Fields with the Density Property

WULF DIETER GEYER

Erlangen-Nurnberg University, 852 Erlangen, Bismarckstr. 11/2, Germany

AND

Moshe Jarden*

Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel

Communicated by A. Fröhlich

Received November 8, 1973

Introduction

Let K be a field. Denote by $\mathfrak{G}(K_s/K)$ the Galois group of the separable closure K_s of K over K. This group is equipped with a normalized Haar measure μ with respect to its Krull topology. We are interested in fields of the form $K_s(\sigma)$ which are, by definition, the fixed fields of e-tuples $(\sigma) = (\sigma_1, ..., \sigma_e) \in \mathfrak{G}(K_s/K)^e$. In [3, p. 76] we have proved the following Theorem:

Theorem A. If K is a denumerable hilbertian field then almost all $(\sigma) \in \mathfrak{G}(K_s/K)^e$ have the following property: For every nonvoid abstract variety V defined over $K_s(\sigma)$ t he set $V(K_s(\sigma))$ of all K, (σ) -rational points of V is Zariski K-dense in $V(\tilde{K})$.

In this note we consider a denumerable hilbertian field K equipped with an absolute value v which is either the usual absolute value induced by that of the complex numbers or a non-archimedean valuation with values in a commutative ordered group Γ . The absolute value v is assumed to have been extended in some fixed way to the algebraic closure \tilde{K} of K. The purpose of this note is to strengthen Theorem A for such K in the following way.

Theorem B. Let K be a denumerable hilbertian valued field. Then almost all $(\sigma) \in \mathfrak{G}(K_s/K)^c$ have the following property: $V(K_s(\sigma))$ is v-dense in $V(\tilde{K})$ for every abstract variety V defined over $K_s(\sigma)$.

^{*} This work was done while the author was at Heidelberg University.

1. Valued Fields

In this note we consider valued fields (K, v) of the following two types:

- (i) The archimedean type: K is a subfield of the field of the complex numbers \mathbf{C} and v is the usual absolute value.
- (ii) The non-archimedean type: K is an arbitrary field and v is a non-trivial valuation of K, i.e., a homomorphism of K^* into an ordered multiplicative abelian group Γ such that

$$v(a+b) \leqslant \max\{v(a), v(b)\},$$

and $v(a) \neq 1$ for some $a \in K^*$ (c.f. Ribenboim [7, p. 27]). As usual we add an element 0 to Γ as a first element with the rule $0 \cdot \gamma = 0$ for every $\gamma \in \Gamma$ and put v(0) = 0.

We shall use the notation |a| instead of v(a) for elements a of K and we keep the notation v(A) for the value set of a subset A of K.

In each case v induces a field topology on K, the basis sets of which are $\{x \in K \mid | x - a | < \epsilon\}$ where $a \in K$ and $\epsilon \in \Gamma$. We shall refer to it as the v-topology. We denote by K_v , K_s and \tilde{K} the v-completion of K, its separable closure and its algebraic closure respectively. We always assume that v has been extended first to \tilde{K} and then to its completion \tilde{K}_v . Every extension of K will be assumed to lie in \tilde{K}_v and thus to be a valued field too. Γ will stand for $v(K_v - \{0\})$. Then for every $\epsilon \in \Gamma$ there exists an element $a \in K^*$ such that $|a| < \epsilon$. This is clear in the archimedean case, since \mathbf{Q} is dense in \mathbf{R} . In the non-archimedean case it suffices to consider the case $0 < \epsilon = |x| < 1$, where $x \in \tilde{K}$. Now x lies in a finite extension L of K. Let $e = (v(L^*): v(K^*))$ be the ramification index. Then e is finite (c.f., Ribenboim [7, p. 59]) and hence there exists an $a \in K^*$ such that $|a| = |x|^e < |x|$.

LEMMA 1.1. Let K be an algebraically closed valued field and let

$$f(\mathbf{T}, X) = f_n(\mathbf{T}) X^n + f_{n-1}(\mathbf{T}) X^{n-1} + \dots + f_0(\mathbf{T})$$

be a polynomial with coefficients in K in the variables $(\mathbf{T}, X) = (T_1, ..., T_r, X)$. Let (\mathbf{t}_0, x_0) be a K-rational zero of f for which $f_l(\mathbf{t}_0) \neq 0$ for some $0 \leq l \leq n$. Then for every $\epsilon \in \Gamma$ there exists a $\delta \in \Gamma$ such that for every $t_1, ..., t_r \in K$ which satisfy

$$|t_i - t_{0i}| < \delta \qquad i = 1, ..., r$$

there exists an $x \in K$ such that $f(\mathbf{t}, x) = 0$ and $|x - x_0| < \epsilon$.

