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Douady proved in [3, p. 5306, Theorem 2] that if C is an algebraically
closed field of characteristic zero, and £ is a transcendental element over C,
and £ is the algebraic closure of C(#), then the Galois group, #(£2/C(t)) of £
over C(t), is isomorphic to the free profinite group generated by a set having
the same cardinality as C. One can deduce immediately that every finite group
is realizable over C(¢), i.e., for every finite group G there exists a Galois
extension L of C(¢) such that F(L/C(t)) is isomorphic to G. We shall refer to
this conclusion in the sequel as Douady’s theorem.

In this note we intend to transfer Douady’s theorem to fields of prime
characteristic. Indeed, we prove that for every finite group G there exists a
finite set of primes A4 such that if p is a prime not in 4, & is an algebraically
closed field of prime characteristic, and ¢ is a transcendental element over %,
then G is realizable over k(¢). Also, there exists a set .S of primes, of positive
Dirichlet density, such that if p € S and k is either a field of characteristic p
or a field which contains the field of p-adic numbers, Q,, , then G is realizable
over k(t).

Originally, I proved the results by using a ‘““Translating Theorem’ of mine
(see [4]), but according to Professor Grothendieck’s suggestion transmitted to
me by Professor Kuyk, I have introduced a direct proof based on reduction
theory.

The following conventions will be used in the sequel. If % is a field then &,
and £ will denote the separable closure and the algebraic closure of k,
respectively. For every prime p, F, will be the field with p elements, Z,, will
denote the ring of integers of O, , and O will denote the field of rational
numbers.

1 wish to acknowledge my indebtedness to Professor H. Furstenberg for
several useful conversations and especially for an idea which led me to
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DrrinitioN.  Let & be a field and let ¢ be a transcendental element over k.
A separable polynomial f e k(¢) [Z] is said to be “‘stable over £ if the Galois
group, G(f, k(t)), of f over k() is isomorphic to the Galois group, (£, k(2)),
of f over k(2).

It is clear that if f(z, Z) is stable over k then @(f, k(2)) o« 9(f, I(t)) for

every algebraic extension [ of k. Furthermore, we have the following lemma:

Lemmva 1. If f(t, Z) is a stable polynomial over a field k and if I is any
extension of k over which t is transcendental then G( f, k(1)) == 9( f, I(t)).

Proof. Letly=In k. Then lis a primary extension of I, (see Lang [5,
p- 60]). Since t is transcendental over /, / is linearly disjoint from [y(¢) over [; .
(See Lang [5, p. 52, Proposition 3]), hence [ is free from [(z) over [
(See Lang [5, p. 52, Propositon 2)], hence [ is free from [(¢), . Moreover,
I,(#)s is a separable extension of I,, hence, according to Lang [5, p. 61,
Theorem 6], [ and [i(t); are linearly disjoint over [;. Hence, according to
Lang [3, p. 50, Proposition 1], I(t) and [y(t), are linearly disjoint over [(t).
Let now L be the splitting field of f(t, Z) over [)(z). Then L N I(t) = [(2),
hence 9( f, I(£)) == G(L[I(t)) = 9(f, ly(t)). Since [, is an algebraic extension
of & we have F(f, [(t)) 2 G(f, k(). Hence F(f, I(t)) = F(f, k(2)).

Q.E.D.

TuroreM 2. For every finite group G there exists a finite set A of primes
such that for every prime p ¢ A there exists a separable polynomial f € F',[t, Z]
for which G(f, F(t)) o G (t is transcendental over F,).

Also, there exists a set of primes, of posttive Dirichlet density, such that for
every p & S there exists a polynomial f € Z,[t, Z] which is stable over Q, and
Sfor which G(f, Q,(t)) == G; moreover, the reduction of f modulo p is stable over
F, and its Galois group over F,(t) is again isomorphic to G.

Proof. Let G be a finite group. According to Douady’s theorem, G is
realizable over O(t). We can, therefore, choose an irreducible polynomial
feQ[t, Z] which is monic as a polynorrfl\iJal in Z, such that Z( f, O(t)) == G.
Let 7 ..., 2, be the roots of (2, Z) in Q(¢t). Lety, ,..., ¥, be n different letters
and denote by S, the symmetric group of all permutations of (¥) = (V1 y+-e, Yn)-
Consider G as asubgroup of \S,,. Build the formal sum 0 = 2y, -+ *** -+ 2,9,
For every y € S, put 90 = zyyy; + - + z,yy, . Put also

Wy, X) =] (X — y0).

vesy,

h is a polynomial with coefficients in J[t] and as a polynomial in X it is
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monic. Let & = hy *+* h, be a decomposition of & over O[#]. It is also a decom-
position over O(t). Thus, each of the factors A, is irreducible over O asa
polynomial in (¢, y, X). According to a criterion which can be found in
Van-der-Warden [8, p. 189, Section 61], we have

y€G<yhy =h . (1)

Let p be a prime and let 7 be any place of O which extends p. For every
polynomial g which is defined over O we denote by g7 its image under .
Since (1) is an elementary statement over §, a lemma of Ax [I, p. 169,
Lemma 4] implies that there exists a finite set 4 of primes such that for every
p ¢ A and for every place 7 which extends p, the polynomials f7, 4;",..., &,"
are defined and irreducible over F; f7 is separable and y € G <> yhy™ = k™.
(This results also from Shimura [7, Section 6] rather than from Ax’s
lemma). Since A" = A" -+ k" Van-der-Warden’s criterion implies that
G f7, Fy(t) = G.

