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Introduction
The following theorem is well known (cf. Lang, [6], p. 71).

Let k be a field of finite type (i.c. a field which is Jinitely generated over its
prime field). Let A be an abelian variety defined over k. Then the set Ak)
of the k-rational points of A form a finitely generated abelian group.

In particular it follows that the rank of 4 (k) is finite.

One may ask what happens to the rank if we replace & by a field K
which is of infinite type. To answer this question one has first to exclude
the case where K is an algebraic extension of a finite field, since in this
case A(K) is a torsion group. The first fields of interest are therefore the
algebraically closed fields of which none is the algebraic closure of a finite
field. For such a field K it is relatively easy to show that the rank of A(K)
is equal to the cardinality of K. (We assume here once for all that
dim 4 > 1.) A proof of this fact is included in this work. Another proof
was indicated by J.-P. Serre in a letter.

Our main result is the following.

Let k be an infinite field of finite type and let ¢ be a positive integer. Denote
by ky the separable closure of k. For every (o) = (015 ey 0,) € G(ky/ k) put
ky(o) for the fixed field in k, of (oy,...,0,). Then almost all (o) € G(ky/k)e
hawe the following property: if A is an abelian variety defined over k(o) and
dim 4 > 1 then the rank of A(ky(o)) is infinite.

Here ‘almost all’ is used in the sense of the Haar measure defined on
the group %(k,/k) with respect to its Krull topology. (More details are
given in §1.)

This result may give the impression that the fields ky(o) behave like
algebraically closed fields. This is not the case since, for example, it can
be shown that if % is a field of finite type and ¢ > 2 then for almost all
(0) € G(ky/k)° the field k(o) contains only a finite number of roots of
unity.
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Two main steps are involved in the proof of the theorem. First, we
establish a general approximation theory modulo real valuations (that is
valuations with real values) for the fields k,(¢) which holds for an
arbitrary abstract variety V. For global fields k, it can be formulated as
follows.

Let v be a real valuation of k. Then for almost all (o) € G(k./k)* and for
every absolute wvariety V defined over k, the set V.(ks(o)nk,) of the
ky(o) 0 k,-rational simple points of V is v-dense in the set Vy (k,).

(Here k, is the completion of k& with respect to v.)

Secondly, we study abelian varieties over complete fields and by using
the theory of Néron on minimal models ([13]), we prove the following
theorem.

Let K be a complete field with respect to a discrete real valuation v, whose
residue field is perfect and let L be a proper, finite, unramified Galois
extension of K. If A is an abelian variety defined over K then there exists a
point P e A(L) and a v-open neighbourhood U of P in A(L) such that for
every @ € U and for every integer m # 0, m@ ¢ A(K).

The authors wish to acknowledge their indebtedness to Bronislav
Weinrab for suggesting the problem, to W. D. Geyer for his important
contributions to the work, and to P. Roquette for his comments and
encouragement.

1. The Haar measure of a Galois group

In this section we mention briefly some notions which have already been
introduced in [5].

Let k be any field, k, its separable closure, and #(k,/k) the Galois group
of k; over k. It is well known that %(k,/k) is a compact group under the
Krull topology. There is therefore a unique way to define a Haar measure
p on the Borel field of @(k,/k) such that u(Z(k,/k)) = 1. If I is a finite
separable extension of k then u(%(k,/1)) = 1/[l:k]. We complete p by
adjoining to the Borel field all the subsets of measure 0 and denote the
completion also by w. More generally, for a positive integer e, we shall
consider the product space #(k,/k)¢ and denote by u¢ or p again the
appropriate product measure (also completed).

A sequence (k;/k)?, of algebraic field extensions is said to be linearly
disjoint if, for every n > 1, k,,, is linearly disjoint from k;...k, over k, in
the usual sense, that is, if [k, : k] = [ky... kykpyy @ Kyen Kyl

The following lemma is a special case of Lemma 1.10 of [5].
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Lemma 1.1, Let k' be a finite separable extension of k. If (k;/k')2, is a
linearly disjoint sequence of finile extensions of the same degree then

- 1
o Gostr) =gy

We shall frequently use the simple fact that the intersection of a
denumerable number of sets of measure 1 is again a set of measure 1. It
is also clear that if {S,}, and {7}}?; are two denumerable sets of measur-
able sets such that, for every ¢, §; is almost equal to 7} then U2, S, is
almost equal to U2, 7;.