Proof. Without loss of generality we can assume that $(\mathbf{t}_0, x_0) = (\mathbf{0}, 0)$. Then $f_0(\mathbf{0}) = 0$ and there exists an $1 \leq l \leq n$ such that $f_l(\mathbf{0}) \neq 0$. Since

 f_0 and f_l are both v-continuous functions we can find a $\delta \in \Gamma$ such that $|t_i| < \delta$ $i = 1,..., r \Rightarrow f_l(\mathbf{t}) \neq 0$ and

$$\left| rac{f_0(\mathbf{t})}{f_l(\mathbf{t})}
ight| < egin{cases} rac{\epsilon^n}{n!} & ext{in the arch. case} \ rac{\epsilon^n}{n!} & ext{in the non-arch. case}. \end{cases}$$

Suppose now that $|t_i| < \delta$ i = 1,...,r. Let m be the greatest integer for which $f_m(\mathbf{t}) \neq 0$. Then $l \leq m \leq n$ and

$$f(\mathbf{t}, X) = f_m(\mathbf{t})X^m + \dots + f_l(\mathbf{t})X^l + \dots + f_0(\mathbf{t}) = f_m(\mathbf{t}) \prod_{i=1}^m (X - x_i)$$

with $x_1,...,x_m \in K$. Then

$$\frac{f_0(\mathbf{t})}{f_m(\mathbf{t})} = (-1)^m \, x_1 \cdots x_m \,, \qquad \frac{f_l(\mathbf{t})}{f_m(\mathbf{t})} = (-1)^{m-l} \sum_{\pi} x_{\pi(1)} \cdots x_{\pi(l)} \,,$$

where π runs over all the injective maps of the set $\{1,..., m-l\}$ into the set $\{1,..., m\}$. If $f_0(\mathbf{t}) = 0$ then $x_i = 0$ for some $1 \le i \le m$ and we are done. Suppose therefore that $f_0(\mathbf{t}) \ne 0$ and extend every π uniquely to a permutation of the set $\{1,..., m\}$. Then

$$\frac{f_l(\mathbf{t})}{f_0(\mathbf{t})} = (-1)^l \sum_{\pi} \frac{1}{x_{\pi(m-l+1)} \cdots x_{\pi(m)}}.$$

It follows that in both cases there must exist an x_i such that $|x_i| < \epsilon$.

Lemma 1.2. A separably closed valued field K is v-dense in \tilde{K} .

Proof. We have to prove the Lemma only when $\operatorname{char}(K) = p \neq 0$. In this case v is non-archimedean.

Let $a \in \widetilde{K}$, $a \neq 0$. Then there exists a power q of p such that $a^q = b \in K$. Let $\epsilon \in \Gamma$. Take an element $c \in K^*$ such that $|c| < |a|^{-1} \epsilon^q$ and consider the separable polynomial $X^q - cX - b$. It has q roots $x_1, ..., x_q$ in K. Now

$$ca=a^q-ca-b=\prod_{i=1}^q (a-x_i)$$

$$\Rightarrow \epsilon^q>\prod_{i=1}^q \mid a-x_i\mid$$

$$\Rightarrow \text{ There exists an } 1\leqslant i\leqslant q \text{ such that } \mid a-x_i\mid<\epsilon.$$

Lemma 1.3. If K is a complete separably closed valued field then K is algebraically closed.

Proof. K is closed in \tilde{K} by completeness and dense in \tilde{K} by Lemma 1.2. It follows that $K = \tilde{K}$.

Lemma 1.4. The completion K_v of a separably closed valued field K is algebraically closed.

