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Abstract,  We prove here the following theorems:

AL Ik s a denumerable Hilbertian field then for almost all (o, ..., v,) € Gk, ]k)"
the fixed field of {a., ..., 0.}, kday, ..., 20), has the following property: For any non-
void absolutely irveducible variery V defined over ko, ..., o) the set of points of V
rational over K is not emipty.

B. If E is an elementary statement about fields then the measure of the set of
a e QIO (Q is the field of rational numbers)y for which E holds in ((s) is equal 1o the
Divichlet density of rhe set of primes p for which F holds in the field F, of p elements.

Infroduction. Denote by X the class of all fields K which have the following
property: For any nonvoid absolutely irreducible variety V defined over K, the
set of points of V rational over K is not empty.

For any prime p denote by £, the field with p elements. Then it follows from the
Ricraann hypothesis for curves that if % =] F,/D is a nonprincipal ultra-product
of the F, then # ¢ 2 (see [1, Theorem 6]). On the other hand, it follows from the
Hilbert Nullstellensatz that if K is an algebraically closed field then Ke X, In
particular it follows that the algebraic closure of ¢ (ihe field of rational numbers),
{J, belongs to X. It is therefore natural to ask whether ornot # n J e £, Ax gave a
counterexample in [2, §14], showing that this is not always the case. Onc can then
ask whether AX’s example is exceptional and that, in general, # n J does belong
to X. To be more precise denote by O(o) the fixed field in ¢ of an automorphism
o e YGIOY (F(O]0) is the Galois group of O over (). Ax showed {1, Theorem 5]
that for every nonprincipal ultra-product & of the F, there exists o & Z(J/()) such
that # 0 0(_(:\ and conversely, for each o ¢ (/) there exists a nonprincipal

pltra-product & of the £, such that # N - J{o). Furstenberg suggested to me

to prove that, for almost all o & @(J/ Q) (in the sense of Haar measure), J(o) € 2.
More generally, let & be any field. Denote by g, the normalized Haar measure
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defined on @(k/k) with respect to the Krull topology. For any positive integer ¢
denote by uf the product measure defined on G(kifk). Then the following theorem
is true:

Tueorem. If k is a denumerable Hilbertian Jield, then for almost all (o, . . ., 00 )
€ Gk [k)* the fixed field of {oy, . . ., oo}y ko, ..., 0,), belongs to X.

Since it is well known that any global field is a Hilbertian field we have in
particular the following corollary:

COROLLARY. If k is a global field then ko) € X for almost all o € G(k jk).

This corollary enables us to prove a theorem which we call “the translation
theorem™ which links the fields of the form k(o) with the finite fields. Let R be the
ring of integers of the global field k and denote by P(k) the sct of all nonzero prime
ideals of R. For each v & P(k) denote by Fy the residue field R/p. An R-elementary
statement is a mathematical statement which is equivalent to a sentence in the
first-order language of rings which includes terms for every element of R If F s
an R-clementary statemeni, denote by A(E) the set of all p e Plk) such that £
holds in Fy, and by 2(E) the set of all o G(kyfk) such that £ holds in & (e)»
(ky(a)t?" is the maximal purely inseparable extension of ko), where p is the
characteristic of k). In this terminology the translation theorem may be formulated
as follows:

Let k be a global ficld with ring of integers R. If E is an R-elementary statement,
then 8(A(E))=p,(2(E)) where S(A(E)) is the Dirichlet density of A(E). If, in
addition, A(E) is infinite then 8(A(F)) and hence i (H(ED) are positive rational
numbers,

The proof of this theorem uses the corollary as well as theorems and methods
developed by J. Ax in [1] and [2). At least one of these theorems uses Riemann
hypothesis for curves proved by Weil.

In §3.8 we show that generally there is great difference between sets of the form
A(E) and sets of primes in a given arithmetical progression,

I wish 1o express to Furstenberg my great appreciation for his suggestion of this
topic and for the continued encouragement he has given me in my work,

Coarter 1, PRELIMINARIES

L1, Pro-cyclic extensions. We begin by recalling some facts about infinite
Galois extensions of ficlds.

Let K7k be an infinite Galois extension, Denote by F(K/k) the Galois group of
Kfk. @(K]k) becomes a topological group if we take as a base for the topology the
family of all subsets of the form

{1 e G(K[k) | 1|N = o|N}
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where o & @(K/k) and N/k is a finite Galois subextension of K/k. This topology is
known as the Krull topology of @(K/k). We can also prove that @(K/k) is alge-
braically and topologically isomorphic to the inverse limit of the set of finite group
G(N/k) (N/k as before) and conclude that @(K/k) is compact and totally dis-
connected. If we replace subgroups by closed subgroups we can translate all the
basic theorems of finite Galois theory to infinite Galois theory.

We now pass to the description of pro-cyclic extensions. All the facts about
these extensions which we formulate below are well known.

LemMA 1.1, The following conditions on a Galois extension K[k are equivalent:
) “f’(ix//'c) is the closure of the group generated by one element (which will be
called *“a generator of the group G{K[k)”).
(i) There exists a o € $(K/k) such that k= K(o), where K(o) is the fixed field of o,
i}y Every finite subextension of Kjk is cyclic.
(iv) There exists at most one subextension of K[k for each degree.

If one of the conditions is fulfilled we call K/k “*a pro-cyclic extension” and
F{Klk) *“a pro-cyclic group.”

For every rational prime p denote by Z, the ring of p-adic integers. If S'is a set
of prime numbers then by m(S) we mean the set of those po%mve integers whose
prime factors are all in S, Then it can be shown that [Tyes Z, is algebraically and
topologically isomorphic to the inverse limit proj lim, ey £/n€ where the topology
of Z/nZ is taken as the discrete topology. We add that the ring of integers & can
be imbedded in [ Tpes Z, and this imbedding will be also topological if we take for

m where m € m(S). Z will then be dense in [ [,es £,

Livma 1.2, Let Kjk be a pro-cyelic extension. Take a generator o for GK]k)
and suppose that S is a set of primes such that m e m(S) Jor every positive integer
Jor which Kfk has a subextension of degree m. Then the mapping - a® of £ into
G(Kk) can be extended to a continuous ffpzmarpfmm he [ pes Z, — G(KK) and so
YKk Tpes Hy where H, is a factor ring of Z , and the isomorphism is group-
theoretic as well as topological,

If S contains every prime then we have the following lemma:

Lemma 1.3, The following conditions are equivalent for a Galois extension Kjk:
() Kk has exactly one subextension of each degree. (i) G(K kY is algebraically and
topologically isomorphic to Z (,3' = proj UMz ns o £1[Z).

. Following Lemma 1.3 we define:

A perfect field X is said to be *“quasi-finite”” if it fulfills one of the following
equivalent conditions:

(i) K has exactly one extension of each degree in a fixed algebraic closure K.

(ily F(K/K) is algebraically and topologically isomorp hic to Z.
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We shall also need the following lemma:

LeMMA L4, Let Kik be a Galois extension. Suppose that G(K/k)2 [ Tpes £, where
S is a set of primes. If g is a prime that does not belong to 8 then Kk does not have a
subextension of degree g.

Proof. We must show that [ Toes £, does not have any closed subgroup of index
q. Suppose such a subgroup exists, say /. Then it is not difficult to see that in fact J
is a closed ideal in the ring T Tves Z, From the fact that the index of 7 is q we con-
clude thatg e 7. But since g is invertible in }fmfp for ps£q and, sinceq ¢ S, g is invertible
in [Tpes Z,. Hence = [ Tyes £, which is a contradiction.