2. Linearly independent points on elliptic curves

In this section we illustrate our methods for the special case of an
elliptic curve defined over the field Q of the rational numbers. The main
result we achieve here will be stronger than the result for arbitrary
abelian varieties.

Let & be an elliptic curve defined over @ which has a rational point
over Q. Without loss of generality we can suppose that & has an affine
representative which is defined by an equation
(1) Y2=X%4aX+0,
where a,b € Z and 4a®+ 27b2 # 0 (Cassels, [1], p. 211). Thus & turns
out to be an abelian variety whose zero point is the point at infinity of (1).

If' p is a prime we denote by v, the appropriate valuation of the field
Q,, of p-adic numbers. Similar notation holds for a prime ideal of an
arbitrary number field k.

If V is a variety defined over a field k, we denote by V(k) the set of
points of V rational over .

Lemma 2.1. Let p be an odd prime. Put ¢ = 1+ap®+bpd. Then

P = (1/p,{(c/p)/p) is a point of &, rational over Q(/(c/p)) and, for every
integer m # 0, mP is not rational over Q.

Proof. The field k& = Q(J(c/p)) is a quadratic extension of Q which
ramifies totally over p. Therefore there exists a unique prime ideal p of &
lying over p and we have

(2) vy(2) = 20,(2) forallz e Q,.

If we put = = /(p/c), we have = € k and vy(m) = 1. We consider Q, as a
subfield of k,. One can prove that every point (2',y’) satisfying (1) and
rational over k, can be represented in the form (z',y’) = (En—2n, ym—n),
where nand £ areintegralin &, and n = max(0, — }v,(2')) = max(0, —30,(¥"))
is an integer. Thus we obtain a function n = n(P’) defined for every point
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P’ e &(k,) (P’ # 0). This function has the following property (Lutz, [9]).
(8) n(Py=1 = nmP’)=mn(P)+2v,(m) forevery integer m # 0.

From (2), it follows that if P’ = (2/,y') € £(Q,) then v,(y’) is even and
hence n(P') is even.

Now let m be a non-zero integer. From the definitions, it follows that P
is a point of &(k) for which n(P) = 1. Hence, according to (3),

n(mbP) = 1+ 2v,(m)

that is, n(mP) is an odd integer. This means that mP ¢ £(Q,) and in
particular mP is not rational over Q.

Tarorem 2.2. There exists @ linearly independent sequence
(P)= (P, 5, B, ...)
of points of &(Q). Moreover, for every positive integer e and for almost all
(0) = (04, ..., 0,) € G(Q/Q)° there exists a subsequence (P qy, Py Pniays )
of (P) rational over Q(o).

Proof. We build by induction an infinite sequence py, py, pg, ... of odd
primes such that if we put ¢; = 1+ap2+bp? and k; = Q((c,/p;)) then
v,,(¢;) = 0 and (k;/Q)2, will be linearly disjoint.

Suppose we have already found odd primes g, ...,P,_;, such that
v,,(¢c;) = 0 and (k;/Q)2! is linearly disjoint. Put K = k;...k,_,, then K is
a number field. It is not difficult to prove that the polynomial
g(X,Y)=X3Y2—-1—aX?2-DX3 is absolutely irreducible. We can there-
fore find an odd prime p,, which does not divide the denominators of @ and
b such that the polynomial g(p,, Y) is irreducible over K (Lang, [6],
p. 148). It follows immediately that v, (c,) =0 and that k, is a
quadratic extension of Q, linearly independent of K. This ends the
induction.

According to Lemma 2.1, P, = (1/p,,(¢,,/Pn)/Py) is & point in &(k,)
and, for every non-zero integer m, mP, ¢ &(Q). Suppose now that there
exist integers m,,...,m, such that m,P+...+m, P, +m,F, =0 and
m, # 0. P,...,P,_, belong to &(k;...k,_,), hence m, P, € &(ky...k,_4). On
the other hand m,, P, € &(k,), hence m, P, is rational over k, nk;...k, ; = Q,
which is a contradiction. This means that the sequence (P) = (P, B, I, ...)
is linearly independent.