Proof. By Lemma 1.3 we have only to prove that K_v is separably closed. Indeed let $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ be a separable polynomial with coefficients in K_v and let x be a root of f in the algebraic closure L of K_v . Let $\epsilon \in \Gamma$. Then by Lemma 1.1 if we choose b_{n-1} ,..., b_0 in K sufficiently v-close to a_{n-1} ,..., a_0 , then the polynomial $g(X) = X^n + b_{n-1}X^{n-1} + \cdots + b_0$ is separable and has a root y such that $|y - x| < \epsilon$. This y must belong to K. It follows that x lies in the v-closure of K in K_v .

Remark. Kürschák proved this lemma for the case where K is an algebraically closed field and v is a valuation of rank 1 (c.f. Ribenboim [7, p. 207]).

2. Varieties Over Valued Fields

Let V be an abstract variety defined over a valued field K. The v-topology of K induces in a natural way a v-topology on the set V(K) of all K-rational points of V (cf. Weil [9, p. 352]). In particular if V is an affine variety and it is contained in the affine space S^n then the v-topology on V(K) is that which is induced by the v-topology of K^n . If V_0 is a Zariski K-open subset of V then $V_0(K)$ is a v-open subset of V(K). It follows that if L is an extension of K and V(K) is v-dense in V(L) then $V_0(K)$ is v-dense in $V_0(L)$. Again we used the notation $V_0(K)$ to denote the set of all K-rational points of V_0 .

LEMMA 2.1. Let K be an infinite field, let $Z_1,...,Z_m$ be m sets in the affine space S^n and let $(\mathbf{a}) \in K^n$. Assume that for every $1 \leq j \leq m$ there exists a point $(\mathbf{b}_j) \in Z_j(\widetilde{K})$, $(\mathbf{b}_j) \neq (\mathbf{a})$. Then there exists a hyperplane L which is defined over K, passes through (\mathbf{a}) and does not contain any of the Z_j 's.

Proof. The polynomial $f(U_1,...,Z_n)=\prod_{j=1}^m\sum_{i=1}^nU_i(b_{ji}-a_i)$ is, by our assumptions, not identically zero. Hence we can find $u_1,...,u_n\in K$ such that $f(u_1,...,u_n)\neq 0$. The hyperplane L which is defined by the equation

$$\sum_{i=1}^n u_i(X_i - a_i) = 0$$

fullfills the requirements.

- Lemma 2.2. Let K be an algebraically closed valued field and let v be an abstract variety defined over K. If U is a nonempty Zariski K-open subset of V then U(K) is v-dense in V(K).
- *Remark.* The lemma is well known in the archimedean case (cf. Mumford [6, p. 111]). The following proof holds, however, for every valued field.
- *Proof.* We can assume, without loss of generality that V is an affine irreducible variety. The open set U can be represented in the form U=V-Z, where Z is a Zariski K-closed subset of V and $\dim Z<\dim V$. We have to prove that if $P\in V(K)$ and N is a v-open neighbourhood of P in V(K), then there exists a point $Q\in U(K)\cap N$. We prove this statement in several steps.
- (a) V is defined over K by an equation f(T,X)=0, P=(t,s) and $f(T,X)=f_n(T)X^n+\cdots+f_0(T)$ is irreducible. In particular there exists an $0 \le l \le n$ such that $f_l(t) \ne 0$, since otherwise T-t would divide f(T,X). In this case Z is reduced to a finite number of points (t_μ,x_μ) $\mu=1,...,m$. We choose a $t' \in K$ v-close to t such that $t' \ne t_\mu \mu=1,...,m$. Then by Lemma 1.1 we can find an $x' \in K$ such that f(t',x')=0 and $(t',x') \in N$.
- (b) V is a smooth affine curve. In particular P is a simple point of V. Hence there exists a plane curve W and a birational map $\varphi \colon V \to W$ which are defined over K such that φ is biregular in P (cf., Mumford [6, p. 373]). We are therefore reduced to the case (a) which was settled above.
- (c) V is an arbitrary affine irreducible curve. Then the normalization V' of V is a smooth affine curve (cf., Weil [9, p. 343]) and there exists a morphism φ from V' onto V. Since the statement has already been proved for V' it holds also for V.
- (d) We proceed now by induction on the dimension r of V. If r=0 there is nothing to prove. The case r=1 was proved in (c). Assume therefore that r>1 and that the Lemma has already been proved for r-1.
- Let Z_1,\ldots,Z_m be the irreducible components of Z. By Lemma 2.1 we can find a hyperplane L which passes through P such that $V\subseteq L$ and such that $Z_j\subseteq L$ for every $1\leqslant j\leqslant m$ for which $P\neq Z_j$. Let $V\cap L=V_1\cup\cdots\cup V_k$ be the decomposition of $V\cap L$ into irreducible components. Assume, for example, that $P\in V_1$. By the Dimension Theorem (cf., Lang [4, p. 36]) dim $V_1=r-1$ and dim $Z_j\cap L< r-1$ for every $1\leqslant j\leqslant m$. Hence dim $Z\cap L< r-1$. Put $U_1=V_1-(Z\cap L\cap V_1)$. Then U_1 is a nonempty Zariski K-open subset of V_1 . By the induction hypothesis there exists a point $Q\in U_1(K)\cap N$. This Q lies in $U(K)\cap N$.

