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Introduction

We begin by introducing some notations. For every prime p, F, is the field with
p elements and 171, 15 its algebraic closure.

Let U be a closed subset of an abstract algebraic variety; then by dim U we mean
the maximal dimension of the components of U. If r = dim U we write n,(U) for the
number of components of U of dimension r. If s > dim U we put n,(U) = 0.

The aim of this paper is to prove the following results:

Theorem 1. Let V be an abstract algebraic variety: let U, W be two closed subsets of V
and let y: V-V be a rational map defined at every point of V. — U and which induces a
bijective map of V— U onto V.—W. Then dim U = dim W, and if we put r = dim U
then n,(U) = n, (W).

Corollary 1. 1. Let V be an abstract algebraic variety; let U be a closed subset of V
and let x: V-V be a rational map defined at every point of V — U and which induces a
bijective map of V.— U onto V. Then U is empty, i. e. 5 is a morphism.

Let x: V- V' be a rational map; let A and A’ be subsets of V and V' respectively.
Then by yx(A4) and y'(4’) we understand in this paper the set theoretic image and the
set theoretic inverse image under y of A and A’ respectively.

Theorem 2. Let V be an abstract algebraic variety defined over a field k; let U be a
k-closed subset of V and let y: V - V be a k-rational map defined at every point of V— U
and which induces an injective map of V.— U into V. Let r = dim U. Then for every closed
subset W of V such that V— W = y(V — U) we have either diim W > r or dim W = r
and n, (W) = n,(U). Furthermore, there exists a closed subset Z of V such that:

(a) V—2Z < y(V-—1)

(b) dim Z =r

(¢) n.(Z) = n, (V)

(d) For every Q€ x(V — U) ~ Z we have dim, Q < r.

The components of Z having dimension r are determined uniquely by (a), (b)
and (c) disregarding possible permutations. .

Furthermore, the intersection of all the Z’s for which (a), (b) and (c) hold is itself
such a set and it is &-closed.
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Corollary 2. 1. In the notation of Theorem 1, if V and y are defined over a field k
and U is k-closed, then W is also k-closed.

Corollary 2. 2. Let V be an abstract algebraic cariety; let U be a finite subset of V
and let y: V=V be a rational map defined at every point of V— U and which induces
an injective map of V — U into V. Then the set theoretic image of V — U by y has the
form V — W where W is a finite set of V having the same number of elements as U.

Corollary 2. 3. Every injective morphism of an abstract algebraic variety into iiself
is surjeclive.

In Section 1 we show that Theorem 1 is logically an elementary first-order predicate
calculus sentence. This enables us in Section 2 to reduce the Theorem to one over 777,.
Then we can use the Weil-Lang Theorem about the number of rational points of varicties
over finite fields to obtain the Theorem. In Section 3 we obtain Theorem 2 from Theorem 1.
In the Corollaries we have formulated some interesting special cases of the theorems.
We note that Corollary 2. 3 is well-known; it was originally proved by Ax [1]. Indeed,
our proof of Theorem 1 makes use of Ax’s method namely that of reducing a problem to
one over finite fields. Thus, Theorem 2 can be considered as a generalization of Ax’s
result.

The author wishes to acknowledge his indebtedness to Professor . Furstenberg
for several useful conversations, and especially for suggesting Theorem 1; he also wishes
to thank Professor O. Zariski for encouraging him to publish this paper.

§ 1. Elementary statements about an algebraically closed ficld

Let K be an algebraically closed field. Denote by .# the language of the [irst-
order predicate calculus of the theory of fields. Let .#(K) be % with the addition of
constants for all the elements of K. An elementary statement (about K) is a mathematical
statement which is equivalent to a sentence in .2 (in Z(K)). In this section we shall
be concerned with a fixed algebraically closed field K, so we shall frequently omit the
reference to it.

Let £ be a universal extension of K. Tt is well known that Q is an elementary
extension of K (see e. g. Robinson [7], p. 100). This means that a sentence in the language
Z(K) holds in K if and only if it holds in 2. We can, therefore, interpret the sentences
we write below as speaking either about K or about £ and obtain the same truth value
in both cases.

Our aim in this section is to show that some basic notions and statements of alge-
braic geometry are elementary ones. We shall constantly use the Weil-Lang language
of algebraic geometry.

