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1. INTRODUCTION

Let @ # 0, B =0, jof > |8, be any two complex numbers, such that

a +p and of are two relatively prime integers. Then the numbers

o Bn n-1 n-2 n-1 n n
D = 2 = o o o - G+ oeee o - S = o -+
n a-p A s n A
are integers, since they are expressed as rational integral symmetric func-

tions of the roots «,B of an algebraic equation
z2 - @ +B)z +aB = 0

with integral coefficients with leading coefficient unity. One may readily ver-
ify that {Dn} and {Sn} are second-order recurring sequences satisfyingthe
common recursion relation

X, =@+pX  -apX .
(Since Dy =0, Dy=1 8y =2, S =a+f, the recursion relation again
shows that the numbers Dn’ Sn are integers.) One may also easily verify
that Dgpn = DpSy .

Adivisor >1 of Dn’ n > 1, is said tobe primitive (or: characteristic)
if it is relatively prime to any Di with 1 < i < n. The greatest primitive
divisor of Dn is denoted by D]'Q. A divisor >1 of Sn’ n > 1, is said to be
primitive (or: characteristic) if it is relatively prime to any Si with 0 <i <
n. The greatest primitive divisor of Sn is denoted by S;l. From Dy, =

Dnsn one may easily deduce that

(1) Din = Sh .
(Received Nov. 1966--revised 1967)
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€C. PRIMITIVE DIVISORS OF SECOND-ORDER RECURRING SEQUENCES

For any prime p dividing a certain D; with i > 1, a {p) denotes the
smallestpositive subscript n, suchthat pan. Thus p is a primitive divisor
of D

alp)’
By Fn we denote the product

e
@) r_ = 1 D\,
dln

where u is the Moebius function.
R. D. Carmichael showed in [1] that for any n # 4, 6, 12 there is

1 =
(3) D = F
except when n = a(p)p?, p being a prime factor of Dn, A 2 1, in which case
t =

4 D!

He showed furthermore that if n = a(p)p®, A > 1, then p is the greatest di-
visor of n, exceptwhen p = 2, and a(p) = 3.
Furthermore Carmichael showed, for «,f real, the following inequalities

wln)-1 (n)-1
o P)-2 <F, < ad)(n)+2“’

where ¢ is Euler's totient function, and w(n) is the number of distinct prime
factors of n.

The main result achieved by Carmichael is the following

Theorem XXII. If o and § are real and n # 1,2,6, then Dn con-
tains at least one characteristic factor, except when n = 12, o +8 = 1, of
= -1,

In the present paper the above Carmichael's results are generalized for
any two complex numbers o # 0, 8 £ 0, |a|> ‘ B|, suchthat a+p and of
are two relatively prime integers. (However, the exact value of n beginning

with which any Dn contains at least one characteristic factor, isnot calculated
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here.) Furthermore, starting from (2), we deduce an asymptotic formula (6)

324 [Dec.

for Fn which is stronger than the inequalities given by Carmichael. Finally,
the method of proof used here is slightly simpler than the one used by
Carmichael. The main results proved here are the existence of an infinitude
of composite D;l for any «,B; of composite Db, for of #} and of com-

posite Dip4q for (@ -p)2 # 4], or (@ -p)2 =[] and of #-L1

2. ASYMPTOTIC FORMULA FOR D{l

By (2)
d d
g7, = o ) 10y = 3 ) be g’ - e w(3)
djn djn d|n
S () g d1- (B - oge-pY 1 (3).
djn djn
Noting that

and

forany n > 1, we get

(5) logF = log @ » ¢(n) +ZM(%) log 1—(§)d , forany n> 1.

d/n
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Let us evaluate
d
D u(g) eeq1-(5) .
d]n

Note that for any 0 <q =< 1 there exists a positive constant A, such that, for
any complex z, for which|z|=q, there is

|log (1 +z)f = A|z|,

where by log (1 + z) the principal value of log is understood. Indeed,

lo (1+z):1__z_+z__“
b 2 3

is an analytic functioninthe circle |z - 1 <q <1, hence it ishounded there.

Now, putting q =l gl, we have, forany d > 1, lg, =q. Hence

gu(g)log L8y sgmg L i g (2]

[+ 2]
d
<AZ‘E‘ - A& 4 = aE =B,
@ Al“!l_l/il af -8

d=1 o

where B is a positive constant.
Hence, by (5) it follows that

(6) logF = loga- o) +0(1) .

Now, by (3), (4), we have the following
Theorem 1. There is

(7) log D! = loga - ¢m) +0(1),
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exceptwhen n = a(p)p*, A =1, p being a prime factor of D]"n, in which case

it is
(8) log D;l = loga - O() - log p + 0(1) .
Now, by assumption, of is an integer, and |a| > {B|, therefore
lod? > jal -8l =|ef| =1,
hence

fal > 1, llogal =loglai >0.
By a theorem in [2], p. 114, there exists a positive constant C, such that

Cen

EgToErT for n > 3 .

o) >

On the other hand p|n, hence log p = log n. Hence, by Theorem 1,

Cen
(9) logD;l> |10goz| - ¢n) - logp - B > log|el Toglogn 1ogn—Bm°°,

which means that:

Theorem 2. Beginning with a certain positive n, Dn has at least one

primitive factor.