DEFINITION. By a hyper surface we shall mean an absolutely irreducible affine variety V which is contained in S^{r+1} and has the dimension r.

For every variety V we denote by V_{sim} the Zariski open subset of V of all simple points.

- Lemma 2.3. Let $K \subseteq L$ be a valued field and let M be an algebraically closed extension of L which is contained in \tilde{K}_v . If $W_{\text{sim}}(L)$ is v-dense in $W_{\text{sim}}(M)$ for every hyper surface W defined over K then V(L) is v-dense in V(M) for every abstract variety V defined over K.
- *Proof.* Let V be an absolute variety defined over K. Then there exists a hyper surface W and a birational map $\varphi \colon V \to W$ defined over K. (cf. [3, p. 75]). Let V_0 be a Zariski K-open subset of V_{sim} on which φ is biregular and let W_0 be the set theoretic image of V_0 by φ . Then $W_0 \subseteq W_{\text{sim}}$ and φ induces v-homeomorphisms of $V_0(L)$, $V_0(M)$ onto $W_0(L)$, $W_0(M)$, respectively. By assumption $W_{\text{sim}}(L)$ is v-dense in $W_{\text{sim}}(M)$, hence $W_0(L)$ is v-dense in $W_0(M)$ and hence $V_0(L)$ is v-dense in $V_0(M)$. By Lemma 2.2 $V_0(M)$ is v-dense in V(M). Hence $V_0(L)$ is v-dense in V(M).
- Lemma 2.4. Let K be a separably closed valued field. Then V(K) is v-dense in $V(K_v)$ and hence in $V(\tilde{K})$ for every abstract variety V defined over K.

Proof. By Lemmas 1.4 and 2.3 it suffices to prove that $W_{\text{sim}}(K)$ is v-dense in $W_{\text{sim}}(K_v)$ for every hyper surface W defined over K. Indeed let $f \in K[T_1, ..., T_r, X]$ be an irreducible polynomial and let W be the hyper surface defined by the equation $f(\mathbf{T}, X) = 0$. Let $(\mathbf{t}, x) \in W_{\text{sim}}(K_v)$, then, without loss of generality we can assume that $(\partial f/\partial X)(\mathbf{t}, x) \neq 0$. This implies that we can use Lemma 1.1 to approximate (\mathbf{t}, x) with points $(\mathbf{t}', x') \in W_{\text{sim}}(K)$ as in the proof of Lemma 1.4.

3. The Density Property

DEFINITION. A valued field L is said to have the *density property* if V(L) is v-dense in $V(\tilde{L}_v)$ for every abstract variety V defined over L.

By Lemma 2.4 every separably closed valued field has the density property. Lemma 2.3 reduces the problem of determining wheather a given valued field has the density property to simple points on hyper surfaces. The next Lemma will serve as a further reduction step.

LEMMA 3.1. Let K be a valued field and let L be a separable algebraic extension of K. Then a sufficient (and obviously also necessary) condition for L

to have the density property is that $V_{sim}(L)$ is v-dense in $V_{sim}(L_s)$ for every hyper surface v defined over K.

Proof. Assume that the condition is satisfied. Then by Lemma 2.4, $V_{\text{sim}}(L)$ is v-dense in $V_{\text{sim}}(\tilde{K}_v)$ for every hyper surface V defined over K. Hence, by Lemma 2.3, V(L) is v-dense in $V(\tilde{K}_v)$ for every abstract variety V defined over K.