Algebraie Sets. Let V = V(f,,..., ) be an algebraic set defined over K in S"
Let X,,..., X, be variables for the coordinates of S”, and let (X) = (X,,..., X,).
Then the statement “(X) € 1’ is an elementary formula. Tt is equivalent to the for-

[
mula A f.(X) = 0.
T==1

The Ideal belonging to an Algebraic Set. Let V be as before, let a be the ideal generat-
ed by fi, ..., f, and let J/a be its radical. Then }/a is the ideal of all polynomials € K[X]
which vanish on V. Thus “f/a” is an elementary notion. We also want to characterize

in an elementary way a set of generators for 1/& In order to do this we quote two results
which appear in Eklof [2], §§1 and 2.
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Lemma 1. For any ¢, n there exists a positive number m,(q, n) such that if F is any

field and a is any ideal in F[X,,..., X,] generated by polynomials of degree = q then
1/5 is generated by polynomials of degree = my(q, n).

Lemma 2. For any t, q, n there exists a positive number my(l, q, n) such that if F
is any field and g, f, ,... [, are polynomials with degf, =q for v=1,...,t and
g€Lf1y . [, then there exist polynomials hy,..., h,€F[X,, ..., X,] such that

¢
deg h, < deg g -+ my{t, ¢, n) and g = X h.f,.
=1
Let ¢ = max {deg f,(X)} and let F,, ..., F;€ K(X]. Then, Lemmata 1 and 2 show
l1srst +
that the following elementary statements characterize {F, .. ., F;} as a sel of generators
for 1/&

(a) F(X)€)aforr=1,... 1L

(b) deg F(X) < m,(¢g,n) for v =1,.. .1

(¢) For every polynomial f(X)€ 1/& such that deg f(X) =< m,(q, n) there exist
polynomials G,(X), ..., G(X) lor which deg G (X) =< m(q, n) + m,(t, g, n) for

i
r=1,..,0 and f(X)= ¥ G (X)F_(X).
T=1

Irreducible Algebraic Sets. The statement ““V is irreducible” is also an elementary
statement (see e. g. Robinson {8], p. 327—328 or Lambert [4], §5).

Dimension of a Variety. Let V be as before and assume that it is irreducible, i. e.
it is a variety. Let 0 < r = n. The statement “dim V = r” is equivalent to the con-
junction ol the following two elementary statements:

(a) 3(X): (X) €V and the rank of the matrix (ag‘;—g) equals n—r.
(b) V(X): (X) €V = the rank of the matrix (8%&@) <n—r.

In fact, every (X) for which (a) holdsis a simple point of V (see e. g. Weil [9], p. 99).

The notions of a closed subset of a variety and of a cartesian product of two varieties
are obviously also elementary ones.

Rational Maps. Let V and V'’ be two irreducible varieties defined over K in S"
and S™ respectively. Let @: V — V' be a rational map defined over K. Let (z) be a generic

point of V over K so that (z') = @(x). Deline % :{A € K[X]} 7\ A(x)x,’,,EK[x}}.
p ==l
Then 9 is an ideal in K[X] and for every (a) € V, @ is defined at (@) if and only if () is
not a zero of A (see e.g. Weil [9], p.172). In particular there exist polynomials
A4,(X), B, (X)€e K[X], » =1,...,n/, such that
Al(x)x;’ - Blv’(x)7 v = 11 LIRS | n'lv Al(a’) :¥: O'

Let {/7,(X), ..., F;(X)} be a set of generators for the ideal of all polynomials in K[X]
vanishing on V. Suppose that the maximal degree of F_(X), A4,(X), B, (X) is d. Consider
the following system of homogeneous equations:

(1) AX)Boy(X) = By A4,(X) + 3 Gu(X)F,(X) 1=v =w

in the unknowns 4 (X), B,(X), G (X), 1 <v <n, 1 <7< 0
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The collection of all solutions of this system constitutes a module I over K[X].
One can find a set of generators (A ,(X), B, (X), G,.(X): 1 = = n, 1=7=0),
0 =1,...,r such that the degrees of the polynomials appearing in it do not exceed
n—1 .
my(n', d, n), where my(n’,d,n) = X (n'- d)* (see Hermann [3], p. 745, Satz 2). Using
i=0
Hermann's theorem once more one can see that every element in 9, such that the degrees
of the polynomials appearing in it do not exceed my(n’, d, n), can be expressed as a linear

combination of that set of generators with coefficients whose degrees are
< my(1 + n' + w't, my(n', d, n), n).

We thus obtain that the varieties V, V' and the polynomials I (X), 4 ,(X), B, (X),

G (X) fullill the following elementary statements:
a) V, V’ are irreducible.