This proves the first part of the theorem. In order to prove the second one
we take a finite Galois extension % of Q over which f, Ay ..., &, are defined.
Since they are also irreducible over k, according to Van-der-Warden’s
criterion, 9( f, k(t)) == G, and thus f is stable over k. According to Cebotarey
density theorem. (See, e.g., Cassels and Frohlich [2, p. 227]) there exists a set
of primes, S, of positive Dirichlet density, such that for every prime p & S’
the decomposition field of every prime ideal of & which lies over p, is k itself.
(This, in fact, is the set of all primes p which are unramified in %, for which
the Artin symbol ((£/Q)/p) is the identity of F(k/Q). The density of this set is
L[k : O)). Put S = 8" — A; For every p €S k can be imbedded in Q, and
hence f can be considered as being defined over Z,, . According to Lemma 1,
Z(f, 0,(t)) =2 G and f is stable over Q,, . Moreover, for every place = which
extends p, f7, Iy",..., h,™ are already defined over I, . Since they are clearly
irreducible over F,, , then according to Van-der-Warden’s criterion, we have
G( fm, Fy(t)) =~ G. This implies that f7 is stable over I, . QE.D.

Since every separable polynomial f(¢, Z) e F,[t, Z] is clearly stable over
F, , we have from Lemma 1 and Theorem 2 the following corollary:

COROLLARY 3. For every finite group G there exists a finite set A of primes
such that for every p ¢ A and for every field k which contains F,, Gisrealizable
over k(t), where t is a transcendental element over k.

Also, there exists a set S of primes of positive Dirichlet density, such that for
every pe .S and for every field k which is either of characteristic p or contains
Q, , G is realizable over k(t).
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DeriniTioN.  An imbedding problem is a diagram of the form

1-H5 GG 1
e ()
Y(L/K)

for which the upper row is a short exact sequence of finite groups, K is a
field, L is a Galois extension of K and ¢’ is an isomorphism. Let 7 be a positive
integer. We say that (2) is an #-bounded imbedding problem if the order of G
is << 7. We say that “‘the imbedding problem (2) splits completely” if G is the
cartesian product of «H and the image of & in G by a homomorphism
v: G — G for which mov = 1. We say that “the imbedding problem (2)
is solvable” if there exists a Galois extension M of K which contains I, and if
there exists an isomorphism ¢ : G — Z(M /K) such that the diagram

1 H—t s G—" s ¢ > ]
¢ Vo
1> G(M|L) —~ 9(M|K)—~ G(LIK) 1,

in which the mappings in the lower row are the natural ones, commutes,

‘THEOREM 4. For every positive integers d, n there exists a finite set A of
Drimes such that if p is a prime not in A, k an extension of F, , t a transcendental
element over k and K an extension of k(t) of degree < d, then every n-bounded
problem of the form (2) which splits completely is solvable.

Also there exists a set S of primes, of positive Dirichlet density, such that if
P ES, ks either a field of characteristic p or a field which contains O, 185 a
transcendental element over k, and K is an extension of k(t) of degree <ld,
then every n-bounded problem of the form (2) which splits completely is solvable.

Proof.  We prove the first part of the theorem. The proof of the second part
is analogous.

Since there exists only a finite number of finite groups whose order < 7,
we can assume, without loss of generality that the upper row in (2) is given.
Let I be the order of G". From Corollary 3 it follows that there exists a finite
set 4 of primes such that if p is a prime not in 4, % is an extension of F,
and ¢ is transcendental over %, then the cartesian product of H with itself
24 - 1 times is realizable over k(t). Take such P, kand t. We obtain for them
2% 41 Galois extensions N; of k(t) such that G(Nyfk(t)) > H and
N; N N; = k(t) for every i + j. Now let K be an extension of k(t) of degree d
and let L be a Galois extension of K such that Y(L/K) = G'. Denote by L’



158 JARDEN

the maximal separable extension of (?) contained in L. Its degree is certainly
< dl. Hence the number of its subextensions does not exceed 2%. (This follows
by analyzing the proof that a simple extension has only finitely many sub-
extensions, as appears, for example, in Lang [6, p. 185, Theorem 14]).
Therefore there exist ¢ = j such that N; "L’ = N; N L'. But then we have
N, "L = k(t). This implies that also N;NL = k(). So, if we put
M = N; N L we have ¥(M|L) = H, and the short exact sequence

1 — G(MIL) — (M| K) - F(L|K)— 1

splits completely.
Let 4 be an isomorphism of H onto %(M|L). Using ¢ and ¢y we can easily
build an isomorphism ¢ : G — #(M|K) such that the diagram

1 H—= G —= G’ 1
W) 6 ®'
1 — %(M/JL)—~ 9(M|K)— Y(L|K)— 1

commutes. Thus the problem (2) is solvable for every K and L as specified
above. Q.E.D.

We note that the first part of Theorems 2 and 4 follows also from well-
known results of Grothendieck and it was brought here only for the sake of
completeness.
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