Now let V be an abstract variety defined over L. Then by descent theory, there exists an abstract variety W defined over K and an epimorphism $\varphi \colon W \to V$ which is defined over L (cf., Weil [8, p. 5]. By what was proved above W(L) is v-dense in $W(\tilde{K}_v)$. Hence V(L) is v-dense in $V(\tilde{K}_v)$.

COROLLARY 3.2. Every separable algebraic extension of a valued field with the density property has the density property too.

4. Hilbertian Valued Fields

Let K be a field. A hilbertian subset H of K^r is a set of the form

$$H = \{(\mathbf{t}) \in K^r \mid f_{\lambda}(\mathbf{t}, \mathbf{X}) \text{ is defined and irreducible in } K[\mathbf{X}], \lambda = 1,...,l\},$$

where $f_1,...,f_l$ are irreducible polynomials in $K(T_1,...,T_r)[X_1,...,X_n]$.

The field K is said to be *hilbertian* if all its hilbertian sets are nonempty. It is known that every number field and every function field is hilbertian (cf., Lang [5, p. 55]). Furthermore, if L is a finite separable extension of a hilbertian field K, then every hilbertian set of L contains a hilbertian set of K (cf., Lang [5, p. 52]).

It follows from the definition that for a hilbertian field K, every hilbertian subset H of K^r is dense in K^r in the Zariski K-topology. If K is also valued we can strengthen this statement as follows.

Lemma 4.1. Let K be a hilbertian valued field. Then every hilbertian subset H of K^r is v-dense in K^r .

Proof. Let H be a hilbertian subset of K^r as above. Let $(\mathbf{a}) \in K^r$ and let $\gamma \in \Gamma$. Then there exists a $c \in K^*$ such that $|c| < \gamma$. Consider the finite set of all polynomials of the form

$$f_{\lambda}(a_1+cT_1^{\epsilon_1},...,a_r+cT_r^{\epsilon_r},\mathbf{X}),$$

where $1 \le \lambda \le l$ and $\epsilon_i = \pm 1$ for i = 1,...,r. All these polynomials are defined and irreducible in K(T)[X]. Since K is hilbertian there exist $s_1,...,s_r \in K$ such that all the polynomials

$$f_{\lambda}(a_1 + cs_1^{\epsilon_1}, ..., a_r + cs_r^{\epsilon_r}, \mathbf{X})$$

are defined and irreducible in $K[\mathbf{X}]$. For every $1 \leqslant i \leqslant r$ we specify ϵ_i to be 1 or -1 according to wheather $|s_i| \leqslant 1$ or $|s_i| > 1$. Then we put $t_i = a_i + c_{s_i}^{\epsilon_i}$ and it is clear that $|t_i - a_i| < \gamma$, i = 1,...,r and $(\mathbf{t}) \in H$. It follows that H is v-dense in K^r .

5. The Haar Measure of $\mathfrak{G}(K_s/K)$

It is well known that the absolute Galois group $\mathfrak{G}(K_s/K)$ of a field K is compact with respect to its Krull topology. There is therefore a unique way to define a Haar measure μ on the Borel field of subsets of $\mathfrak{G}(K_s/K)$ such that $\mu(\mathfrak{G}(K_s/K)) = 1$. If L is a finite separable extension of K then $\mu(\mathfrak{G}(K_s/L)) = 1/[L:K]$. We complete μ by adjoining to the Borel field all the subsets having measure 0 and denote the completion also by μ . More generally, for a positive integer e, we consider the product space $\mathfrak{G}(K_s/K)^e$ and again denote by μ the appropriate completion of the power measure. One can show that it coincides with the completion of the normalized measure of $\mathfrak{G}(K_s/K)^e$.

A sequence $\{K_i/K\}_{i=1}^{\infty}$ of field extensions is said to be *linearly disjoint* if K_{i+1} is linearly disjoint from $K_1 \cdots K_i$ for every $i \ge 1$.

The following lemma is a special case of Lemma 1.10 of [3].

Lemma 5.1. Let L be a finite separable extension of a field K. If $\{L_i|L\}_{i=1}^{\infty}$ is a linearly disjoint sequence of finite separable extensions of the same degree then

$$\mu\left(igcup_{i=1}^{\infty}\mathfrak{G}(K_s/L_i)^e
ight)=rac{1}{[L\colon K]^e}\,.$$

For an e-tuple $(\sigma) = (\sigma_1, ..., \sigma_e)$ of elements of $\mathfrak{G}(K_s/K)$ we denote by $K_s(\sigma)$ its fixed field in K_s .

