K(t/,...,1,”). Then L is a finite separable extension of K which is con-
tained in K (o). Hence (¢) € G(K/L)* — S(V, P, ¢, L).

Now the number of summands in the right-hand side of (8) is &, , since
K itself is denumerable. Each summand hfts by (6) the measure 0. It follows
that u(T" — .8) == 0. Hence, by (7) u(S) =

7. REMARKS

In [2, Section 3] we considered a valued field K and defined it to be
hilbertian with respect to its valuation if its hilbertian sets are v-dense in the
corresponding powers of K. It appears now that every hilbertian valued field
is also hilbertian with respect to its valuation (cf., Lemma 4.1). Theorem 6.1
of [2] can therefore be reformulated as follows:

Tueorem 7.1. Let K be a denumerable hilbertian wvalued field. If K, is
separable over K then for almost all (o) € (K JK)® and for every absolute
variety V defined over K, Vam(K (o) N K,) is v-dense in Vign(K,). In
particular G(K (o) N K) is v-dense in G(K.,) for every group variety G defined
over K.

A field K is said to be pseudo algebraically closed (P.A.C.) if every nonvoid
absolute variety defined over K has a K-rational point. Now, a valued field K
having the density property is certainly P.A.C. Indeed, if V' is a nonvoid
absolute variety defined over K then by Hilbert’s Nullstellensatz V(K) is
not empty. Since V(K) is v-dense in V(K) it is also not empty. In the opposite
direction G. Frey proved in [1, Theorem 2] that if X is a P.A.C. valued field
and 9(K) C R, then K, is algebraically closed and hence K is v-dense in K, .
This statement can be generalized to finite rank valuations. The following
question is therefore very natural:

ProsreM 1. Does every valued P.A.C. field have also the density
property?

Till now we considered a valued field K and a fixed extension of v to K
which we have also denoted by v. We let now the extension of » to vary and
we say that an algebraic extension L of K has the density property with respect
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to an extension w of v to K if V(L) is w-dense in V(K,) for every absolute
variety 7 defined over L. We propose the following problem:

ProerLEm 2. Let K be a denumerable hilbertian v-valued field. Is it true
that for almost all (o) € G(K/K)* K (o) has the density property with respect
to every extension w of v to K?

Obviously a positive answer to Problem 1 will provide a positive answer
to Problem 2. In general there are at least 2% distinct extensions of o to K.
Hence we can not apply the usual argument of intersecting &, sets of measure 1
in order to deduce a positive answer to Problem 2 from our main theorem.
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