1.2. Linear disjointness of field exfensions.

DEFINITION. A family of field extensions {kafke, ..., kyfk} which are all contained
in a common extension is said to be “linearly disjoint”" if the natural epimaorphism
of ky @+ ® k, (product over k) onto the k-algebra gencrated by all the products
Xy x, with x; € k, defined by

X1 @ Xy Xy Xy, x €k,

is an isomorphism.
The following lemma is well known (e.g. see [9, p. 5, Proposition 6]):

LEMMA 1.5. (1) A necessary and sufficient condition for a family {k,/k, . . ., kofk}
of finite extensions (o be linearly disjoint is

by kik] = [T ekl

fe2 ]

let wek be a root of 1. A necessary and sufficient condition for k(e) to be linearly
disjoint from K over k is that [ is irreducible over K.

(i) Let Kk be a field extension. Suppose [ e k[x] is an irreducible polynomial and

Dermvimion. An infinite sequence {k;/k}2, of field extensions which are all
contained in a common extension is said to be “linearly disjoint™ if every finite
subfamily is linearly disjoint. ,

It is obvious that {k,/k}Z., is linearly disjoint if and only if, for every n, ky -k,
is linearly disjoint from k4 q Over k.

Moreover it is easy to see that if {ki/k}%1 is a linearly disjoint sequence of
proper extensions and if K is the field generated by all the &, then K/k is an infinite
extension,

We remark that the notion of linear disjointness plays an essential role in our
work,

1.3. Haar measure of the Galois group.  Let K/k be a Galois extension. We have
seen in §1.1 that @(K/k) turns out to be a compact group by the Krull tepology.
[t follows that we can define in a unique Way 4 measure jugp, on the Borel field of
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G(K[k) such that pg  (GK/K)) =1, pg, 15 vegular and py, is two-sided invariant,
e, if £ is a measurable subset and o € F(K/k) then pgnlok) = pepl E) = pg{Eo).
This measure is called the Haar measure of ¥(K/k). We shall sometimes write p,,
or even p instead of pg . We note that the condition p(9(K/k))=1 means that u
is in fact a probability measure. This permits us to use the probabilistic notion
“independent sets {events)” and in fact we use it in an essential way,

We shall sometimes be working within the product space @(K/k)"; then we shall
use pkp Or poagain to denote the appropriate product measure,

If L/k is a finite subextension of K/k of degree n then it is known that the index of
G(KILy in F(K[k) is n I we use the invariance of p we get the following basic
lemma.

Lemma 1.6, Let Lk be a subextension of a Galois extension Kfk,

() If LIk is a finite extension then (G(K/L))y=V/[L:k].

(i) {f Lk is an infinite extension then pn(G(K/[L))=0,

From Lemma 1.6 and from the uniqueness of the Haar measure we get

LemMa L7, Let k'[k be a finite subextension of a Galois extension Kik. Then for
every measurable set A< G(KIK'Y we have w(A)=p Ak k], where e is a
positive integer.

if L/k is a finite Galois subextension then we have the following generalization
of Lemma 1.6;

Levmsa 1.8, Let Lik be « finite Galois subextension of a Galois extension Kfk.
Let €< G(LIk) then

p{re @Klk) | 7|LeC}) = [$|/[L: k]

(by |€| we mean the cardinality of the set €),

Proof, The lemma follows immediately from the invariance of p and from
Lemma 1.6 if we only notice that

{(r e G(KIK) | 1L e €} = | o9(KIL)

where ¢ is any extension of & to K.

The notions “linear disjointness of field extensions™ and **independence of sets
in a probability space’” are quite close to each other. We formulate the connection
between them in the following lemma:

Lemma 1.9, Let {k,Jk} | be an infinite sequence of finite subextensions of a Galols
extension Klk. 4 necessary and sufficieni condition for {k jk} ., to be linearly disjoint
is that the sequence {F (K)o of subsets of G(K/k) is independent in the prob-
abilistic sense.

Proof. The proof follows by a direct computation from the preceding lemmas.
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We use Lemma 1.9 to prove the following lem
tools in the work,

Lemma 1.10. Let k'Jk be a Jinite
{kidk") 1 be a linearly disjoint sequence of finite subextensions of Kk’
a pesitive integer for which |17, (1-1/ Ve ik 1y =0, Then

e ” (1041212 N -
(L 70) = g

Proof. We use two simple facts from probability theory.

(a) For 1=jgelet (4,7, be an independent sequence of sets in g prabability
space £, The set {3, Abi 1 is independent in the product space £, -+ - x Q.

(b) 1f a sequence of sets {43, is independent in a probability space then the
sequence of complements {Q— 4372, is also independent in .

Now from Lemma 1.9 it follows that {Z(KIk )}, is independent in the space
G(K/k"). Hence, according to (a), {9(K[k,)) 2y s independent in G(KIKY and so,
according to (b), {G(K/k') - G(Klk)}e is independent in GKIKY. If we use
Lemma 1.6 we get for every n

v

tz (U SRRV oKy

]

. ,A:;,(i(i (f’&’(_l(/k’)"wW(K/ki)’f)) - 1»«'[31 (1 r:}"TF)

=

henee pf L, GKIk)) =1, If we use Lemma 1.7 we get

©
,L,§<‘g J W(K’//\',)”) - I?E’”:I"ic“j"é' Q.ED.

1.4. Hilbertian fields. Let k be a field and let (7, X)=(Ty, ..., T X;, .. L X
be m 4 n independent variables. Let /(T, X) be a polynomial in (X) with coefficients
in the field k(T') which is irreducible in the ring X(F)[X]. Denote by U; . the set of
all (a5, . .., a,) e k" for which Sfla, X) is defined and irreducibie in KX U, will
be called “Hilbert basic set.”” The intersection of a finite number of Hilbert basic
sets with a Zariski nonvoid open set in m variables will be called “a Hilbert set of
k™ ke will be called “a Hilbertian field”” if for every mz 1 the Hilbert sets of &7
are not empty,

Hilbertian ficlds will be of great importance to us since we are able to build
linearly disjoint extensions over them very easily.

Many fields are Hilbertian, Among them the most important are the global
fields and the fields of algebraic functions of one variable. In particular Q is
Hilbertian. Moreover, every finite separable extension k' of a Hilbertian field & is
Hilbertian and what will be most important to us is the fact that every Hilbertian
set of k" contains a Hilbertian set of k. For details consult Lang [6, Chapter VIII].
Recently Kuyk has found a large varicty of infinite algebraic extensions of Hilbert-
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ian fields which are themselves Hilbertian (see Kuyk [4] and [5]). In particular he
proved that the maximal abelian extension k., and the maximal nilpotent
extension k,, of a Hilbertian field is Hilbertian.

On the other hand finite fields and algebraically closed fields are Gasiiy shown not
to be Hilbertian. We shall see that if k, is the separable closure of a field k& and if
o € G(k,Jk) then k(o) is not Hilbertian.

CHAPTER 2. ALGEBRAIC POINTS ON ABSOLUTELY IRREDUCIBLE YVARIETY

2.1, Sfields. Denote by ¥ the class of all fields K which have the following
property: For any nonvoid absolutely irreducible variety V defined over K, the
set of points of ¥ rational over K is notempty. A field K which belongs to X will be
called a Z-field.

In fact, one can easily show that if ¥ is an absolutely irreducible variety defined
over a S-field K then the set of points of V rational over K is dense on Vin the
Zariski topology.

For any prime p denote by F, the field with p elements. Then it follows from the
Riemann hypothesis for curves (8] that if F#=[]F,/D is a nonprincipal ultra-
product of the F, then F eX (see Ax [1, Theorem 6]). On the other hand, it
follows from the Hilbert Nullstellensatz that if K is algebraically closed then
K eX. In particular it follows that (J e ¥, It is therefore natural to ask whether or
not # N Qe Ax gave a counterexample in [2, 14], showing that this is not
always the case. One can then ask whether Ax’s example is the exception or the
rule. We shall see, l'x*wwevu‘ that Ax’s example is exceptional and that in general
F v () does belong to X. To be more precise we note that Ax showed {1, Theorem
5] that for every ncmmmupal ultra-product & of the &, there exists o € (0] Q)
such that # 0 O~ O(o), and conversely, for ecach o & G0/ Q) there exists a non-
principal ultra-product of the F, such thi 1t F 0z J(o). What we shall in fact
prove is that for almost all v e @(0/0), Jlo)y e . More generally, we shall show
that if & is a Hilbertian field and e a pumtxvg integer then for almost all (o, .. ., o)
e Gk, k) the fixed field of {oy, ..., oo}, koo, .o s v,), belongs to X,

The following Lemma is obvious:

Lemma 2.1, If K is a Y-field and char (K)=p then K'*" is a -field.