By this we have proved the first part of the theorem. Now let e be a
positive integer. For every positive integer r, denote by S, the set of all
(o) € 9(Q/Q)¢ for which there exist » points of the sequence (P) which are
rational over Q(o). For every positive integer ¢, we put

Ky =ky yyr1e Ty
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We obtain in this way a linearly disjoint sequence of field extensions
(K,/Q)2, of degree 27. TFurthermore, for every ¢, Py )41, -.., 1, are
rational over K, Hence U2, @Q/K) < S,. According to Lemma 1.1
w(U2, %(Q/K)*) = 1. Therefore u(S,) = 1 and so p(N2,8,) = 1. Since,
for every (o) € (2, S,, there certainly exists an infinite subsequence of
(P), our second assertion also holds.

(Note that the sequence (P) is rational over K = Q({yn|n € Z}). Hence
the rank of &(K) is N,.)

The authors are indebted to W. D. Geyer for calling their attention to
Lutz’s work.

3. Hilbertian fields with respect to a valuation

Derinirion. Let & be a field with a valuation ». k is said to be
Filbertian with respect to v if every hilbertian set of k contains a point
whose coordinates have non-negative values by v.

The following lemma follows immediately from the definitions
(compare: Lang, [6], Corollary 4, p. 148).

Lumma 3.1, Let k be a hilbertian field with respect to a real valuation v.
Then, for every positive integer r, the hilbertian sels of k7 are dense in k™ in

the v-topology.

In particular, it follows in this case, that if k, is the completion of £
with respect to v, [ is a finite separable extension of &, f(fy, ..., £, X) is an
irreducible polynomial over [, and («) = («, ..., ,) € ki, then we can find
a point (@) € k*, arbitrarily close to (x), such that f(e, X) is irreducible
over I. Note that we use here the fact that every hilbertian set over [
contains a hilbertian set over & (Lang, [6], p. 152). A similar argument

implies the following result.

Lumma 3.2. If kis hilbertian with respect to a valuation v, if 1 is a finite
extension of k and w is an extension of v to I then 1 is hilbertian with respect

to w.

Examples for hilbertian fields with respect to their valuations are given
in the following lemma (cf. Lang, [6], Theorem 2, p. 155).

Lemma 3.3. (1) Number fields are hilbertian with respect to every

valuation.
(2) Function fields of one variable over a field k, are hilbertian with respect

to every discrete real valuation which is trivial on k.
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4. The p-adic approximation on hypersurfaces

Let & be a field with a real valuation ». Denote by k, the completion of
k with respect to ». Let k& and [, be the algebraic closures of & and k,
respectively. We imbed % in &, and then identify £ with its image. We
also denote by k, the separable closure of k. Thus, the intersection k,nk,
has a meaning.

Luvma 4.1, Let k be a field with a real valuation v, and f € k[T, ..., T,, X]
be a polynomial whose degree in X is d > 1. Let 74, ...,7,, € € k, be elements
Jor which

./}(73 ) =0, (afan)(Ta £)#0
(where (t) = (14, ..., T,)). Suppose that A is a v-open neighbourhood of (r, §)
in k", Then there exist ay, ..., a,,b € k,0k, such that f(a,b) = 0, (a,b) € 4,
and (9f/0X)(a,b) # 0.

Moreover, if k is hilbertian with respect lo v, 1 is a finite separable extension
of k, and [ is irreducible over 1 then we can choose (a,b) to satisfy in addition
the condition that k(a,b) be an extension of k of degree d which is linearly
disjoint from 1.

Proof. Theimplicit function theorem implies that there exists a function
X = (T, into k,, which is defined and continuous in a neighbourhood
of (1), such that, for every (¢, ) € k,»* sufficiently close to (7, £), we have

x =) = f{t,z)=0
(See Mattuck, [10], p. 97, for the ultrametric case.)

We choose ay, ...,a, € k such that (@) is sufficiently close to (7). Put
b = g(a). Then f(a,b) =0, (a,b) € A, and (9f/0X)(a,b) # 0. It follows
also that b € k,.

If % is hilbertian with respect to v, [ is a finite separable extension of %,
and fis irreducible over [, we can choose (&) such that, in addition to being
close to (), f(a, X) is an irreducible polynomial over [, of degree d (this is
possible according to Lemma 3.1). Hence k(a, b) = k(b) is an extension of &
of degree d, linearly disjoint from [ over k.

For every absolute variety V defined over a field K, we denote by
Vim(K) the set of all K-rational points of V which are simple. If K < k,
then » induces in a natural way, a topology on V(X) and on V;,,(K) which
will be called the v-fopology (Weil, [14], p. 352).

By a hypersurface we mean an affine variety V of dimension 7, defined
over a field K in the affine space 7+, which is irreducible over K.