Lemma 5.2. Let K be a denumerable hilbertain valued field. Then $K_s(\sigma)$ is v-dense in \widetilde{K} for almost every $(\sigma) \in \mathfrak{G}(K_s/K)^e$.

Proof. For $x \in \widetilde{K}$ and $\epsilon \in v(K^*)$ we denote by $S(x, \epsilon)$ the set of all $(\sigma) \in \mathfrak{G}(K_s/K)^e$ for which there exists an $y \in K_s(\sigma)$ such that $|y - x| < \epsilon$. We show that $\mu(S(x, \epsilon)) = 1$. This will suffice to prove the lemma, since the set of all $(\sigma) \in \mathfrak{G}(K_s/K)^e$ for which $K_s(\sigma)$ is v-dense is the intersection of all the possible $S(x, \epsilon)$'s and it is clear that a countable intersection of sets of measure 1 has again the measure 1.

Let $f(X) = X^n + a_1 X^{n-1} + \cdots + a_n$ be a polynomial with coefficients in K such that f(x) = 0. We construct by induction a linearly disjoint

sequence, $\{K_i/K\}_{i=1}^{\infty}$, of separable extensions of degree n, such that in every K_i there exists a y which satisfies $|y - x| < \epsilon$.

Assume that we have already constructed $K_1, ..., K_i$ with the desired properties. Put $K' = K_1 \cdots K_i$. Then K' is a finite separable extension of K. Now, the general polynomial of degree n

$$f(\mathbf{T}, X) = X^n + T_1 X^{n-1} + \dots + T_n$$

is certainly irreducible over K'. Hence by Lemma 4.1 we can find $b_1,...,b_n \in K$ arbitrarily v-close to $a_1,...,a_n$ so that $f(\mathbf{b},X)$ will be separable and irreducible over K'. If we choose $b_1,...,b_n$ v-close enough to $a_1,...,a_n$ then, by Lemma 1.1 there exists a $y \in K_s$ such that $f(\mathbf{b},y) = 0$ and $|y-x| < \epsilon$. Put $K_{i+1} = K(y)$. Then K_{i+1} is a separable extension of K of degree n and it is linearly disjoint from K' over K.

It is clear that

$$\bigcup_{i=1}^{\infty} \mathfrak{G}(K_s/K_i)^e \subseteq S(x, \epsilon).$$

By Lemma 5.1 the union has the measure 1, hence $\mu(S(x, \epsilon)) = 1$.

6. The Main Theorem

Lemma 6.1. Let K be a hilbertian valued field and let $f \in K[T_1,...,T_r,X]$ be an absolutely irreducible polynomial. Let $t_1,...,t_r$, $x \in K_s$ such that $f(\mathbf{t},x)=0$ and $(\partial f/\partial X)(\mathbf{t},x) \neq 0$. Let $\epsilon \in \Gamma$ and suppose that $\delta < \epsilon$ is an element of Γ such that for every $t_1',...,t_r' \in K_s$ which satisfy $|t_i'-t_i| < \delta$, i=1,...,r, there exists an element $x' \in K_s$ such that $f(\mathbf{t}',x')=0$, $(\partial f/\partial X)(\mathbf{t}',x')\neq 0$ and $|x'-x| < \epsilon$. Let L be a finite separable extension of K and suppose that there exist $t_1',...,t_r' \in L$ which satisfy $|t_i'-t_i| < \delta/2$ in the archimedean case and $|t_i'-t_i| < \delta$ in the non-archimedean case i=1,...,r. Then for almost all $(\sigma) \in \mathfrak{G}(K_s/L)^e$ there exist $a_1,...,a_r$, $b \in K_s(\sigma)$ such that

$$f(\mathbf{a},b)=0, \quad (\partial f/\partial X)(\mathbf{a},b)\neq 0,$$
 (1)

$$|a_i - t_i| < \epsilon, \quad i = 1, ..., r, \quad |b - x| < \epsilon.$$
 (2)