(
(b) {F(X), ..., Fi(X)}is a set of generators for the ideal of all polynomials vanish-

(c) deg F_(X), A(X), B (X)=dfort=1,.. ;v =1,...,7n.

(d) I(X)[(X) € V'ad,(X) +0]

() V(X, X') [ X ¢ VAQVllA ) £ 0 A /\ A, )X;,:BQ,,,(X)H@(X’)EV’J.
f) (4,(X), B, (X), GW ) is a solutlon of (1) for every 1 < p = .

(g y If (A X), B,(X), G, (X)) is a solution of (1) such that deg A (X), B, (X),
G..(X) < my(n’,d, n) then it is a linear combination of the (A4 ,(X), B, (X), G, (X)),

'

o =1,...,r with coelficients whose degrees are = my(1 -+ n' + n't, my(n’, d, n), n).

Conversely, assume that the varieties V, V' and the polynomials F_(X), AQ(X),
B, (X), G, (X) are given and that they fulfill the statements (a) — (g). Let (z) be a generic
pomt of V over K. Then A,(z) # 0. Define (z") € S by the equations

‘41<x) xul" - Blv’(x) .

K () and (z') € V'. Hence there exists a rational map V - V' which maps

Then K(z') =
(z'). This map coincides with @ and {4,(X), ..., 4,(X)} is a set of generators

(z) onto
for 9.

The formula “® is defined at a point (X) of V and @(X) = (X')” is now seen to
be equivalent to the elementary formula:

(X)EV AV |A,(X) + 04 A A (X)X;,:Bgv,(X)v.

=1 p=1
We have thus characterized elementarily the notion of a rational map.

The Graph of a Rational Map. Let V, V', @ be as above. The graph of the rational
map @ is a variety I, defined in §" X S™ over K with the following elementary proper-
ties:

a) Iy is irreducible.

b) V(X, X)€V x V': 1 @ is defined at (X) and @ (X) = (X') then (X, X') € I'.

¢) dim [y = dim V.
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Composition of Rational Maps. Let V, V', @ be as before. Let V" be another variety
and let @": V'— V" and ¥: V- V" be two additional rational maps. Then the state-
ment ¥ = @' o @ is equivalent to the following conjunction of elementary statements:

a) For every (X, X', X" eV X V' x V"

@ is defined at (X) A @(X) = (X),

@’ is defined at (X') A @' (X') = (X")

= ¥ is defined at (X) A P(X) = (X").
by 3 (X, X") €V x V': @ isdefined at (X) A @(X) = (X') A &’ is defined at (X’).
Birational Maps. Take V, V’, @ as before and let @’: V' — V be an additional ration-

al map defined over K. Then the statement “® and @’ are birational maps which are
inverse to each other” is equal to the following elementary statement:

(po(p,zivrA(I)’op:iV.

Coherent Birational Maps. Let V, V', @, @', I', be as before. Then the statement
“® is a coherent birational map” is equivalent to the following elementary statement:
V(X, X') €I'y: @ is defined at (X) and @ is defined at (X’).

Abstract Varieties. Let A be a finite set. For every o« € A4 let V,, be an affine variety
defined over K in 8" and let X, ,.. - Xy, be variables for the coordinates of S™.
Denote (X,) = (X, ,..., Xyn) and (X) = (X ),eq- For every o, o' €4 let

o
q)zxa’: Vot - Voc’

be a birational coherent map defined over K, the inverse of which is @,,,. Furthermore,
we demand that if , a’, a’”" € A then @, = @, . o D,,. On the basis of the previous
discussion we see that one can formulate all of these conditions as elementary statements
on a certain set of polynomials defined over K.

Two points (X)) of V_ and (X,) of V. are said to be equivalent if the following
elementary statements holds: “@_, is defined at (X)) and @, .(X,) = (X,)".

A point of the abstract variety V will, in our terminology, be a set of variables (X)
for which there exists a non-empty subset 4, of 4 such that:

a) For every x € A, (X,) € V..

b) For every o, o’ € Ay, (X,) is equivalent to (X ).

¢) fo€Adyand «' €4 — A, then @, is not deflined at (X,).

This is, of course, an elementary description. Every (X,) for which « € 4, is said to
be a “representative of (X)”.

The dimension of V is the dimensidn of each of the V's. This, as we have seen, is
an elementary notion.