Dermnrtion. (i) Let V™7 be an irreducible variety defined over a field & (by V7
we mean a variety V defined in the affine space 5™ of dimension r). Suppose
{iy, ..., i}is asubset of {1, ..., n}. Vissaid to be transcendental and separable in
the direction {iy, ..., ,} if there exists a generic point (xy, ..., Xy) of ¥ such that
{Xip oo Xy 08 algebraically independent over & and such that the extension
k(xy, ... xp)lk(xy, ..., x) is both algebraic and separable.

(i) Let fe kX, ..., X,]. [is said to be separable in X, if X, really appears in
F(X) and if f(X) as a polynomial over the field k(X0 .o, Xiep, Xivgs oo Xa) 08
separable.
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For example, if f'is separable in cach ¥, and absolutely irreducible then V(f) is
transcendental and separable in the direction of each subset of n— 1 numbers of the
set {1, ..., n}.

(it}) An extension K/k is said to be S-extension if for every absolutely irreducible
variety ¥'™" defined over K, transcendental and separable in the direction {1, ..., r}
there exists a point (a,, ..., a,) on ¥, rational over K, such thatay, ..., a k.

It is obvious that if K/k is a S-extension then K is a ¥-field.

2.2. The Mullstellensatz. The main step toward the Nullstellensatz is the
following lemma: .

LEMMA 2.2. Let k be a Hilbertian field and let Ik be a finite separable exiension
Suppose [ l[T), ..., T,, X)isan absolutely irreducible polynomial which is separable
in X. Let dz 1 be the degree of X in J(T, X). Let A be an algebraic set defined over |
in S which is not the whole space. Then there exists a finearly disjoint infinite
sequence, {I/1}%.,, of separable extensions of degree d such that for every iz 1 there
exist au, . . ., ay € k such that (&) ¢ A and o, & I, such that fla,, . .., ay, o) =0,

Proef. We define by induction a sequence of separable extensions [/l of degree d
having the following properties:
(i) lo=1.
(i) 4 is lincarly disjoint from /, - . - l.q over [, for every iz 1.
(iif) For every i2 | there exist gy, . . .yt € Kk such that (@) ¢ k and o, € J; such
that f{a,, «)=0,
Then the sequence {4/}, will be linearly disjoint and so it will be the desired
sequence,
Suppose we have already defined /,, . . ., {4 such that they have the properties
(i)-(iii). Denote L=1I, - -I,_,, then L/k is a finite separable extension. f(7, X) can
be written in the form

S X) = [ X (DX oy (D), (T # O,

From the assumption that f(7, X) is separable in X it follows that there exists
1= 8 = d such that char k{8 and such that /,(T) #0. Moreover, JUT, X)is absolutely
irreducible, hence it is irreducible over L. We conclude that U= AV V()Y V([
is a Hilbertian set of L™ Since L/k is a finite separable extension it follows that
there exists a nonvoid Hilbertian set # of k™ which is contained in Up—A W V()
W (/). We therefore choose (ayy, . . ., a,) € Hand then f(a;, X) will be a separable
polynomial of degree d which is defined over k and irreducible over L. Let o ek,
be a root of f(a;, X) and denote J,=k(e). Then L/t will be a separable algebraic
extension of degree o which, according to Lemma 1.5, is linearly disjoint from L
over k.
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The induction is thereby complete.

Let //k be a finite separable extension. Let ¥ be an absolutely irreducible
variety defined over /, transcendental and separable in the direction {I,...,r}.
Denote by Z¢(V) the set of all (o), ..., 0.) € F(k,/k)* for which there exist
ay, ..ok and g, ..., 0 € ko, ..., o) such that (a,w)ye V. If 4 is an
algebraic set defined over [ in the space §7 which is not the whole space then by
e (V, —A) we mean the set of all (o, ..., 0,) € G(ky/l)° for which there exists a
point (¢, @) & ¥ such that (@) e k" —A and oy, ..., 4y € ko1, .., 0g).

LemMA 2.3, Let k be a Hilbertian field and let lfk be a finite separable extension.
Suppose fe [Ty, ..., T\, X is an absolutely irreducible polynomial, separable in X.
Let A be an algebraic set defined over | in S* which is not the whole space. Then

w5V, — A=Yk
Proof. Let ¢z | be the degree of X in f(T, X). Take the sequence {///}[%, of
extensions in accordance with Lemma 2.2, According to definitions we have

ay

fU Glkofl) = B V() —A) < Gk[I).

Moreover [ [, (1 - Y[4/1}%) =T 1% (1= 1/d*)=0 hence, according to Lemmas 1.6
and 1.10 we have

Ylzk)e = m(u (k, /1>) B V), = A) S 1l @) = 11k,

Hence p (B8, V), —~AD=1l:k]*. QED
Lemma 2.3 refers to hypersurfaces V(). The same result is valid for arbitrary
absolutely irreducible varieties.

Lemma 2.4, Let I/k be a finite separable extension of a Hilbertian field k. Then
for every nonvoid absolutely irreducible variety V defined over I, (25, (V)= 1 /{11 k]*

Proof. Suppose V is defined over /in 8* and is of dimension r. Without loss of
generality suppose also that ¥ is transcendental and separable in the direction
{1,...,r}. Then we can find a generic point (xy,..., x,) for V over / such that
{xi,..., x,} are algebraically independent over [ and /(x)/l(x, ..., x,) is a finite
separ.ible extension,

If(x)=1Ix,, ..., x,) then there exists a point on ¥, rational over /, and the lemma
is certainly true, otherwise there exists a ¢ € /(x) of positive degree over I(x,, ..., x,)
such that [(x)=I(x, . .., x,, £). Let W be the hypersurface generated by the point
(Xpy .o, Xy, &) over [ Then W= V(f) where feklX,,. .., X,, T]is an absolutely
irreducible polynomial separable in 7. W will be also birationally equivalent to V
over /, hence there exists a rational transformation & W — ¥V, ¢ =(¢1, ..., $u),
and an algebraic set U defined over / in §” which is not the whole space such that
& is defined for every (wy,..., w, ) € W for which (wy,..., w,) ¢ U. From the
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definitions it follows that LV, =) <E64V). Hence, using Lemmas 1.6 and
2.3, we get our lemma,

Tueorem 2,5 (Tup N ULLSTELLENSATZ). If k is a denumerable Hilbertian field and
e is a positive integer then ko, . . ., o)k is a X-extension for almost every

(0’]’ RS O'e) & fﬁ("(ﬁ/}()e

Proof. Denote by S the set of all (o140 o0y o) € Gk Jk) Tor which koq, ..., o)k
is not a L-extension. Let (oy,..., 0.y & 8 Then, there exists an absolutely irreducible
variety V™', transcendental and separable in the direction {1,..., r}, which is
defined over ko, ..., o,) for which there does not exist a point (aq, ..., a,,
Ury1y .o, o) SUCh that @y, ... a, ek and (a,e)e Vikyfoy, ..., 0)% Let I be a
field of definition for ¥ which is contained in ky(oy, ..., o,) and finite and separable
over k. Then (oy,...,0,)¢e Gk /1)~ 20(F). Hence S v (@ k) 25V
where V ranges over dll the absolutely irreducible varieties defined over kg Accord-
ing to Lemma 2.4 the measure of each of the summands in the right-hand side is
zero. Since k is denumerable, the number of the above ¥’s is denumerable, hence
the measure of the right-hand side is zero, and 50 w (8)=0. Q.E.D.

