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Abstract

The selective forces acting on a protein-coding gene are commonly inferred using evolutionary codon models by
contrasting the rate of nonsynonymous substitutions to the rate of synonymous substitutions. These models usually
assume that the synonymous substitution rate, Ks, is homogenous across all sites, which is justified if synonymous sites are
free from selection. However, a growing body of evidence indicates that the DNA and RNA levels of protein-coding genes
are subject to varying degrees of selective constraints due to various biological functions encoded at these levels. In this
paper, we develop evolutionary models that account for these layers of selection by allowing for both among-site
variability of substitution rates at the DNA/RNA level (which leads to Ks variability among protein-coding sites) and
among-site variability of substitution rates at the protein level (Ka variability). These models are constructed so that
positive selection is either allowed or not. This enables statistical testing of positive selection when variability at the DNA/
RNA substitution rate is accounted for. Using this methodology, we show that variability of the baseline DNA/RNA
substitution rate is a widespread phenomenon in coding sequence data of mammalian genomes, most likely reflecting
varying degrees of selection at the DNA and RNA levels. Additionally, we use simulations to examine the impact that
accounting for the variability of the baseline DNA/RNA substitution rate has on the inference of positive selection. Our
results show that ignoring this variability results in a high rate of erroneous positive-selection inference. Our newly
developed model, which accounts for this variability, does not suffer from this problem and hence provides a likelihood
framework for the inference of positive selection on a background of variability in the baseline DNA/RNA substitution rate.
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Introduction
One of the main applications of molecular evolutionary
models is to detect the intensity of selective pressures act-
ing on genes and on specific sites within them. A common
application is to use codon-basedmodels for examining the
evolution of protein-coding genes, in which the selection
intensity is inferred by contrasting the rate of nonsynon-
ymous (amino acid altering; Ka) to the rate of synonymous
(silent; Ks) nucleotide substitutions. The underlying as-
sumption in these analyses is that selective forces acting
on protein-coding genes operate at the protein level only,
whereas synonymous substitutions are free from selection
and reflect the neutral rate of evolution. In such a case, Ks is
homogenous across codon positions, Ka is heterogeneous,
and the inference of site-specific Ka/Ks ratios is based solely
on Ka variation. Accordingly, protein-coding sites showing
a Ka/Ks ratio significantly lower than one are regarded as
undergoing purifying selection, suggesting they are func-
tionally or structurally important. Protein-coding sites with
Ka/Ks significantly greater than one are indicative of pos-
itive Darwinian selection, suggesting adaptive evolution

(Hurst 2002; Yang 2005). Finally, sites evolving with a Ka/Ks
ratio not significantly different than one are regarded as free
from selection at the protein level. Clearly, such inferences
are obtained at the phylogenetic context and as such are
only able to detect relatively old events of adaptation or
diversification characterized by repeated events of positive
selection. Other scenarios of adaptation require different
methodologies for their detection. In this respect, a comple-
mentary approach for detecting recent events of adapta-
tion is to analyze sequences at the population level, and
indeed many such methods have been and are still being
developed (e.g., Tajima 1989; McDonald and Kreitman
1991; Sabeti et al. 2007; Yi et al. 2010).

In standard model-based inference approaches for Ka/
Ks, variation of Ks among sites is not explicitly accounted
for. However, variation of Ks is expected if in addition to the
protein level, selection also operates at the DNA and/or
RNA level, with varying intensities among sites. A large
body of evidence demonstrating selection at the DNA
and RNA levels of protein-coding genes has been assem-
bled over the years. Translational accuracy and efficiency
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is a major purifying selective force operating on codon usa-
ge, mainly in unicellular organisms that maximize growth
(Ikemura 1985; Sharp and Li 1987), and has been indicated
to vary along the sequence (Akashi 1994; Zhou et al. 2009).
Splicing regulatory elements within coding sequences are
also known to exhibit significant degrees of conservation
(Baek and Green 2005; Pagani et al. 2005; Xing and Lee
2005; Goren et al. 2006). Synonymous mutations may affect
the mRNA structure stability and thus impact phenotype
and fitness (e.g., Nackley et al. 2006; Kudla et al. 2009). Over-
lapping genes also exhibit reduced rates of synonymous sub-
stitutions (Miyata and Yasunaga 1978; Rogozin et al. 2002;
Chamary et al. 2006), indicating selective constraints. In ad-
dition, various types of cis-elements embedded within cod-
ing regions, such as antisense RNAs (Katayama et al. 2005; He
et al. 2008; Mercer et al. 2008), microRNAs (annotated in
miRBase, Griffiths-Jones et al. 2008), and nucleosome-bind-
ing motifs (Segal et al. 2006; Warnecke et al. 2008), are ex-
pected to be under purifying selection at the DNA and RNA
levels. In a genomewide survey, Hellmann et al. (2003) esti-
mated that;39% of synonymous sites in primates are sub-
ject to substantial purifying selection. In addition to purifying
synonymous selection, indications of positive synonymous
selection have been reported (e.g., Resch et al. 2007). These
observations suggest that realistic codon models should ex-
plicitly account for among-site synonymous substitution
rate variation.