Subvarieties of an Abstract Variety. Let [V, @, ]..c. be as before. Let B be a
non-empty subset of A. For every € B let yg,: Wy~ W, be a coherent hirational map
defined over K. Suppose that [Wy, wssls pen defmc an abstract variety W. Then W is

a subvariety of V if the following elementary statements hold:
a) For every B, '€ B and V(X,, Xp) € W, X Wy @, is defined at (X;) if and
only if y,, is defined at (X,) and in this case Dpp (Xg) = (Xp) if and only if

Wﬁﬂ'(Xﬁ) = (Xﬁ) .
4*
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b) There exists a § € B such that for all ' € B, 3(X,) € W, such that @4, is defined
at (X;), and such that for all x € 4 — B, ~ 3(X;) € W, for which @, is defined at (X,).

In order to say in an elementary way that a point (X) of ¥V belongs to W one has
to demand that for every g € B, if (X,) is a representative of (X) then (X;) € W,.

Closed Subsets. A subset € of V is said to be closed over K if it is the union of
a finite number of subvarieties defined over K. It is clear that this is an elementary
notion.

Rational Maps of Abstract Varieties. Let V =[V,, ®,,], yeq and U = [Ug, sl pen
be two abstract varieties defined over K. Let (Y) be a set of coordinates for U. Let B’
be a non-empty subset of B. For every « € A and € B’ let x50 V,— Uy be a rational
map defined over K. The y,,'s are said to define a rational map x: V — U if

a) There exists a ' € B’ such that B’ is the subset of all § € B for which there exists
a (X)) € V,j:such that yg, 0 4,4 is defined. (See e. g. Lang [5], p. 110 for this definition.)

b) For every «,a' €A and B, € B x5 = ppo Aup © Conr

If (X) €V and (Y)€ U then the statement ‘“y is defined at (X) and x(X) = (Y)”
is equivalent to the following elementary formula: “There exist o« € A and € B’ such
that y,, is defined at (X,) and y,(X,) = (V,).”

All of these preliminaries enable us to be convinced of the validity of the following
lemma:

Lemma 3. Denote by E (V, U, W, y;r, m,s, n) the statement: “V is an abstract
vartety defined over K; U, W are K-closed subsets of Vi x: V- V is arational map defined
at every point of V — U which induces a bijective map of V. — U onto V — W; r = dim U,
m=n.(U); s =dim W, n = n (W)

Denote by E(V, U, W, y:r,m,s,n) the statement: “E,V, U, W, x;r, m,s, n) im-
plies that r = s and m = n*.

Then E(V, U, W, x;r,m,s,n) and E(V, U, W, x:r, m,s, n) are elementary state-
ments about K.

§ 2. Proof of Theorem 1

Lemma 4. Let B,..., B,, B, , ..., B, denote m different subyarieties of an
abstract varvety V. Suppose that they are defined over a finite field k with q elements. Assume
that max {dim B} = r and that exactly the first n B)s have the dimension r. For every

1=i= m
v = 1 denote by k, the extension of k of degree v. Let B = U B,. Denote by | B |, the number
of rational points of B over k,. Then =

.
B |, =nq" —{—O(L]( 2)) P> 0O,
Proof. Consider the inequality
(1) 2| Bil,— 2B Byl, = | Bl, = 2| Byl
i= i+ i—

According to a theorem of Weil-Lang [6], § 2 we have

A
A

q”’—l—O(qv(r—%) 1=<1<n

0(9"(”"%)) n+1<i<m.

| ilu:
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v r_—l . .
Hence, | B, < ng"" -+ 0(([ ( 2)). On the other hand, for every i = j,
dim (B, ~ B)) <r—1;

thus, by the same argument

I3 —1—l 3 r—l
| B;~ B;| = ’77/1‘qu(7‘——1) + O(Q v 2)) = <Q ( 2)>
where m;; is the number of components of B, ~ B,. Therefore, (1) gives us the desired
result.

Lemma 5. Let p be a prime. Then the statement E(V, U, W, y; m, r, s, n) holds for
every V, U, W, y defined over the field F,.