Since every global field is Hilbertian and denumerable we have the following
corollary of the Nullstellensatz:

COROLLARY 2.6. If'k is a global Jield and e is a positive integer then k (o, . . Lok
is a X-extension for almost all (o0, ..., 0,) € Gk, Jk).

In particular if k= Q we have

Cororrary 2.7, oy, . . L o) O Is a Eeextension Jor almost every (oy, ..., 0) €
YQ10).

By this we answer positively Ax’s question: “Does any proper subfield K of J
have the property that every absolutely irreducible variety defined over X has a
K-valued point?” (See [2, p. 269, Problem 2].) In addition, the corollary implies
that there exists a subfield K of {J such that K ¢ & and G(J/K) is not abelian. To
see this, note that there exists a set B of pairs (o4, 05) € (J/ Q) of positive measure
such that o0y # 040 for any (o, oy) € B. For if one takes any finite normal, non-
abelian extension N/Q and picks &, &, ¢ G(N/Q) such that 6,5, &,5,, then the
set of pairs (o, 0p) € 9(J/Q) such that o |[N=a,, 0, N=6, is of positive measure
and is included in B. (In fact it can be shown that B can be chosen to have measure
L) It follows that K may be chosen as one of the O(a,, o,) € % such that (o4, vg) € B,
By this remark we answer positively another question of Ax which may be formu-
lated as follows: ““Does there exist a subfield X of ¢ which belongs to ¥ such that
G(QJK) is not abelian?” (See [2, p. 269].)

From the Nullstellensatz and from Lemma 2.1 we have also the following
corollary which will be of importance to us in the next chapter.
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COROLLARY 2.8. If k is a denumerable Hilbertian field of characteristic p#0
(e.g., if 'k is a function field of characteristic p+0) then k(o)M?” is a perfect L-field
Jor almost every o € Gk /k).

2.3, Fields which are not Y-fields. In this section we point out briefly some fields
which are not $-fields and raise some questions about these fields.

In the first place, we note that the words “almost all” cannot be replaced in the
formulation of the Nullstellensatz by the word “all.” For example if o is the auto-
morphism of § which takes any a-+by/~1 10 a—by/—1 (a, b are real algebraic
numbers) then O(o) is the field of real algebraic numbers. It is not a X-field because
it does not contain any zero of the absolutely irreducible polynomial X#+ ¥*+ 1.
Ax constructs in [2, p. 269] a whole class of fields of the type (o) which are not
S-fields. His fields are in fact quasi-finite fields. Ax’s examples are based on the
following lemma:

LeMMA 2.9. If one can define a discrete valuation v on a field k whose residue field
is finite, then k is not a G-field.

Proof. Choose a & k for which v(x)>0. Suppose that the residue field has ¢
elements. Then the polynomial (X% X~ 1)(Y?= Y~ 1)~ is absolutely irreducible
and does not have any zero in k.

CororLary. () 4 global field is not a Z-field.
(i) If k is a global field and if b is a prime ideal of its ring of integers then ky
(the completion of k under p) is not a X-field.

Problem 1. What can be said regarding intermediate extensions of (), i.e. infinite
extensions of @ which do not contain any field of the form Oloy, ...y a,). (AX
showed in [2, p. 268] that any extension of a perfect E-field is again a Z-field) In
particular we ask if the maximal abelian extension of Q, Q. belongs to . We
note that it can be shown that Q. is not a X-extension of @ because 3X*+4 ys
+57% is an absolutely irreducible polynomial and it does not have any zero
(x,y, z) such that y, ze Q and x € {4 Does 3X344Y34-52% have any abelian
zero at all?

Problem 2. Does there exist a Hilbertian field which belongs to %7

We note that(®) the fields ky(oy, ..., o) are not Hilbertian because otherwise
Lemma 2.2 would imply that they have infinitely many quadratic extensions. Thus
Gk Jk{oy,. .., o)) is not finitely generated (in the sense of topological groups)
which is a contradiction since oy, . . ., o, are clearly topological generators to it.

CHAPTER 3. THE TrRANSLATION THEOREM

3.0. The pseudo-finite fields theorem. Let K be a field of characteristic p. The
K will denote the maximal purely inseparable extension of X, ie. the ficld

(%) This observation was made by the referee.
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generated over K by the p™th roots of elements of K if p#0 and K itself if p=0.
A perfect field X is said to be “ pseudo-finite” if Kis a & quasi-finite field.
Our aim in this scction is to prove that if & is a Hilbertian ficld then kdo)#”
is a pseudo-finite field for almost all o ¢ G(k,/k). We begin with some lemmas.
The first lemma follows from Galois theory of infinite extensions. Tt will Jet us
pass from the fields k(o) which are not always perfect to the perfect fields k (o)!?",

Lemma 3.1, If k is a field of characteristic P then
Gkl (o)) = Gl (o))
Jor every o & (k Jk).

LemMa 3.2 Let k be a Hilbertian field and let p be a prime. Then there exists an
infinite Galois extension k™ of k which is contained in every separable extension K
of k which has no cyclic extension of degree p.

Proof. If pstchar (k) then according to a result of Kuyk [4, p. 401] there exists,
an infinite Galois extension k® of k such that Gk k)= Z,. According to Lemma
1.4 the finite subextensions of k®/[k are cyclic of degrees p™.

Suppose now that p=char (k). Denote by & the field generated over & by all
the cyclic extensions of k of degree p. Consider the polynomial X7 X ¥. It is
absolutely irreducible. Hence, according to Lemma 2.2 we can find a sequence of
pairs {(a,, a,)}2.; such that ay € k, the polynomial X?- X —a, is irreducible over
k, of ~ap—a,=0 and the sequence of extensions {k(ey)/k}0-y is linearly disjoint.
According to a theorem of Artin and Schreier (see Lang [7, p. 215]) k(ay)/k are
cyclic extensions of degree p. The extension generated by all the k(w,) is therefore
contained in £7. But this is an infinite extension, hence k™[k is an infinite exten-
sion. Also in this case we get that the finite subextensions of k™ /k are of degrees p™,

It is not difficult to seec now that if K is a separable extension of & that has no
cyclic extension of degree p then AP < K. Q.E.D.

LEMMA 3.3, Let k be a Hilbertian field of characteristic different from 2. Denote
by k'® the field generated by all the fields of the form k(\/a) where ¢ € k, a is not a
square in k but the sum of two squares of k. Then I B[k is an infinite Galois extension.

Proof. Consider the absolutely irreducible polynomial X%+ ¥?—Z% We shall
build by induction a sequence of pairs {(x4, )}, such that

(1) Xp i € k

(if) If we denote o =x7+y? then the polynomial x?+ p?-—-Z2 is irreducible in
k( \/alv ey '\/a!—l)[zl

Suppose we have already built (xip)fori=1,...,n Denote/=k(1/ay, . . ., ey,
Then Ifk is a finite Galois extension. The polynomial X2+ Y%-—Z? is absolutely
irreducible, hence, in particular, it is irreducible over /. We can therefore find
Xu, Y € k such that x2 +y2— 22 will be irreducible in 2]
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By this we have completed the induction,

w, has the following properties: «, € &, «, is not a square in & but is the sum of
two squares of k. Hence k(+/e,) © k. Furthermore, according to the construction

the sequence {k(v/o,)/k}i-y 18 linearly disjoint, Hence k'®/k is an infinite Galois
extension.  Q.E.D.

LiMMa 3.4 (THE QUASI-FINITE FIELD LEMMA). Let k be a Hilbertian field of charac-
teristic p. Then k(o)'?” is a quasi-finite field for almost all o & Gk fk).

Proof. This lemma was proved by Ax for k=Q. (See [1, p. 177].) We repeat
here briefly Ax’s proof and indicate why arguments which were valid over the
field O remain valid for arbitrary Hilbertian field k.

First we note that ky(e)*'?” is always a perfect ﬁcld Hence, accm‘ding to Lemma
3.1 it is sufficient that we prove that @(k/k (a)):’ for almost all Gk fk).