Remark. The error term 0(1) in (7) cannot be refined, since if n isa

prime, then

)d

RI™

)n ——>-log<1 —g

= -log l—B + log 1-(
n->oo

a

2, (§) e q1-(§
dn

#
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Theorem 3.
o]
1
DT
n
n=i

converges.

Proof. From (9) it follows that there is a positive constant D such that,
for all n = 1,

C:n
log log n
D = I_‘)il#_z D n?
n
e .n

Hence

o0 oo

1 = 1 =
Z DY Z z
n=i n=i

3. MAIN RESULTS

Lemma 1. Be N the sequence of natural numbers, S a subsequence of
N, and A a reduced arithmetic progression. Then, an infinitude of D;l is
composite for

i) n€E S or I) ne N-8

according as

1) any or 1) no

prime member of A is a factor of a certain Dl”l’ n &S,
Proof. I) Suppose any prime member of A is afactor of a certain D}l.
n €8, and that there is a positive integer n, such that any Dx'l’ where n €

S, n = ny isaprime. Let g be the greatest prime factor of D;l, n =n;



ON THE EXISTENCE OF AN INFINITUDE
OF COMPOSITE PRIMITIVE DIVISORS OF

Then, by Theorem 3, and noting that

2 : 1
3 - = o0
4 P 3
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where p denotes a prime number, we have

z:l E:l 1
© > ﬁ,-z ﬁ'—,>_§-5=oo,
PEA
p>q

whence o >, which is absurd. Thus, I) is proved.

II) Suppose no prime member of A is a factor of a certain D;l, n €S,
Then, noting that any prime p [ 2( - BY2aB is a factor of a certain D! ([1]), p.
45, Theorem XII), any prime member of A not afactorof 2(@-p)%p ia a fac-
tor of a certain Dl'l, n €N -8, and II) follows as above.

Theorem 4. There is an infinitude of composite D;x'

Proof. The theorem is an immediate consequence of Lemma 1, noting
that any prime p | 2(@ - 8)%B is a factor of a certain D!.

Lemma 2. If b is an integer, and b # [], then there exists an odd
prime p, such that (g) = -1, where g is Legendre's symbol. Inparticular,

) f b = :tmzpi,-- *,pr, where r =1 and pyg, .-, p, are distinct
primes, then there exists an integer u = 1 (mod 4), where (u, 4pg,***,pr} =

1, such that, for any prime p = u (mod 4py,***,pr), itis

.j.:_b.>:_1_
Y

II) If b =-m? then for any prime p = -1 (mod 4) it is

3)- -

Proof. [ 2], p. 75.
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Lemma 3. Let p be an odd prime. If plax?+by? for some integers

a, b, x, y, and p( x,y), then

()

Proof. Since p j’ (x,y), p cannot divide both x and y. Thus, without
loss of generality, we may assume that p}’y. Thenthere exists an integer 1z,
such that yz = 1 (mod p). Hence, from ax®+by? = 0 (mod p) it follows that

(axz)? = -ab (mod p),

(#) -+

Lemmas 2, 3 imply the following:
Lemma 4. I) If b = 2m%y,*+*,pp, where r =1 and py,+*+,pr are
distinct primes, then there exists an integer u = 1 (mod 4), where (u,4py,

whence

***,pr) = 1, such that, for any prime p = u (mod 4py,***,pr), itis p/} x
+ by? for any integers x,y, such that p [} ,y).

ID If b=m? and py (x,y), then pf x?+by?* for any prime p = -1
(mod 4).

Theorem 5. If oB # [ ], then there is an infinitude of composite Dip.

Proof. One may readily verify that

D2n+1 = D%l"'! - (L)!BDIZ1 .

On the other hand, (D

in Lemma 4:

" Dn) =1 ([1], p. 38, Corollary). Hence, putting

b = -, x =D, y = D_ ,

-of # -], there exists a

reduced arithmetic progression A, no prime member of which divides Dyp+r.

H

and noting that, according to the assumption, b
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Hence, no prime member of A is a factor of Dintq. The theorem follows by
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Lemma. 1, II).
Theorem 6. If

I @ - B2 # ],
or
1) @-p)% =1"] and o # {] ,

then there is an infinitude of composite Dy .