Proof. We can find a finite subfield & of _fp over which V, U, W, y as well as the
components of U and W are defined. Let ¢ be the number of elements of % For every
» = 1 denote by £, the extension of & degree », and by (V — U), and (V — W), denote the
sets of rational points of V-— U and V-— W respectively over k,. Suppose that
LoV, U,W,y; m,r,s,n) holds. Then it is clear that y induces an injective map of (V — U),
into (V—W),. This map is also surjective. Indeed, let Q be a point of (V — W),. Then there
exists a point P of V— U, rational over ]71, such that x(P) = Q. Let o be any automorphism
of ﬁp over k,. Then y(c P)= Q. Moreover, c P € V — U and is rational over F_p, hence
oP = P. Hence P €(V — U),. It follows that (V — U), and (V — W), have the same
number of elements. Hence, the same is true for U, and W,. From Lemma 4 it follows

p(r—1 pls—1
now that n¢"” -+ O (g ( 2)> =mq” + 0<q ( 2)), v—>oo. Hence r = s and m = n.

q. e. d.

Proof of Theorem 1. There are only a finite number of polynomials appearing in
the definitions of the objects V, U, W, 5. Their degrees are, therefore, bounded by some
natural number N which we can suppose to be greater than r, m, s, n. Denote by E,
the following statement: “For all V, U, W, y such that E,(V, U, W, x; r, m, s, n) holds,
and such that the degrees of all the polynomials involved in the definitions of V, U, W, 4,
as well as r, m, s, n, are smaller than &, we have r = s and m = n’’. Then, according
to Lemma 3, Ey is an elementary statement. In Lemma 5 we have, in fact proved that
for every prime characteristic there exists an algebraically closed field K having this
characteristic such that £y holds in K. By taking ultra products we can obtain also an
algebraically closed field of characteristic O such that £, holds in it. Hence, according
to the result of Robinson mentioned at the beginning of § 1, 7, holds in every algebraically
closed field.

This concludes the proof of the thgorem.

§ 3. Proof of Theorem 2

Let W be a closed subset of V such that V — W = y(V — U). Let s = dim W.
% induces a continuous map of V— U into V (see e. g. Weil [9], p. 171 theorem 2). It
follows that x='(V — W) ~ (V — U) is an open subset of ¥V — U which, therefore, has
the form V' — A where 4 is a closed subset of V containing U. y certainly induces a bi-
jective map of V' — A onto ¥V — W. Hence, according to Theorem 1, dim A = s and
ny(A) = ny(W). Since U = A it follows that r < s, and if r = s then n,(U) < n,(W).
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In order to find Z we start with any closed subset W of V such that
V-—W < y(V—U). (Take, for example, W == V.) Let s = dim W and let 4 be as
before. If r < s, ov if r = s and n,(U) < n,(A), there exists a component 4, of 4 such
that dim 4, = s and A, — U is a non-empty open set of A,. Let P be a generic point
of A, over k. Then P ¢ U. Hence y(P) = Q is defined and belongs to W. The injectivity
of y implies that k(P) is a purely inseparable extension of ]E(Q). In particular,
dim,Q = dim, P = dim A, = s. Hence, the locus of @ over k is a subvariety of W of
dimension s, i.e. it is a component of W. Denote this component by W, and let
W,, ..., W, be all the other components of W. y induces a generically surjective rational
map of A, into W,. Hence, according to a well known theorem y(A,— U) contains a
non-empty open subset W,— Wy of W, (cf. Lang [5], p. 95). W, is a closed subset of
V and dim W] < s. Hence

ns(W{ ~ U W,;> < (W) and V— W o U W, (V—W) o (W,— W)=y (V — U).
i=1 i==3

We can, therefore, replace W by W#* = W o G W2.>. After a finite number of such

replacements we get, eventually, the desired closed subset Z of V.

Let Q € y(V — U) ~ Z. 1f it were true that dim,Q < r, we could further contract
Z to a closed subset Z* for which both V — Z* ¢ 4(V — U) and n,(Z*) < n,(U), in
contradiction to the first part of the theorem.

Let n = n,(U) and let Z,, ..., Z, be all the components of Z of dimension r. Let
Z' be another closed subset of Z for which (a), (b), (¢) hold and let Zi, ..., Z, be the
components of Z’ of dimension r. If the two sets are not equal then by the dimension
theorem (see e. g. Lang [5], p.36) n(Z~2') <n. But V—2Zn~ 272" =y(V—U), so
that by the first part of the theorem n,(Z ~ Z’) = n, which is obviously a contradiction.

The last part of the theorem follows immediately from the uniqueness property
and from the fact that the intersection of all the Z’s for which (a), (b) and (c) hold is
invariant under all the automorphisms of the universal domain leaving k& fixed.

Remark. Note that Theorem 1 can also be derived from Theorem 2.
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