Now, let o € %(k,/k). Then, according to Lemma 1.2, (o) [, Hq, where H_ is
a factor ring of Z,. From a theorem of Artin we deduce that the torsion elements of
@(k,Jk (o)) are of order 2. From this fact it can be shown that there exists a set S{a)
of primes such that cxactly one of the following cases takes place.

(1) Fhofh(o)=] Loes ja’ _

(i) F(ko/k(N2Z2Z X ] oesinr €op 2 ¢ S(0).

We shall see that, for almost all o € ¥(k,/k), 5(0) is the set of all primes and this
will complete the proof.

For every prime ¢ denote by k@ the extension of & which has been defined in
Lemma 3.2. Also denote by &'® the extension of Lemma 3.3, Denote H = #(k,/k"®)
U LU, @k k@) where g ranges over all the primes. Using Lemma 1.4 cn one side
and the theory of real fields on the other side one can show that if ${o) is a proper
subset of the set of all primes then o & H. Now, k'®/k and k‘@/k are infinite exten-
sions, hence u{ H)=0. Hence, the set of all o € ¥(k,/k) such that S(o) is not the set
of all primes is of measure zero, Q.E.D.

From the Nullstellensatz and from the quasi-finite field lemma we get the
following theorem:

THEOREM 3.5 (THE PSEUDO-FINITE FIELD THEOREM). If k is a Hilbertian field of

characteristic p then k{o)''** is a pseudo-finite field for almost all o € Gk [k).

3.1. The decomposition field of a prime ideal. Let R be a Dedekind ring and let
k be its quotients field. Denote by P(k) the set of all nonzero prime ideals of R.
For every p ¢ P(k) denote by Ry the local ring of R defined by p, i.e.

Ry = {x/y|x,ye R, y ¢ b},
Denote by vy the p-adic valuation. On Ry we define a congruence relation as follows
= b {mod pY < vpla—~by > 0.

Denote by &y the completion of k with respect to p. Ry will denote the valuation
ring of k.

|
!
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let Lbea ﬁnm Galois extension of k. Denote by § the imf:;z ral closure of R
in L. Then § is a Dedekind ring and L is its quotients field. For every e l(L)
denote by DLk, p)={y € G(Lk) | y(#)=4} the decomposition group of A with
respect to k. Its fixed field in L will be denoted by L(k, #3 and will be called the
decomposition field of & in L with respect to £ We denote also by (#]4) the prime
ideal of B which lies under . If p=(#|k) then there is an a!gcbralc and topologica!
imbedding i,: ky > L. It can be shown that L{k, Ay=idy 0 L. Hence Lk, £) 15

the closure of k in £ with respect to the S-adic topology.
The following lemma is a straightforward generalization of a lemma of Ax
[1, p. 163]: ’

LeMMA 3.6. Let R be a Dedekind ring with guotients field k. Let Lk be a finite
Galois extension. Let S be the integral closure of R in L. Suppose that a polynomial
fe S[X] splitc over L into linear fac fors. 7‘;‘?(*}7 there exists « /inife subset A o f P(’Z"

(md only zf f /um a root in L\/x, )

3.2. The algebraic numbers of ulira-products of the residue fields of a global field.
Denote by 7 the first order language of the theory of rings. If R is an arbitrary
ring denote by % a fixed language which includes %% and in which every element
of R has a name. A model of % is a systern which includes the ordinary binary
functions 4, —, - and a constant for every element of R. If Ris an integral domain
then by an R-field we mean a model of %, which fulfills the ordinary axioms of
fields and the relations

for every a, b, ce R for which a+b=c, a~b=c, ab=c (where @, &, ¢ are the
constants of the model which correspond to the elements a, b, ¢).

In other words, an R-field is a field which contains a homomorphic image of X,
Examples of R-fields include the quotients field of R, extensions of them and the
residue fields of R,

If K; and K are R-fields then by K, > K, we mean that they are R-isomorphic
(i.e. that they are isomorphic as models of &;) and by K, =, K, we mean that they
are R-elementary equivalent,

An R-clementary assertion is & mathematical statement which is cqlum!cm to a
sentence in %%. For example, if /e R[X | then the statement “f'is irreducible” is an
R-elementary statement,

Now, let R be a Dedekind ring with infinite number of prime ideals, and let &
be its quotients field. I et % be a nonprincipal ultra-filter on £(k). For every v € P(k)
denote Fy=R/p. Let F =17 F,/2. Every Fy is an R-field hence # is also an R-field,
Moreover there is a natural imbedding of R and hence of k in & g ¢ R then a
is mapped to the element of & a representative of which is the function which
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maps every b€ P(k) to the residue class of R modulo b which contains a. We
shall identify the image of & in & with & and denote by L the algebraic
closure of & in JF,

In particular these definitions apply to the ring of integers R of a global field &.

3.3, An elementary equivalence,

DermTioN. Let F be a field. A commutative Falgebra A4 is said to be “ab-
solutely entire over £ if ®y A is an integral domain.

A field Fis said to be “hyper-finite™ i’ /" is uncountable, quasi-finite and for
every entire K-algebra A, where K is a subfield of F, such that |A| <[F] there
exists a K-algebra homorphism 4 - F.

For the remainder of this paper we assume the continuum hypothesis 2% =,
However, the translation theorem and its applications can be {reed from this

assumption.

Lemma 3.7, Let k be a global field and let £ be a nonprincipal ultra-filter of P(k).
Then & =11 Fy/2 is a hyper-finite field of cardinality 2%,

Proof. Forevery p ¢ P(k), Fy is a finite ficld. For every positive integer m there is
only a finite number of »’s such that |F| s m. anu;, dc,c,ordlrm to Ax [2, p. 253]
& is a pseudo-finite field. Again, according to Ax [T, p. 173], # 1s also a saturated
field and its cardinality is 2% (see [3, p. 208]). Hc:me, mundmg to Ax {2, p. 254},
F 15 hyper-finite,  Q.E.D.

LemMa 3.8, Let [ be an infinite set. For every i€ ] let Fy be a psewdo-finite field.
Lei D be a nonprincipal ultra-filter of 1. Then [ £,/D is a hyper-finiite field.

Proef. According to Ax [’u, p. 254] all the axioms for pseudo-finiteness are
elementary statements. Hence [ [ £/D is pseudo-finite. Moreover it is an uncount-
able saturated field, hence, according to Ax [2, p. 254), [T £/D is hyper-finite.
Q.E.D.

THEOREM 3.9 (THE BLEMENTARY EQUIVALENCE THEOREM). Let &k be a global field
of characteristic p and let R be its ring of integers. Then for almost all o ¢ &{k,/k)
there exists a nonprincipal ulira-product F of the Fy's such that kb 0 5 2 k(o)

and F = gk (o)VP”

Proof. Let o € @(k/k) then, according to Lemma 3.1, k/k(o)¥?™ is a pro-cyelic
exiension, hence, according to a straightforward ge:um!mman of a theorem of Ax
[2, p. 260] there exists a nonprincipal ultra-product & of the Fy's such that
k OVF o ke o)VP?, Suppose now that K==k (o) is pseudo-finite (according to
Theorem 3.5 this is the case for almost all o € @k /k)). Take an infinite set [ and
a nonprincipal ultra-filter D of it. Then, according to {3, p. 208], |KY/D|=|%"/D|
= 2% My== K. 1t is easy to see that K is algebraically closed in K'/D and in
FD. Moreover, K and & are pseudo-finite fields hence, according to Lemma 1.8,

"’/D and “’”/D are prcr~ﬁnite ﬁ*‘i ds. AL':;‘ording to A*: {7‘ ) ”46}, FND KD
o K. QED.
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3.4. The Ax boolean algebra. Let R be the ring of integers of a global field k.