Proof. One may readily verify that
2 = Y Y n
(9) 2= (@ - B+ 4lp)”
I) Suppose that (@ -B)? # 4 ). Then (@ -B)? = #m?py,***,py, where

r =1 and py,°°,py are distinct primes. Then, by Lemma 2, I), there is

an integer u, such that

(10) u =1 (mod4) ,
(11) (u, 4pg*upp) = 1,
(12) | p = u (mod 4py, -, py)
implies

<—(0z —B)2>: 1
p

Consider the pair of congruences

for any prime p.

u {mod 4py,+++,pr)

e
t

(13)
1 (mod 4of)

4]
Y
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From the identity
(@+B)? - 408 = (@ -B)?,
and from the assumption
l@+p,ap) = 1 ,
it follows
1 = @B,pg,-++,pr) = @B, Tmpy, -+ ,pr) = @B, @-p)F = 1.
Hence
(4py, 5 pr.4eB) = 4(pg,***,pp,af) = 4
But, by (10), 4|u - 1, hence (13) has a solution u', i.e.,

(14) u' = u (mod4py,:++,py), u' = 1 (mod 4eB) .

Let p be a prime satisfying p = 1 (mod 4aB). If of is odd, then, accord-
ing to the properties of the Jacobi symbol

(%) - () - (F) -+

If of is even, then p = 1 (mod 8), and of = 2°t, where k =1 and 2 [ t.
Then

in both cases
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Combining the last result with (11), (12) and (14), we conclude
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(15) (u': 4p1a"')pr) =1 ’

(16) If p = u! (Inod 4p19"‘spr)’ then

- -2 Y _ [ope - B2Y _ -1
p p ’
for any prime p.

We shall now show that if

17 p=u (mod 4py,***, pr)

then p | Din. Indeed, if p|Din, then, by (1), p|Sh, hence p|Si. Hence, by
9,

pl@ - B)D2 + 4ep)” .
Putting in Lemma 3:
X = Dn’ y = 2; a = (CY _B)Z, b = (aB)n!

we have

(—-(aﬁ)n(a - B2 > _
¢ :

If n is even, then

Lo [zeme-p2) _ (—(01—5)2)
P P ’

If n is odd, then



1968] SECOND-ORDER RECURRING SEQUENCES 333

L - (-(aﬁ)“(a -8\ - (4:43(0: -B)ﬂ)
p P '

Both cases contradict (16). The theorem now follows from (17), (15), and

Lemma 1, II).
1I) Suppose (@ - B)? = m?, where m is an integer and f # { ]. Then

(9) becomes
(18) 8! = (mDp)? + 4ep)" .

This formula implies, by Lemma 3, if
(19) p[Dy

(and hence p|S}), then

(—(aB)n> -1,
p

for any odd prime p. Consider now the three following cases.
Case 1: af = n*. Zk, where k = 0. Then, if p = -1 (mod 8), then

(%) - ) - -

and hence, by (19), p | Diy .

Case 2: off = n? - zk- gy, ** 9y, where k 20, r =1, ¢4,°**,qp are
distinct odd primes, and t = qy,°**,qy = 1 (mod 4).

Consider the pair of congruences

-1 (mod 8)

4
"

(20)
1 (mod t)

»
1]

Since (t,8) = 1, (20) has a solution u. This solution satisfies

(21) (u, 8t) = 1
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If p~u (mod8t) isaprime, then

S S R CRCRECRES

and hence, by (19), pJ Diy .

Cerce 3: Everything as in Case 2, except that t = -1 (mod 4).

Choose a quadratic nonresidue ¢ modulo g, i.e.,

#)

Consider the system of congruences

(23)

Fa T I ]
H
I = e
3
(o]
o,
0
Do

If r =2, orthe system

Dec.

1968

x = -1 (mod 8)
(24)
x = ¢ {mod qy)
if r=1. Since qj,***,qy are distinct odd primes, (23) and (24) have a solu-

tion v. v satisfies:

(25) (V, St) =1 ’

If p = v (mod 8t isa prime, then

o () (T - )

[Cont. onp. 406.]
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n
v - n-k _ S + _ ohtl
L Zsz S=H veH = 2", 2+ H =2

k=0

Hy - Hn+3

Thus (A) holdsfor all n 2 1. To obtain the identities given by Carlitz, we
note that F, = 1, L, = 3.

Also solved by Herta T. Freitag, D. V. Jaiswal (India), Bruce W. King, C.B.A.
Peck, A. C. Shannon (Australia), David Zeitlin, and the proposer.

* o ok ok ok

ERRATA

Please make the following correction in the October Elementary Problems and
Solutions: In the third equation from the bottom, on p. 292, delete

Fok < Fak < Fakay < Fok-4
Foka Fak-+1 Fox Fak

and add, instead,

Fok Fok+g Fak+1 Faok-q
< < <
Foks Folkts ~ Fokto Fak

* ok Kk o ok

[Continued from p. 334. ]

Hence, by (13), p | Din
In each case we have found a reduced arithmetic progression no prime

member of which is a factor of a certain D},. Hence, by Lemma 1, II), there

is an infinitude of composite Din-+q .
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