Lemma 4.2. Let k be a denumerable field which ts hilbertian with respect
to a real valuation v. If V is a hypersurface defined over k then, for almost all
(o) € G(ky/k), Vin(ky(o)nk,) ts v-dense tn V,, (k).
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Proof. Let fek[Ty,...,T,,X] be a generator of the ideal of all poly-
nomials in k[7', X] vanishing on V. Then f is an absolutely irreducible
polynomial. Consider a non-empty v-open set 4 <V, (k,). Choose a
point (r, §) € A. Then f(r, £) = 0 and without loss of generality we can
assume that (9f/0X)(r, £) # 0. Let d be the degree of f(7', X) in X. Then
by Lemma 4.1 we can construct by induction a sequence of points
(aD), (&), (@), ... in 4 such that k(aD)/k is a separable extension of
degree d and the sequence (k(a'")/k)2, is linearly disjoint (compare the
proof of Theorem 2.2).

Put S(4) = UL, 9k, /k(aP))e. Then V(k(o)nk, nd is non-empty
for every (o) € S(4). According to Lemma 1.1, u(S(4)) = 1.

Since % is denumerable, it follows that the v-topology of V,.(k,) has a
denumerable base. The set of all (o) € (k,/k)¢ for which V. (k(o)nk,)
is v-dense in V;,, (k,) contains therefore the intersection of countably many
sets of the form S(A4); hence it has the measure 1.

5. The p-adic approximation on abstract varieties

We use the term wvariety in the sense of Weil ([14]), that is, to mean
‘absolutely irreducible’.

The following lemma will help us to reduce the problem of p-adic
approximation on an arbitrary variety to that on hypersurfaces.

Lmmma 5.1, Let V be an abstract variety defined over an infinite field k.
Suppose that P is a simple point of V such that k(P) is a separable extension
of k. Then there exists a hypersurface W defined over k and a birational map
: V > W defined over k such that ¢ is biregular at P.

The lemma can be proved by using the same ideas which appear in the
proof for the case of algebraically closed field k (cf. Mumford, [12],
Theorem 2, p. 373).

TarOREM 5.2. Let k be a denumerable field. Suppose that k is hilbertian
with respect to a real valuation v and that k, is a separable extension of k.
Then for almost all (o) € G(k,/k)® and for every absolute variety V defined
over k, Vi (k(o)nk,) is v-dense in Vi, (k,). In particular, for every group
variely G defined over k, Q(ky(o) nk,) is dense in G(k,).

Proof. The assumption that k is denumerable implies that there are only
countably many hypersurfaces W defined over k. It follows therefore,
from Lemma 4.2, that almost all the (o) € (k,/k)¢ have the property that,
for every hypersurface W defined over k, W, (k(o)nk,) is v-dense in
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Woim(k,). Denote by S the set of all (0) € D(k,/k)¢ with this property. Let

8
V be an absolute variety defined over k and let P € V;, (k,). Then there
exists, by Lemma 5.1, a hypersurface W over k& and a birational map
@: V - W defined over k which is biregular at P. It follows that P can be
approximated by points of V., (k,(c)nk,) for all (o) € S.

The assertion for group varieties follows simply by the fact that every

point of a group variety is simple (Lang, [7], p. 221).

Remarx. We could have proved Theorem 5.2 directly, without
reducing it to a discussion of hypersurfaces. But this would not have been
shorter.

6. A class of small fields
DzrrinrTion. A denumerable field £ is said to be an FTP field if it is
(i) a global field, or
(ii) a function field of one variable over the perfect closure, k?“, of a
hilbertian field k, of characteristic p.

Every finite extension of an FTP field is again an FTP field. Denote
by B, the set of all real valuations » of k which are arbitrary in case (i)
and trivial on k, in case (ii). According to Lemma 3.3, k is hilbertian with
respect to every valuation v € 8B,. Furthermore, k, is a separable extension
of k according to the following lemma.

Lrmma 6.1. If k is a field of one variable over a field ky and if v is a discrele
real valuation of k over k, then k, is a separable extension of k.

Proof.7 It suffices to prove that if ! is a finite purely inseparable exten-
sion of k then it is linearly disjoint from k, over k. Indeed, let I be such a
field. Then » has exactly one extension to /, which we denote by » too.
Hence [I,: k,] = [l :v] (cf. Chevalley, [3], p. 61). But I, =1Lk, Hence
I and k, are linearly disjoint over k.