Proof. Let d be the degree of f in X. We construct by induction a linearly disjoint sequence $\{L_j/L\}_{j=1}^{\infty}$ of separable extensions of degree d such that for every j there exist $a_1, ..., a_r$, $b \in L_j$ satisfying (1) and (2). Suppose that we have already constructed $L_1, ..., L_{j-1}$ with the desired properties. Put $L' = L_1 \cdots L_{j-1}$. Then L' is a finite separable extension of L. By Lemma 4.1 there exist $a_1, ..., a_r \in L$ such that $|a_i - t_i'| < \delta/2$ in the archimedean case

and $|a_i - t_i'| < \delta$ in the non-archimedean case, i = 1,...,r, and such that the polynomial $f(\mathbf{a}, X)$ is separable of degree d and irreducible over L'. In every case $|a_i - t_i| < \delta$, i = 1,...,r. Hence by our assumption there exists a $b \in K_s$ such that (1) and (2) are satisfied. Put $L_j = L(b)$. Then L_j is a separable extension of L of degree d and it is linearly disjoint from L' over L.

Now, by Lemma 5.1 $\bigcup_{j=1}^{\infty} \mathfrak{G}(K_s/L_j)^e$ is almost equal to $\mathfrak{G}(K_s/L)^e$ and every (σ) in this union has the desired property.

Theorem 6.2. Let K be hilbertian denumerable valued field k. Then $K_s(\sigma)$ has the density property for almost all $(\sigma) \in \mathfrak{G}(k_s/k)^e$.

Proof. Denote by S the set of all $(\sigma) \in \mathfrak{G}(K_s/K)^e$ for which $V_{\text{sim}}(K_s(\sigma))$ is v-dense in $V_{\text{sim}}(K_s)$ for every hyper surface V which is defined over K. By Lemma 3.1 it suffices to prove that $\mu(S) = 1$.

Indeed let V a hyper surface which is defined over K, let $P \in V_{\text{sim}}(K_s)$ and let $\epsilon \in \Gamma$. Denote by $f(T_1, ..., T_r, X)$ the absolutely irreducible polynomial in $K[T_1, ..., T_r, X]$, which defines V and let $P = (\mathbf{t}, x)$. We can assume, without loss of generality, that $(\partial f/\partial X)(\mathbf{t}, x) \neq 0$. By Lemma 1.1 there exists a $\delta \in \Gamma$, $\delta < \epsilon$, such that for every $t_1', ..., t_r' \in \widetilde{K}$ which satisfy

$$|t_i' - t_i| < \delta \qquad i = 1, \dots, r, \tag{3}$$

there exists an $x' \in \tilde{K}$ such that $|x' - x| < \epsilon$, $f(\mathbf{t}', x') = 0$ and $\partial f/\partial X(\mathbf{t}', X) \neq 0$. The last condition obviously implies that if $t_1', ..., t_r' \in K_s$ then $x' \in K_s$. Let now L be a finite separable extension of K and suppose that there exist $t_1', ..., t_r' \in L$ for which $|t_i' - t_i| < \delta/2$ in the archimedean case and $|t_i' - t_i| < \delta$ in the nonarchimedean case, i = 1, ..., r. Let $S(V, P, \epsilon, L)$ be the set of all $(\sigma) \in \mathfrak{G}(K_s/L)^e$ for which there exist $a_1, ..., a_r \in K_s(\sigma)$ such that

$$f(\mathbf{a}, b) = 0, \quad (\partial f/\partial X)(\mathbf{a}, b) \neq 0$$
 (4)

$$|a_i - t_i| < \epsilon, \quad i = 1, \dots, r; \quad |b - x| < \epsilon.$$
 (5)

By Lemma 5.1

$$\mu(\mathfrak{G}(K_s/L)^e - S(V, P, \epsilon, L)) = 0. \tag{6}$$

Put T for the set of all $(\sigma) \in \mathfrak{G}(K_s/K)^e$ for which $K_s(\sigma)$ is v-dense in K_s . By Lemma 4.1

$$\mu(T) = 1. \tag{7}$$

Clearly $S \subseteq T$. We claim that

$$T - S \subseteq \bigcup [\mathfrak{G}(K_s/L)^e - S(V, P, \epsilon, L)], \tag{8}$$

where the union runs over all possible V, P, ϵ , L.