For every f& R[X] denote
AN ={pePlk)| Fy FAX : fLX) = O}

(Fp B3X ¢ f(X)=0 means that the statement *3X : /(X)=0" holds in the field
Fy.) Denote by .o/ =.0/(k) the boolean algebra on P(k) generated by all the sets
A(f) for which fe R[X] is a separable polynomial over k (i.e. that its roots are
separable over k). & will be called *“the Ax boolean algebra.” Every clement in .o
has the form O(A(S)), . .., A(f.)) where ® is a boolean polynomial in m variables
and f1, ..., [, are separable polynomials over k. It is not difficult to sce that every
finite subset of P(k) belongs to «7.

If Eis an R-clementary statement then we denote

A(E) = {p e P(k) | Fy & E}.

By a structure induction it is not difficult to prove the following lemmas:

LemMa 3.10. Ler R be the ring of integers of a global field k. Suppose E,, . .., E,
are R-elementary statements and let © be a boolean polynomial in m variables, Then

A(P(Ey, .., Ey)) = OA(EY, . .., A(E,)).

Lemma 3,01 Let k be a field and let fy, . . ., fro € k[X]). Let N be an extension of k
- which contains all the roots of fy, ..., fr. Let L be an arbitrary extension of k. Then
Jor every boolean polynomial ©

LFOEX[/1(X) = 0],..., IX[f(X) = 0},
<> NOLFOEX[f1(X) =0}, ..., 3X[/(X) = 0.
Following Lemma 3.11 we denote

Ew(.fh v 'ufm) == (D(a)([fl<x) = O}s LR :}X[fm(X) = 0])

and call this kind of statement “ one variable statement™ (/5 . . ., f,, arc taken here
to be separable over k).

The following generalization of a theorem of Ax [2, p. 263] shows us that every
R-elementary statement can be reduced in a certain sense to a one variable statement.

TuroreMm 3.12. If I is an R-elementary statement, where R is the ring of integers
of a global field R then A(E) e s7(k).

3.5. A normal set of fields, Let L be a finite Galois extension of a global field k.
Let Ly, ..., L, be m subfields of L which contain k. The set & ={L,, ..., Ly} 18
said to be Lik normal if (L{k).¥ =2 In this case we denote

BunlZ) = (v e P(k) | 3p e P(L) : (lk) = v & L(k, f) & £},
It is easy to see that
Bul%) = (v e PK) | Vi P(L) : (#lk) = b = L(k, p)e 2},

The following lemma follows by a structure induction:
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LimMma 3.13. Let L be a finite Galois extension of a global field k. Let %, ..., &,
be Lik normeal sets of subfields of L which contain k. Let ® be a boolean polynomial.
Ther O(F,, ..., L) is again an &k normal set and

EL/I.:({[)(”%( pees © /;n)‘) = (I)(R111c<”‘{ ) Bl (ke m))

REMARK. In the same way that Ax proves in [1, Proposition 1, p. 103] we can
prove that every set of the form B,,,(L) belongs to «/(k) and for every set of «/(k}
there exists a set of the form By, (%) which differs from it only by a finite number of
elements.

3.6. The franslation theorem for one variable statements, If 4 and B are two
subsets of P(k) which differ from one another only by a finite number of elements
thent we shall write A% B’ and we shall say that “* 4 is almost equal to 8.7

The following lemma does most of the work toward the translation theorem.
Some of the following arguments appear implicitly in Ax {1}

Lemma 3.14. Let R be the ring of integers of @ global field k of characteristic p.
Let fu, ..., fum € R{X) be separable polynomials over k and let ® be a boolean poly-
nomial. Denote E=Eg(fy, ..., fn). Let L be a finite Galois extension of k which
contains all the roots of fi, ..., fu Then there exist conjugacy classes €, ... G,
(nz Q) in 9{L}k) such that

0 A(E) & (v e PUR) | (L)) € (G .. L, €}
(o€ Gk Jk) | k(o) & E)
2) o Gk fl) | A PILY : olL = [(LIK)A) & Lik, i) ¥ E}

m{mvwﬁﬂwéeUéf

where [(Lik)/4) and ((Lk)[#) denote the Frobenius autumorplmm and Ariin symbol
respectively.
Proof. For every 1 Sp<m let ¥, be the set of all subfields of L which contain &

and a root of f,. Then {&,, .. ., &} is an L/k normal set of subfields. Then, accord-

3

ing to Lemma 3,13, £ =®(%, ..., %) is also an L7k normal set of subfields,
Assertion A.

AE) 5 Buy(£).
In fact, Lemma 3.6 implies that A(f,)= B,,{Z,) for every p. Hence
DAL, s A & OByl L), B L)),

This, together with Lemmas 3.10 and 3.13, imply the Assertion.
Consider now the set of conjugacy classes {((L/k)/p) | p e B (%)} This is of
course a finite set (it might be empty). Let €y, .. ., €, be its elements.
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Assertion B,
By = {p e Pk) | (Lk)p) e {6y, .. ., €

Fn fact, it is clear that if a nonramified ideal belongs to the lefi-hand side then it
belongs to the right-hand side. On the other hand, if' v is nonramified in I, and
there exists a 1 v < such that ((L/k)/p) =, then there exists a p’ ¢ B,,k(ﬁ’\ @mh

that ((L/k)/b)=((L/k)/¥"). Let 4 be a prime ideal of L which lies over p. Then
[(L/K)A) € (LJk)/p") and hence there exists a # e P(L) such that (#'|k)+p" and
(L1 4= [(LIk) 4], But (LI A, (LA ] are generators of the cyclic groups
P(LIk, £), T(LJk, #), respectively, hence Lk, py==Lk, p') € £ Hence p € B (&)

The Assertions A and B imply (1). We shall now prove (2).

Assertion C,

{o e Fkjk) I i(\,(a')””m BEY
= {o e G(k,Jk) | 3p e P(L) : o|L = [(LIk)|4] & Lk, ) ¥ E}.

In fact, suppose that ¢ e 9(k/k) is an automorphism for which k(o)!?” k E.
According to Cebotarev density theorem (which is valid for every global field)
there exists a 4 € P(L) such that (#|k) is not ramified in L and [(L/k)/p]=0|L. The
~ fixed field of [(L/k)//] is L(k, #) hence k(o}'/P° N L=/ (o) O L=1L(k, /). Since L
contains all the roots of f3,. .., /i, we get from Lemma 3.11 that Lk, i) F E.

The opposite direction is obtained in an analogous way.

Assertion D,

AE) & (pe P(k) | 3peP(L) : (Alk) = 9 & Lk, ) F E), |
AE) = {pePk) [ YVeeP(L): (plk) = p = Lk, A)VEE}

In fact, Lemma 3.6 implies that E

() A = v e P | 3 e PULYHK) = p & Lk, ) FIX 1 £,(X) = O}}.

The assertion follows now by a structure induction.
Assertion E.

{o e Gky/k) | 3p e PIL)[o|L = [(LIK)]#] & Lk, f) F E]}

a { o~ . 3 n ( .
= o ki) |elLe U @1}

Suppose o € F(k,/k) is an automorphism for which there exists a 4 & P(L) such
that oL =[(L/k)/4) and L(k, £) ¥ F. According to Cebotarev density theorem #
might be chosen such that p=(4]k) will not be in the extra ordinary finite sets that
exist in Assertions A and D. According to D, p e A(E); hence, according to A,
b e B f). Hence ((L/k)/p) e {G,. ..., €,} so that o|L= (LR e Ul @

The opposite direction is obtained in an analogous manner.

Assertions C and E imply (2). Q.E.D
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We recall that if B P(k) then the *“Dirichlet density of B is defined as the
limit (if it exists)

3(B) = 31,:.2‘1 log 1/(s~1)

where N(p) is the absolute norm of p, i.e. Np)=(R:p).

LEMMA 3.15 (THE TRANSLATION THEOREM FOR ONEG-VARIABLE STATEMENTS), Let R
be the ring of integers of a global field k of characteristic p. Suppose fi, . . ., fu € R[X]
are separable polynomials over k and let O be a boolean polynomial. Denote

E=Eo(fi, s Sw)
Then the numbers exist and the equality
(5) S(AE)) = wl{o € Gk Jh)y | k{a)VP" E E})
holds. If ACE)Y is an infinite set then these numbers are positive rational numbers.