For convenience we assume that k and all the k&, (v € B,) are imbedded
in some fixed manner in the universal domain. In the case of an FTP
field, Theorem 5.2 may be reformulated as follows.

THEOREM 6.2. Let k be an FTP field and let v € B, Then for almost all
(0) € G(ky/k)° and for every absolute variety V defined over k, Vy,(ky(o)nk,)
is v-dense in V,,(k,). In particular, for every group variety G defined over k,

G(ky(o)n k,) is dense in G(k,).

t We are indebted to P. Roquette for calling our attention to this simple proof.
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If k is a field with discrete valuation », we denote by k, the residue field

of & with respect to ».

Lemma 6.3, Let L be an FTP field and M « finite cyclic extension of L.
Then there exists a discrete valuation v € By, not ramified in M, which has
unique extension to M (which will also be denoted by v). For this v, L,isa
perfect field and M, is an unramified extension of L, of degree [M : L].

Proof. The second part of the lemma follows from the first part
according to the theory of discrete valuations (Cassels and Frohlich,
[2], Proposition 1, p. 40). We prove the first part.

Consider first the case where L is a global field (case (i)). Let o be a
generator of #(M/L). Then we can find, according to the Cebotarev
density theorem, a discrete valuation v € B, such that the corresponding
Artin symbol will be equal to o. This » has a unique extension to M
(Cassels and Frohlich, [2], p. 165).

Suppose now that L is a finite separable extension of a field k, where
k= ky(t), ky = kgt/?°, and k, is a hilbertian field (case (ii)). Let f e k,[¢, X]
be an irreducible polynomial over k,(f), a root of which generates M over
ky(t). We can suppose that the greatest common divisor (in k[¢]) of the
coefficients of f is 1. Therefore f is irreducible in k,[t, X] and hence also in
ko[t, X1, for some finite extension k; of k, contained in k,. Since k; is a
hilbertian field, k; is also hilbertian and hence we can find an @ € k; such
that f(a, X) is an irreducible polynomial and separable over k,, whose
degree is equal to the degree of f in X, and such that the place p of k,(¢)
over k, determined by the specialization ¢ —> @ is unramified in M (notice
that the last requirement can be fulfilled since there are only a finite
number of places of k,(t) over k, which are ramified in M (Chevalley,
[8], p. 72, Lemme 3). Since k, is a purely inseparable extension of ki,
fla, X) is also irreducible over k,. Let P be an extension of p to M. Then
the degree of M (the residue field of M with respect to ) over Ep (=ky)
is equal to the degree of f(a, X), and hence to [M : k,(t)]. This implies that
B is the unique extension of p to M (again: Cassels and Fréhlich, [2],
Proposition 1, p. 40).

Take v to be the valuation corresponding to the restriction of % to L.
This » is the desired valuation for the lemma.

7. Abelian varieties over complete fields

Let K be a complete field with respect to a discrete valuation ». Choose
a finite non-ramified Calois extension L of K such that [L:K]> 1.
Denote by k and [ the residue fields of K and L respectively and suppose
that k is a perfect field. Then L is the field obtained from K by extending
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k to 1. In particular, [ is a Galois extension of k and there is a natural
isomorphism of %(1./K) onto %(/k).

Lemma 7.1. Let A be an abelian variety of dimension r > 0, defined over
K. Then there exists a point P € A(L) and a v-open netghbourhood U of P
in A(L) such that, for every P' e U and for every tnteger m # 0,
mP" ¢ A(K).

Proof. We shall use the theory of minimal models of abelian varieties,
developed by Néron in [18]. He shows that there exists an abelian variety
A4’, isomorphic to 4 over K, with some ‘good’ properties; he calls 4" a
minimal model ([18], Theorem 2, p. 79). Without loss of generality we
can assume that 4 = 4’, that is, 4 is a minimal model.

Let pg be the maximal ideal of the ring of integers of K with respect
to v. For every integer p > 0, denote by p# the map induced by the
reduction modulo pg#tl (we use here the notations of Néron). Then
p“A) is a commutative algebraic group defined over k, and there exist
natural epimorphisms 6#+1: prt(A(K)) — pH(A(K)), defined over k, whose
kernel is canonically isomorphic to (k+)" (where k+ is the additive group
of k) such that A(K) is the projective limit of the sequence

0 [t 1

2 f
PUA(K)) < pUA(K)) < ... <—— pHA(K)) <— prHI(A(K)) <

(Néron, [18], pp. 78 and 79). Define by induction a subsequence
(A*(K)),~01,s,.. in the following manner:

AYK) =0, ArYK) = (61 (A4(K)).