Evolutionary models that consider selection at synony-
mous sites have been developed for population genetics
data (Bulmer 1991; McVean and Charlesworth 1999). More
recently at the phylogenetic level, several codon models
that account for variability in Ks have also been developed.
Some aim to estimate preferred or unpreferred synony-
mous codon substitutions (Nielsen et al. 2007; Zhou
et al. 2010) and thus rely on an a priori tabulation of
the codons to preferred and unpreferred categories. Accu-
rate tabulation of codon preference, however, depends on
availability of gene expression data as codon preference is
most biased in highly expressed genes (Sharp and Li 1987;
Zhou et al. 2010). A major limitation to such an approach is
that, at least for multicellular organisms in which gene ex-
pression varies from tissue to tissue and perhaps even be-
tween cells, preferred and unpreferred codons are
unknown and cannot be simply derived. Yang and Nielsen
(2008) developed a parameter-rich codon evolutionary
model that aims to distinguish mutation, drift, and selec-
tion when analyzing the evolutionary forces acting on silent
mutations. Both Pond and Muse (2005) and Mayrose et al.
(2007) developed models that account for site-to-site var-
iation of both the synonymous and the nonsynonymous
substitution rates. These models, however, do not follow
the established paradigm for the inference of positive se-
lection, which compares the fit of two nested models to
the data (in terms of maximum likelihood): one that explic-
itly allows for positive selection and one that does not (e.g.,
the M8 vs. M8a models implemented in PAML, Yang 2007).
Rather, both Ka and Ks at each site vary according to
independent gamma distributions, and consequently, positive

selection is implicitly allowed in each site since the multivar-
iate Ka, Ks distribution will have a fraction with Ka/Ks. 1.
Thus, a measure of statistical support for the presence of
positive selection is not provided by these models. In ad-
dition, these models rely on the traditional separation be-
tween Ka and Ks, whereas selective forces acting at the
nucleotide level most likely operate simultaneously on
both synonymous and nonsynonymous mutations (e.g.,
important elements at the DNA or RNA levels are expected
to be maintained by selection not only against synonymous
mutations but also against nonsynonymous ones). Finally,
Scheffler et al. (2006) developed a model that introduces
a synonymous substitution rate parameter that also affects
nonsynonymous substitutions. The authors used this
model to show that it reduces the rate of false inference
of positive selection when recombination is present in
the data. It is not clear, however, why synonymous substi-
tution rates, which supposedly reflect DNA-/RNA-level
constraints, should be constrained to vary only among co-
dons rather than among codon sites.

In this work, we develop evolutionary codon models
that distinguish between selection operating at the DNA
and RNA levels and selection operating at the protein level.
Our models allow testing for the presence of variability in
the baseline DNA/RNA substitution rate among codon
sites, and we show that such variability is common among
vertebrate protein-coding genes. We construct two nested
models that account for such variability, one that allows for
the presence of positive selection and one that does not. By
contrasting these models, it is possible to identify positive
selection while accounting for variability in the baseline
DNA/RNA substitution rate. Using simulations, we show
that ignoring the spatial variation of DNA/RNA selective
forces often leads to high rate of erroneous positive-selec-
tion inference. We note that since the synonymous substi-
tution rate in our model varies among sites, it cannot be
assumed to correspond to the neutral rate of evolution.
Hence, equating Ka/Ks ratios higher than one with positive
selection is not trivial. Nevertheless, we do stress that in the
context of analyzing protein-coding genes, positive selec-
tion refers to the selection regime operating at the protein
level, and we provide a discussion on how inferred Ka/Ks
ratios higher than one, when spatial variation in the
baseline DNA/RNA selective forces is present, should
be interpreted.