Proof. We use the notation of Lemma 3.14. According to (1) and the Cebotarev
density theorem,

(©) A = 3 16 [IL:k1

By (2) and Lemma 1.8,
%) il € GOJK) | k@)™ ¥ E}) = 3 (6] Jizik
t=

(6) and (7) imply (5).

Suppose now that A(E) is an infinite set. Then Lemma 3.14(1) implies that nz 1.
Since || = 1 are positive integers we conclude from (6) that 8(A(E)) is a positive
rational integer. Q.E.D. :

ReMarks. (a) The only heavy theorem we have used to prove Lemma 3.15
was Cebotarev density theorem. In particular we have not used Weil's theorem
and the continuum hypothesis. We shall need them in the reduction of the general
translation theorem to that for one-variable statements.

(b) Ax has proved in [1, p. 161] “half” of the translation theorem. He proves (1)
(though not explicitly) and deduces from it that 8(A(£)) exists and equals a rational
number. Moreover he deduces that iff A(E) is infinite then 8(A(£))>0 (all this
has been done only in the case when k= ().

3.7. An isomorphism of boolean algebras, :

DermirtionN. Let & be a global field and let %y, £, ¢ 9(k /k) be two measurable
subsets. £, is said to be ““almost equal” to X, if £, differs from 2, only by a set of
measure 0. In this case we write Xy & X,
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Let R be the ring of integers of k and let p be the characteristic of k. Let E be
an R-clementary statement, Denote

HE) = {oe Gk )| ko) F E},
By structure induction it is easy to prove the following lemma:

LEMMA 3.16. Let k be a global field of characteristic p and with a ring of integers
R AF® is a boolean polynomial then

X((I)(Eh tees “?“‘l)) = ‘b( ([ ) o aA‘(Lm))

Lemma 3.16 tells us that the family of all subsets of @(k/k) of the form S(E)is a
boolean algebra which we denote by X(k). The relation “‘almost an equality™
which was defined above is clearly a congruence relation. We denote by (k) the
appropriate factor boolean algebra,

Similarly the relation “almost an equality” which was defined in §3.6 is a
congruence relation and we denote by &/(k) the a ppropriate factor boolean algebra.

TueoreM 3.17 (THE TRANSLATION THEOREM). Let k be a global field of character-
istic p, with a ring of integers R. The mapping 0: A(E) > 2(E) where E ranges over
the R-elementary statements induces an isomorphism of s#(k) onto 2(k), i.e.

e A(E) m A(Ey) = E(E) ~ (5,

and O preserves the boolean operations. Moreover

(2 S(A(E)) = u(Z(E))

and if A(E) is an infinite set then both sides of (2) are positive rational numbers.

Preof. From Lemma 3.10 it follows that every A e ./(k) has the form A==
AEs(f1s .., Jm)) where fi, ..., f,, € R[X] are separable polynomials and @ is a
boolean polynomial. Hence 0 is defined on #7(k). Moreover if Eis an R-elementary
statement then, according to Theorem 3.12, A(E) ¢ #Z(k). Tt follows that the domain
of definition of @ is exactly #/(k).

To show that @ induces the desired isomorphism we have to prove that if £, and
£, are two R-clementary staterments for which A(E;)x A(E,) then Z(ED~S(E,). In
fact, let o E(i}) be an clcmcm for which there existfs nonpnnum ultra- ﬁlter @
}h orem ? 9 (lemt cvcry o L(Z hav this pro mrty) From t]w a«,umplion it
follows that k(o)'”" k E;. From the R-clementary equivalence we get that
[T Fy/2 F E;. Hence A(E,) e 2. Since A(E,) differs from A(E,) only by a finite
number of clements and £ is a nonprincipal ultra-filter, we have A(E,) ¢ 2.

[T FfDF By = k(o)?7 F £, = o e Z(E,). Symmetrically we show that almost
all v e Z(&,) belong also to X(£,). Hence (E)~T(E,).
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Let now E be an R-clementary statement. Then, as we noted before there exists
a one-variable statement E’ such that A(E)==A(E"). Hence, from what we have
just proved Z(E)xZ(F"). Hence

S(A(E)) = S(A(E")),  pB(E)) = p(E").

But according to the translation theorem for one-variable statements, 8(A(£"))
=u(T(E"). Hence 3(A(E)) = p(Z(£)).

If A(E)is an infinite set then A(E") is also an infinite set hence 8(A(L)) = 5(A(E"))
is a positive rational number.

The fact that @ preserves the boolean operations follows from Lemmas 3.10 and
3.16.

At last we prove that 0 is almost injective. We prove the second direction of the
implication (1).

L(Ey) & N(Ey) = Mk« Ey) & G(k/k).

= S [Ey e Epl) % D, > (S~ E o> ER])) == 0.
> SA(~[Ey <+ E])) = 0, s A(~[Ey e Ey]) = O,
s A(E) o> Fy) o P(k). = A(E) ~ A(Ey). Q.E.D.

Remark. The translation theorem assures us that 8(A(£)) is a rational number
for every R-elementary statement E. The opposite assertion is false, i.e. there exist
sets of prime ideals of rational Dirichlet density which cannot be represented in the
form A(E). Examples of such sets are infinite sets of prime ideals of zero density.
In particular it follows that if there are infinitely many twin primes then they
cannot be characterized by an elementary staternent since their Dirichlet density is
known to be zero. It is therefore interesting to ask if certain known sets of primes
are characterizable by an elementary statement. In particular it is interesting to
know when a set of all primes in a given reduced arithmetical progression can be
characterized by an elementary statement. We discuss this problem in the next
section, '

3.8. Cebotarey sets and Ax sets, Let & be a global field, Any set which belongs
to the boolean algebra generated in P(k) by all the sets of the form

(v e PO | (L)) = G},

where Ljk is finite Galois extension and @ is a conjugation class in F(L/k), will be
calted a Cebotarev set. An Ax set is a set which belongs to the Ax boolean algebra,
i.e. a set which can be elementarily characterized. From Theorem 3.12 and Lemma
3.14 it is clear that every Ax set is also a Cebotarev set, The converse is not always
true. In order to discuss the connections between these two kinds of sets of prime
ideals we introduce the following definition from group theory.

DerINITION. Let G be a finite group, let o € G and let f be the order of o in G.
The subset of G consisting of all the elements which are conjugate to any of the
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powers o', for which / and fare relatively prime, wili be called the Abteilung of G
generated by o,

it is clear that the Abteilungs generated by two elements of & are either coinciding
or disjoint, Every Abteilung is the union of some conjugacy classes and it is
generated by every one of its elements,

Limma 3,18, Let k be a global field, Lk a finite Galois extension and & an Abteilung
in G(LIk). Then the sei {p € PU) | (LKD) S @Y is an Ax sel.

Proof. Let » € @. Denote by 7y, 7y, ..., 7, all the elements of @(L/k) which are
conjugate to 7, Let Ly, L, ..., L, be their fixed fields in L respectively and put
L={Ly, Lyy oo oy Lyd Then 2 is an Lfk normal set of fields, Noting that an element
a e G(L[/k) generates the same cyclic group as «, if and only if it is a power of 7,
whose exponent is prime to the order of r,, we conclude that

Our lemma follows now from the remark in §3.5.

THEOREM 3.19. Let k be a global field, Lk a finite Galois extension and & a con-
Jugacy class in F(Ljk). A necessary and sufficient condition that

{p & P(k) | (Lfk)/p) = G}
is an Ax set is that € coincides with the Abreilung it generates.

Proof. The sufficiency is a special case of Lemma 3.18. The necessity follows
from the following qualitative theorem.

Treorem 3.20. Let k be a global field with a ring of integers R. Let Lik be a finite
Galois extension and § a conjugacy class in @(LJk) which does not coincide with the
Abteilung it generates. Then, for every R-elementary statement E, the Dirichlet

least 1/{L:k].