Then we have the commutative diagram

7

PUA(K)) < . pHA(K)) <— prA(K)) <— ...

A A

AYK) < S AME) < AFYK) <— ..

The projective limit of the second row is denoted by 4y(K). 1t is the set
of the k-rational points of the pro-algebraic subgroup 4, of 4 defined
over k.

For every p > 0, pH(Ay(K)) = A4K). 1t is easy to see, by induction,
that if z € pr+(A(K)) and if 9#(z) = 0 then x € A#*(K). Therefore, the
existence of the short exact sequence

1

0 (k) — pH(AK)) —mr pHA(K)) — 0
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implies the existence of the short exact sequence
13
0 —— (k*) — AY(K) —— AHK) — 0.

Now let 4 ,(K) be the kernel of the epimorphism p#: 4y(K) > AHK).
A 41 is a sub-pro-algebraic group of A4, defined over k. Applying the
‘snake lemma’ to the commutative diagram

0

T

A/L(]()/A/H'l(]{) 0

T p/L

0——> A K) = A(K)—— AMEK)

|

> 0

' p,u-l—l

0 —> A4, (K) = A(K) — Ari(K) —> 0
0 (k)

0

we conclude that p#+1induces a natural isomorphism g+t of 4 (K)/A4 ,,1(K)
onto (k*)". We thus obtain the following exact sequence

ﬁ/ﬂ—l

(1) 0—> A, 1(K) ©—> A,(K) F— (k) —> 0
The same construction for L and [ instead of K and k gives an analogous
sequence. The imbedding of K in L induces a natural imbedding of 4 ,(K)
in 4 (L) such that 4,(K) is exactly the set of the fixed points of the group
Y(L/K)in A (L) and we have the following commutative diagram:

00— A (L) = A(L) P> @y — 0
@ | .
A1
0 A (K) = 4, (K) 2 (ot 0

It is clear now that if P € 4 (L) and if pg#t1(P) ¢ (k*)" then every point
P’ e A,(L) which is congruent to P modulo p4+? does not belong to 4 ,(K).

Assertion. There exists u, such that for every u > u,, 4,(L) does not
contain points of finite_order.
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Indeed, let p be the characteristic of k and let m be a positive integer,

relatively prime to p (or arbitrary if p = 0). Then 4,(L) has no point

annihilated by m except 0. For if P € A,(L) and mP = 0, then

mpt(P) =0 = pY{P)=0 = Ped(L)

(according to (2) for u = 0). Proceeding by induction, we have P € 4 (L)
and prtY(P) = 0 for every p > 0. It follows that P = 0. This means that
the order of every point in A4,(L) is either a power of p or co. There are
only finitely many points of order p in A (Mumford, [11], p. 39). Hence,
we can find y, such that for every u > o, 4,(L) does not contain points
of order p. This implies that 4 ,(L) even contains no points of a p-power
order, that is, 4,(L) is a torsion-free group.

Now take p > 1y and a point P € A (L) such that prtH(P) ¢ (k)" (here
we use the fact that [I: k] > 1). Put U = {P’ € A(L)| P’ = P (mod p#+2)}.
Then U is a v-open neighbourhood of P in A ,(L). If, for some P’ e U,
there exists an integer m # 0 such that mP’ € A(K) then, for every
ge 9(L/K),

m(o(P')—P) = o(mP’)—mP’ = 0.

However, o(P’)— P’ € 4 (L) since p and ¢ commute. Hence o(P')— P’ = 0.
Therefore P’ € 4(K), which is a contradiction to our foregoing remark.
We can take this pair, P and U, to be the desired point and neighbourhood.

Remark. The case where K is a completion of a number field is
easier to handle. In this case Lemma 7.1 follows readily from the work of
Mattuck ([10]) which generalizes the work of Lutz ([9]). On the other
hand, one can prove the lemma in more general cases, for example, when
the residue field is not perfect.

8. Purely inseparable extensions

Lemma 8.1, Let A be an abelian variety defined over a field K and let L
be a purely inseparable extension of K. Then for every point P € A(L) there
exists a positive integer m such that mP e A(K).

Proof. If char(K) = 0, the result is trivial. If char(K) = p # 0 then,
following a suggestion of Roquette, the assertion may be reduced to a
corresponding one for divisors on A4, the dual of 4. However, the latter is
obvious from the definition of a divisor.