Indeed let $(\sigma) \in T - S$. Then there exists a hyper surface V which is defined over K, a point $P \in V_{\text{sim}}(K_s)$ and an $\epsilon \in v(K^*)$ such that for every $P' \in V_{\text{sim}}(K_s(\sigma))$ the maximal value of the differences of the corresponding coordinates of P and P' is not smaller then ϵ . Let $f(T_1, ..., T_r, X)$ be the absolutely irreducible polynomial which defines V and let $\delta \in \Gamma$ as above. Then there exist $t_1', ..., t_r' \in K_s(\sigma)$ which satisfy the condition (3). Put $L = K(t_1', ..., t_r')$. Then L is a finite separable extension of K which is contained in $K_s(\sigma)$. Hence $(\sigma) \in \mathfrak{G}(K_s/L)^c - S(V, P, \epsilon, L)$.

Now the number of summands in the right-hand side of (8) is \aleph_0 , since K itself is denumerable. Each summand has by (6) the measure 0. It follows that $\mu(T-S)=0$. Hence, by (7) $\mu(S)=1$.

7. Remarks

In [2, Section 3] we considered a valued field K and defined it to be hilbertian with respect to its valuation if its hilbertian sets are v-dense in the corresponding powers of K. It appears now that every hilbertian valued field is also hilbertian with respect to its valuation (cf., Lemma 4.1). Theorem 6.1 of [2] can therefore be reformulated as follows:

Theorem 7.1. Let K be a denumerable hilbertian valued field. If K_v is separable over K then for almost all $(\sigma) \in \mathfrak{G}(K_s|K)^e$ and for every absolute variety V defined over K, $V_{\text{sim}}(K_s(\sigma) \cap K_v)$ is v-dense in $V_{\text{sim}}(K_v)$. In particular $G(K_s(\sigma) \cap K_v)$ is v-dense in $G(K_v)$ for every group variety G defined over K.

A field K is said to be *pseudo algebraically closed* (P.A.C.) if every nonvoid absolute variety defined over K has a K-rational point. Now, a valued field K having the density property is certainly P.A.C. Indeed, if V is a nonvoid absolute variety defined over K then by Hilbert's Nullstellensatz $V(\tilde{K})$ is not empty. Since V(K) is v-dense in $V(\tilde{K})$ it is also not empty. In the opposite direction G. Frey proved in [1, Theorem 2] that if K is a P.A.C. valued field and $v(K) \subseteq \mathbb{R}$, then K_v is algebraically closed and hence K is v-dense in \tilde{K}_v . This statement can be generalized to finite rank valuations. The following question is therefore very natural:

PROBLEM 1. Does every valued P.A.C. field have also the density property?

Till now we considered a valued field K and a fixed extension of v to \tilde{K} which we have also denoted by v. We let now the extension of v to vary and we say that an algebraic extension L of K has the density property with respect

to an extension w of v to \tilde{K} if V(L) is w-dense in $V(\tilde{K}_w)$ for every absolute variety V defined over L. We propose the following problem:

PROBLEM 2. Let K be a denumerable hilbertian v-valued field. Is it true that for almost all $(\sigma) \in \mathfrak{G}(K_s/K)^{\varrho} K_s(\sigma)$ has the density property with respect to every extension w of v to K?

Obviously a positive answer to Problem 1 will provide a positive answer to Problem 2. In general there are at least 2^{\aleph_0} distinct extensions of v to \tilde{K} . Hence we can not apply the usual argument of intersecting \aleph_0 sets of measure 1 in order to deduce a positive answer to Problem 2 from our main theorem.

REFERENCES

- G. Frey, Pseudo algebraically closed fields with non-archimedean real valuations, J. Algebra 26 (1973), 202-207.
- G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic field, Proc. London Math. Soc. 28 (1974), 112-128.
- 3. M. Jarden, Elementary statements over large algebraic fields, *Trans. Amer. Math. Soc.* 64 (1972), 67-91.
- 4. S. Lang, "Introduction to Algebraic Geometry," Interscience, New York, 1958.
- 5. S. Lang, "Diophantine Geometry," Interscience, New York, 1962.
- 6. D. Mumford, "Introduction to Algebraic Geometry," Harvard University Press.
- 7. P. Ribenboim, "Théorie des Valuations," Les presses de l'université de Montréal, Montreal, Canada, 1968.
- 8. A. Weil, "Adeles and Algebraic Groups," The Institute for Advanced Study, Princeton, NJ, 1961.