Proof. According to the remark in §3.5 there exists a finite Galols extension M
and an M/k normal set . of fields such that A(E)x By, (4. Without loss of
generality we can assume that M includes L.

Let re@ and let / be the order of 7 in @(L/k). According to the assumption
there exists a positive integer /, relatively prime to f, such that ~' ¢ €. Let r be a
positive infeger, relatively prime to [M:k], such that r=i (modf). Choose an
extension p of v to M. Let m=[M:L] and denote by oy, ..., o, the clements of
G(M/L). Then the sct {oyp, oap, ..., oup; (o p), (oap), . .., {0,0)7} consists of 2m
different elements of @(M/k}, since + ¢ €. Let

& = {o e G(M[k)| The fixed field of ¢ in M belongs to .4},

F = {oc G(M[k)| o|L e}




1972} ELEMENTARY STATEMENTS OVER LARGE FIELDS 89

It is not difficult to see that for every 1< j<m either ap ot {o;p)" belongs to
(& FYPI(F ~&). Hence [(§~F)U(F~&) zm. On the other hand (& — )

C={y & PU) | ((L/k)[p)=E} we have according to the Cebotarey density theorem

ALY~ C) W (C—A(E)) = 3({p & PU)(MIK)Y) & (&~ F) U (F )
2z mf[M k] = [L:k] .E.D,

REMARK. This theorem expresses the fact that in the above situation ¢ cannot
even be approximated by sets of the form A(E£).

The following theorem is another gencralization of the necessity part of Theorem
319,

Turorem 3.21. Let k be a global field with a ring of integers R, Let Lik be a finite
Gualois extension and let §, 6 be two conjugacy classes which are contaived in the
same Abreilung of G(LIK). Le:

C o (b PURY (L) = 6}, ¢ = (o e PR | (L)) = ),

Then for every R-elementary statement E, 3(A( E)Yn Cy==8(4A(EY N C*y. Moreover,
S(A(E)Y ™ C) is a positive rational integer if and only if ALEY O Cis an infinite set.
I particular, A(EY ™ Cis an infinite set if and only i ALY N C s an infinite set,

Proef. As in the proof of Theorem 3.20 we have AEYx By () where M is
finite Galois extension containing L. Put B= Bagn ). 1t will be sufficient to prove
that it £ C s an infinite set then 8(B M C) is a positive rational number and
(BN CY==8(8 N C"). Also, it will be sufficient to prove the assertion in the case
where # is a minimal M/k normal set of fields, i.e. in the case where any two fields
of .# are conjugates.

Choose a prime ideal by & B v € which is not ramified in M. Let jio € P(L) be an
extenston of py to L and let o € P(M) an extension of fig to M. Let M'= Mk, fio),
pe=[(M]k)/ 4] and r=[(Lfk) fo). Then M e, p gencrates the cyclic group
G(MIM'), plLl=r and v € €. Denote by m, [ the orders of P in G(Mk), F(LIK)
respectively. Denote by # the Abteilung generated by g in @(M/k). Let € be the
set of all the elements of @(M/k) whose restriction to 7, belongs to €, Then # M €
is a nonvoid union of conjugacy classes of F(M[k) and, hence, according to

Cebotarey density theorem ‘

() S{{p e P(k) | (MIkYpy & B N EY) = |F B /[M:k).

This is, of course, a positive rational number. It is not difficult to see that
{bePU) [ (MIK)P) < F Gy~ B C

Hence 8(B N C)=|%  G|/[M:k]. Similarly we denote by € the set of elements
of @(M[k) whose restriction to L belongs to 6. According to the assumption there
eXists a positive integer b which is relatively prime to fsuch that +* ¢ €', We can
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choose b such that it is also relatively prime to m. Let ' =+" and pl=pt Th
p e B NT (hence p’ generates #) and the orders of p'y ' in G(MIk), G(Lk) are
m, | respectively. The mapping o> a® induces a one-to-one correspondenc »
between & N € and & N ', hence |F €| =|% NT'|. As above we can deduce
that 8(8 N C')=|4 "\ §'|/[M:k]. Hence 8(B N C)=8BNnC"). QED.

As a consequence of the last part of Theorem 3.21 we prove the following
theorem:

THEOREM 3.22. Let k, R, C and C’ be qs in Theorem 3.21. Then for every non-
principal uitra-filter @ of P(k) which contains € there exists a nonprincipal wlira-
Jilter " of P(k) which contains C' such that

[/ =TTy

Proof. Denote by 2, the family of all sets of the form A(E) belonging to 9.
From Theorem 3.21 it follows that the family @, v {C'} has the finite intersection
property. Hence there exists a nonprincipal ultra-filter %’ containing Z; U {C'}.
9" has the desired property.

The most interesting case arises when k = Q and L= Q(£), where ¢ is a primitive
mth root of 1. In this case, as is well known, the Cebotarev sets are reduced to
Dirichlet sets modulo m, i.e. to sets of all primes in a given reduced arithmetical
progression whose constant difference is m. Moreover, the Galois group %( Q&)
is naturally isomorphic to Z% (the multiplicative group of congruence classes
modulo m whose elements are relatively prime to m). In this case, an Abteilung
generated by an element @ e Z¥ is the set of all its powers whose exponents are
relatively prime to its order. In particular such an Abteilung consists of one con-
jugacy class if and only if the order of @ is not greater than 2. We summarize all
the results in this section in this special case in the following theorem:

THEOREM 3.23. Let m be q positive integer. Let a be an infeger relatively prime to
m and let [ be its order modulo m.

(i) Let ay, ..., a, be all the powers of a modulo m whose exponents are relatively
prime to the order of a modulo m. Then the set

{peP(Q)]3i:p = a (modm))
is an Ax sef.

(D)%) The set A={p e P(Q) | p=a(mod m)} is an Ax set if and only if the order
of a modulo m is not greater than 2.

(iii) Suppose. that the order of a modulo m is >2. Then for every elementary
statement E the Dirichlet density of the symmetric difference of A(E) and A is at
least 1/o(m).

(iv) Suppose that b=a' (mod m) and (i, f)=1. Then for every elementary statement
E, 5(A(E) ™ Ay=8(A(E) N B) where B={peP(Q)|p=b(mod m)}.

(*) This was suggested by the referee.
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(v) Let b be as in (iv). Then for every nonprincipal ultra-filter &7 of P(Q) which
contains A there exists a nonprincipal uitra-filter @ which containg B such thai

[T Fofost =TT FolB.

REFERENCES

L. 3. Ax, Solving diophantine problems modilo every prime, Ann. of Math, (2) 85 (1967),
161-183. MR 38 #126.

2, - - The elementary theory of finite flields, Ann. of Math. (2) &8 (1968), 239-271,
MR 37 #5187.

3. T. Frayne, A, C. Morel and D. 8, Scott, Reduced direct products, Fund, Math, §1(1962/63),
165-228. MR 26 #28.

4. W. Kuyk, Generic approach to the Galois embedding and extension problem, J. Algebra 9
(1968), 393-407, MR 38 4#2128.

3. weeeeee Extension de corps Hilbertiens, J. Algebra 34 (1970), 112-124. MR 41 #1698,

6. 8. Lang, Diophantine geometry, Interscience Tracts in Pure and Appl. Math., no. 11,
Interscience, New York, 1962, MR 26 #119.

T ey Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 #3416,

8. AL Well, Sur les courbes algébrigues et les varidids qui 8" en déduisent, Actualités Sci, Indust.,
no. 1041, Hermann, Paris, 1948, MR 16, 262.

9. e Foundations of algebralc geometry, Amer. Math. Soc. Collog. Publ., vol. 29,
Amer. Math, Soc,, Providence, R. 1., 1946, MR 9, 303,

InsTrrute OF MaTuemarics, Tue Hessew University oF JERusaLem, JERUSALEM, TSRAEL

Current address: Mathematisches Institut, Universitiit Heidelberg, West Germany