Materials and Methods

A Multilayer Evolutionary Model
The codon model presented here is a continuous-time
Markov process where the evolution of coding regions is
represented as a multilayer process. Specifically, our model
distinguishes between substitutions at the DNA/RNA level
and substitutions at the protein level. These factors are
captured within the Q matrix, which describes the instan-
taneous substitution rate from codon I5i1i2i3 to codon
J5j1j2j3, where ik is the nucleotide at the k’th codon site
(k5 1, 2, or 3) in codon I. For I 6¼ J, we define QIJ as follows:
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QIJ 5

n
qkaik jkpJ I and J differ by one synonymous

substitution at codon site k

qkaik jkxpJ I and J differ by one nonsynonymous

substitution at codon site k

0 I and J differ by more than

one nucleotide

:

ð1Þ

The diagonal elements are determined by the con-
straint that each row in Q sums to zero. pJ is the fre-
quency of codon J, which in our model is calculated
using the product of the observed nucleotide frequen-
cies at the three codon sites (the F3x4 model of Yang
et al. 2000) but can also be calculated differently (e.g.,
the equilibrium frequency of the ‘‘target nucleotide,’’
Muse and Gaut 1994). Selection pressure is modeled
as a multiplicative effect on those instantaneous substi-
tution rates. Specifically, selection at the DNA and RNA
levels should operate on both synonymous and nonsy-
nonymous mutations and hence affects all entries of
Q and is represented by the q parameter. Selection at
the protein level affects only nonsynonymous mutations
and is represented by the x parameter, which is the non-
synonymous-to-synonymous rate ratio. Both q andx are
treated as random variables sampled independently for
each site from some prior distributions (see below for
details). ai j is the substitution factor to change from nu-
cleotide iK to nucleotide jK . As in Yang and Nielsen
(2008), the ai j factors can be parameterized based on
any time-reversible nucleotide substitution model,
such as the general time reversible model (Yang
1994a) or the Hasegawa-Kishino-Yano (HKY) model
(Hasegawa et al. 1985). Specifically, in any time-reversible
nucleotide model, the instantaneous substitution rate
from l to p equals alpp�p, where p�p is the frequency of
nucleotide p and the alp values describe the symmetrical
part of the instantaneous rate matrix.

In the analyses presented in this study, the DNA- and
RNA-level substitution process is based on the HKY model
(Hasegawa et al. 1985). Thus, alp5j if l and p differ by
a transition and alp51 otherwise, where j is the transi-
tion–transversion rate ratio.

Notably, in our model, we do not assume that all syn-
onymous substitutions have the same rate. We also do not
assume that all first codon sites evolve at a single rate, all
second codon sites evolve at a single rate, and so forth.
Rather, the evolution of a protein of length L codons is
characterized by 3L values of q. Each such value is assumed
to be sampled independently from some prespecified dis-
tribution, thus allowing these values to vary over different
codon sites. This parameterization allows accounting for
cases in which, for example, a certain site of a specific co-
don is important for mRNA structure stability, whereas an-
other site in that codon site is free to vary.

Allowing for Site-to-Site Variation in the
Substitution Process
Among-site rate variation is modeled by assuming that the
baseline DNA/RNA substitution rate (q) and the nonsy-
nonymous-to-synonymous rate ratio (x) are random var-
iables sampled independently for each site (codon and
protein, respectively) from two independent distributions.

Similar to Yang et al. (2000), a betaþ xs distribution is
assumed over x. Accordingly, x is sampled from a discrete
Bðp; qÞ distribution with Cx rate categories with probability
P0, and assigned a value xs with probability (1� P0). When
xs51, only neutral and purifying selective forces are allowed.
Alternatively, whenxs can vary in the range ð1;NÞ, positive
Darwinian selection is allowed. These two options for x pa-
rameterization are identical to the M8a and M8 models of
Yang et al. (2000), respectively.