The following lemma will reduce the proof of the main theorem from
considering arbitrary fields of finite type to FTP fields.
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Lumma 8.2. Let K/k be a purely inseparable extension. Suppose that K
has the property that for almost all (o) € G(K /K the following statement
holds:

(x) for all abelian varieties A of positive dimension which are defined
over K (o), rank(4 (K, (o))} = c0.
Then k has the same property.

Proof. k, is clearly linearly disjoint from K over k. Hence, the
restriction map, p, of the elements of #(K,/K) to k, is an isomorphism of
G(K /K) onto ¥(k,/k). Obviously, the measure is preserved by p. In
particular, if S is the set of all (0) € Y(K,/K) for which the statement (*)
holds, then § has measure 1, and hence S’ = pS has measure 1 in
G(k,/k). We have only to prove that every (¢’) € S" has the property
(). Indeed let (¢’) = p(c) € 8’ and let 4 be an abelian variety of positive
dimension defined over k,(o’). Then 4 is also defined over K (o). Hence
there exists a linearly independent sequence P, P, By, ... of points of
A(K(0)). K,(o) is a purely inseparable extension of k,(c"). Hence, by
Lemma 8.1, there exists for every 7 > 1 a positive integer m; such that
m P, € A(ky(c")). The infinite sequence m, Py, myPy, myFy, ... is obviously
linearly independent. Therefore & has the desired property.

9. Infinite fields of finite type

A field % is said to be of finite type if it is finitely generated over the
prime field which is contained in it.

Tt is clear that if % is an infinite field of finite type then a certain purely
inseparable extension of & is an FTP field (use Lemma 3.3).

The following theorem is our main result.

TuroreM 9.1. Let k be an infinite field of finite type. Then almost all

(c) € G(k,/k)° have the following property:
for every abelian variety A with positive dimension, the rank of
A(ky(0)) is 0.

Proof. By the preceding remark and by Lemma 8.2 it is sufficient to
prove the theorem for an FTP field .

Since every abelian variety 4 defined over a certain k(o) is already
defined over a finite separable extension I of k and this ! is again an FTP
field, and since k is denumerable, it is sufficient to prove the following
statement:

() For a given abelian variety 4 of positive dimension, defined
over k, the rank of A(k,(o)) is oo for almost all (o) € F(k,/k)".

(Compare the deduction of Theorem 2.5 from Lemma 2.4 in [5].)
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In order to prove ('), it is enough to prove by induction the following
lermma.

Lemma. For every integer n = 0, there exists a demwmerable set T, of
linearly independent n-tuples (P) = (P,, ..., P,), of points of A(k,), such that,
Jor almost all (o) € G (ky/k)e, one of the n-tuples of T, is rattonal over ky(o).

The proof of the lemma will be carried out in several steps.

Step 1: using the induction hypothesis.

For n = 0 there is nothing to prove. Suppose therefore that we have
already constructed 7, where

T, = (PDY, (P@),(P®),..) and (P%) = (P, ... PW).

Put L; = k(P®). Then U2, Y(k,/L;)¢ is the set of all (o) € Y(k,/k)° for
which there exists ¢ such that (P%) is rational over ky(o). According to
the inductive hypothesis we have

(1) ,,L(Q Qf(ks/Li)C) —1.

Step 2: constructing a sequence of quadratic extensions.

Now let i be fixed. The field L, is hilbertian, hence we can construct a
linearly disjoint sequence, (M, /L;)%,, of separable extensions of degree 2.
(We can use for this purpose the polynomial X2+ 4 X +£, which is abso-
lutely irreducible and separable in X over every field (compare the proof
of Theorem 2.2).) Then we have, by Lemma 1.1,

Slep 3: using the local theory.

For every j, we choose, according to Lemma 6.3, a discrete valuation
v =10, € B, having only one extension to M;; and not ramified there. The
field L, , is perfect and M, is an unramified extension of L;, of degree 2.
Since 4 is also defined over L,,, there exists, by Lemma 7.1, a point
P, e A(M;;,) and a v-open neighbourhood Uy of P, in A(My;,) such that,
for every P’ € Uy and for every integer m # 0, mP’ ¢ A(L,,). In particular,
mP’ ¢ A(L,).

Step 4: using the approximation theory.