When no variation in the baseline DNA/RNA substitu-
tion rate is assumed, q equals 1 for all sites. Alternatively,
when the baseline DNA/RNA substitution rate is allowed
to vary, q is sampled from a gamma distribution Cða; bÞ
approximated by Cq discrete rate categories (Yang 1994b).
Due to the confounding effects between evolutionary rates
and divergence times (Felsenstein 1981), the distribution of
q is restricted to have mean one, which is facilitated by
equating a and b resulting in a single shape parameter,
aq. This parameter determines the shape of the distribution
of q, where the lower the aq value the larger the variability
in the baseline DNA/RNA substitution rates. All the above
parameters are optimized using standard likelihood maxi-
mization procedures.

The four options presented above, homogenous or vari-
able DNA/RNA substitution rates (qH and qV, respec-
tively) with or without allowing for positive selection
(M8 and M8a, respectively) define four models: M8a-qH,
M8-qH, M8a-qV, and M8-qV. The M8a-qH model can
be used as a null model versus the M8-qH model when
testing for positive selection with no q variability (which
is identical to the M8 vs. M8a model comparison imple-
mented in the PAML package, Yang 2007). Similarly, the
M8a-qV model can be used as a null model versus the
M8-qV model when testing for positive selection with q
variability. Finally, q variability can be tested by comparing
either M8a-qV versus M8a-qH or M8-qV versus M8-qH.
Each such model comparison can be performed using
the likelihood ratio test (LRT) with one degree of freedom.

Estimating Site-Specific Selective Forces
Once the tree and model parameters are estimated, selec-
tive pressure at an individual site can be inferred. If DNA- or
RNA-level selective forces are analyzed and the qV model
shows significantly better fit to the data than the qH
model, codon site–specific substitution rates can be used
for inference of the degree of DNA- or RNA-level selection.
In case positive selection is sought and the M8 model
shows a significantly better fit to the data than the M8a
model, protein-coding site–specific Ka/Ks ratios and their
posterior probability to evolve under positive-selection
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pressure can be used (Nielsen and Yang 1998). Specifically,
the posterior probability that protein-coding site h evolved
with a certain Ka/Ks ratio is as follows:

PðxðhÞ 5xkjDh; T; hÞ5
PðDhjT; h;xkÞPðxkÞP

k’
PðDhjT; h;xk’ÞPðxk’Þ

; ð2Þ

where Dh denotes the data at site h, T denotes the tree to-
pology and the estimated branch lengths, h denotes the set of
model parameters, and PðxkÞ denotes the prior probability of
xk. The summation in the denominator is over the Cx þ 1
discrete rate categories of x. In the qV model, a distribution
over q is assumed and the likelihood of each x category ac-
counts for all possible combinations of the q rate categories at
each codon site:

PðDhjT; h;xkÞ5
X

ðq1 ;q2 ;q3Þ2Cq
PðDhjT; h;xk;q1;q2;q3ÞPðq1ÞPðq2ÞPðq3Þ:

ð3Þ

The posterior expectation of the Ka/Ks value at each
protein-coding site h is as follows:

EðxðhÞjDh; T; hÞ5
X
k’

xk’Pðx
ðhÞ 5xk’jDh; T; hÞ: ð4Þ

Data set Construction
To assess the extent of q variability in real data, we analyzed
a large sample of protein-coding DNA sequences. Multiple
sequence alignments (MSAs) were constructed as follows.
All RefSeq (Pruitt et al. 2005) genes residing on human
chromosome 1 were retrieved from the University of
California–San Cruz (UCSC) hg18 database (Hsu et al.
2006). Whenever several isoforms were found for a certain
locus, the largest one was used to represent the gene. We
additionally filtered the data to include genes that were
used by the Rhesus Macaque Genome Sequencing Consor-
tium only (Gibbs et al. 2007). For the resulting list of genes,
pregenerated MultiZ (Blanchette et al. 2004) alignments of
5-way mammals (Human-Chimpanzee-Rhesus-Mouse-Dog)
and 17-way vertebrates (Human-Chimpanzee-Rhesus-
Mouse-Rat-Rabbit-Dog-Cow-Armadillo-Elephant-Tenrec-
Opossum-Chicken-Xenopus-Zebrafish-Tetraodon-Fugu) were
downloaded from the UCSC genome browser using the
Galaxy tool (Giardine et al. 2005). Each such alignment
was constructed by concatenating the exon-specific
alignments. The GBlocks program (Castresana 2000) was
then used to remove badly aligned sites. Finally, alignments
shorter than 50 codons were removed. This process resulted
in 297 and 296 alignments for the 5-way and 17-way data
sets, respectively. Not all the 17-way data sets included all
17 taxa, rather the average number of taxa in this data
set was 11.32.