Applying Theorem 6.2, we see that there exists a subset S;; = F(k,/ M)

of measure 1/[M,; : k]* such that, for every (o) € Sy,
A(ks(a))m []ij # Q

(Note that B, is an FTP field.) Since there are only countably many
points in A(k,), we can order the set U, g, 4(ks(0))n Uy in a sequence
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(Pijdiers,.- 1f we put Ny = My(Fy), we have %(k,/N;;)* = Sy and hence

<o 1
@ ey =
3 w0 ot/mr) =
The remark made at the end of § 1 and equations (1), (2) and (3) together
imply that
w(0 0 Gotemyr) =1
=17

=1 (=1
Step 5: the definition of 7, ;.
We take 7', ; to be the set of (n-+1)-tuples (PO, Py (1,4, = 1,2,3,...).
Then for almost all (o) € @(k,/k)° one of the (n-+1)-tuples of T, is
rational over k(o). It remains to prove that the (P, P,y are linearly
independent. Indeed, suppose that there exist integers m,, ..., My, M1,
not all zero, such that 3, m, P +m, Py = 0. Theinductive hypothesis

ey

implies that m,, , # 0. We have also
n )
7?7’71‘+1Piﬂ = Zl—m’V'Pvl :
Y=

The right-hand side is a sum of L rational points, hence it is rational over
L,. Tt follows that m, P is rational over L, which is a contradiction

to the fact that P, € Uy. This concludes the induction and the proof of
the theorem.

10. Abelian varieties over an algebraically closed field
A consequence of Theorem 9.1 is the following.

TuaroreM 10.1. If A is an abelian variety of positive dimension defined
over an algebraically closed field K which is not the algebraic closure of a
finite field then the rank of A(K) is equal to the cardinality of K.

Proof. We can certainly find a field of finite type k contained in K such
that 4 is defined over k. By Theorem 9.1, we can choose ¢ € G(k,/k)
such that rank(A4(k,(c))) = co. Hence the group A(K)has an infinite rank.
This proves the theorem in the case where K is denumerable.

Suppose now that K has the cardinality m and m > §,. Then, as before,
we find an algebraically closed field & which has a finite transcendental
degree over the prime field, and such that 4 is defined over k. Now take
a transcendence base {t,|n € M} for K over k. The cardinality of M is

T~

again m. For every u € M, take a point F, € Ak(t, )\ A(k). (For this one
has only to consider an affine representative of A and to take a point in
this representative which is rational over k/(t\/:) such that one of its
coordinates is equal to ¢,.) Then we have a subset {P,|p € M} of points




ABELIAN VARIETIES OVER LARGE ALGEBRAIC FIELDS 127

of 4(K) whose cardinality is equal to m. We have only to prove that this
subset is linearly independent over Z. Indeed, suppose that we have a
relation of the form b, +...+nP, = 0 where the n, are non-zero

integers. Then n b, = —nyb, —...—nP, and we have

nP, € A(L)n A(M) = A(k),

m
where L and M are the algebraic closures of k(t,,) and k(tm,...,tﬂg)
respectively (since Lty -5, are algebraically independent over £k).

But A(%) is a divisible group (Mumford, [11], p. 62), hence b, e A(k),
which is a contradiction. The set {P,| u € M} is thus linearly independent.

RemArks. (1) Another formulation of the theorem is the following.
Ifk is a field which is not an algebraic extension of a finite field and if A
is an abelian variety defined over k then, for every integer n, we can find a
finite extension I of k such that rank(4(l)) > n.

(2) If one wishes to prove Theorem 10.1 directly (that is, not to use
measure-theoretic arguments), one can do it in the following way. First,
consider an FTP field k and an abelian variety 4 defined over k. Now take
a quadratic Galois extension L of k and let v be any discrete real valuation
on L such that L, is a proper unramified extension of &, (where w is the
restriction of v to k). Then choose a point P € A(L,) and a v-neighbourhood
U of P asin Lemma 7.1. Using a generalization of Hensel’s lemma, proved
by Greenberg ([4]), one can find a point P’ € A(k)nU and we have, for
every integer m 7 0, mP’ ¢ A(k). In this way one can construct, by
induction, a linearly independent sequence P, By, B, ... of points in A(k).
It follows immediately that the rank of A(K) is at least No-

The rest of the proof goes now as before. Notice that the second part
of the proof is independent of the former sections.

Prosrem. For elliptic curves & defined over Q, we proved that & Q1)
has an infinite rank. (Q,,, is the maximal abelian extension of Q.) Does the
same result hold for an arbitrary abelian variety A4 ?
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