Tree topologies for the 5-way and 17-way data sets
were derived from the National Center for Biotechnol-
ogy Information taxonomy database (Wheeler et al.
000): (Rhesus, (Dog, Mouse), (Human, Chimpanzee))
for the 5-way data sets and (((Tetraodon,Fugu),Zebra-
fish),Xenopus,(Chicken,(Opossum,Armadillo,((Tenrec,

Elephant), ((Cow,Dog),(((Rat,Mouse),Rabbit),((Human,-
Chimpanzee),Rhesus)))))))) for the 17-way data sets.
Whenever a 17-way MSA did not include all 17 taxa,
the corresponding missing taxa were pruned from the tree
without altering the topology of the remaining taxa.

Simulation Studies
Simulation studies were conducted to assess both the abil-
ity of the qVmodel to correctly detect cases of variability in
codon site substitution rates and the impact of accounting
for q variability on the inference of positive selection. For
these tasks, sequence data were simulated with parameters
j52 and x;Bð0:5; 2Þ, without and with positive selection
using xs51 and 2, respectively, with probability 0.2, and
with different degrees of variability in codon site substitu-
tion rates using a range of aq values (0.1, 0.2, 0.5, 0.8, 1.1, 1.4,
1.7, and 3.2), representing biologically realistic values based
on real data (see Results). This amounted to a total of 16
model combinations. In addition, sequences with no var-
iability in codon site substitution rates and without positive
selection were simulated. In order not to limit our simula-
tions to a specific phylogeny, 50 random trees of 20 taxa
were generated according to a birth–death process using
the Mesquite program (http://mesquiteproject.org) with
default parameters (speciation rate 0.3 and extinction rate
0.1) and were scaled so that the total tree length equals 2.
These trees were used as phylogenies for each set of sim-
ulated sequences. For each combination of model param-
eters, sequences were simulated along the 50 phylogenies
to produce 50 data sets of indel-less 900-bp codon align-
ments. We used the 900-bp length as it is approximately
the mode of MSA length distribution in the 5-way data set.

Source Code
The Cþþ code implementing the models described in this
manuscript along with usage explanations are freely avail-
able without any restriction at http://www.tau.ac.il/;talp/
multilayer.

Results

Assessing the Ability to Detect Variability in the
Baseline DNA/RNA Substitution Rates
Simulations were conducted in order to assess the ability of
our model to correctly detect variability in the baseline
DNA/RNA substitution rate (q). To this end, we simulated
sequences with considerable variability in q (obtained by
setting aq to 0.1) but without allowing positive selection.
We then measured the percentage of data sets for which
the M8a-qV model was found to fit significantly better
than the M8a-qH model, according to the LRT at the
0.05 significance level. The M8a-qV model significantly bet-
ter fitted 100% of the data sets compared with the M8a-qH
model. This detection rate remained at 100% for increasing
aq values of 0.2, 0.5, 0.8, 1.1, 1.4, and 1.7 and decreased to
96% for an aq value of 3.2. For sequences simulated assum-
ing no q variability, the M8a-qV fitted 6% of the data sets
significantly better than the M8a-qH model, which is
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expected as random error (P value 5 0.46; binomial test
assuming a 0.05 random error rate). We thus conclude that
our test for q variability is accurately calibrated to detect
variation in DNA/RNA substitution rates typical of real se-
quence data (discussed below).

Assessing the Extent of the Baseline DNA/RNA
Substitution Rate Variability in Real Data
We next sought to estimate the extent of significant var-
iability in the baseline DNA/RNA substitution rates in real
sequence data. We constructed a data set of 297 five-way
alignments of mammalian protein-coding genes (Human,
Chimpanzee, Rhesus, Mouse, and Dog) mapped to human
chromosome 1. LRT between the M8a-qV and M8a-qH
models at the 0.05 significance level reveled that in 53%
of the genes the null hypothesis of homogenous q can
be rejected. After a 0.05-level false discovery rate (FDR) ad-
justment (Benjamini and Hochberg 1995), this value was
reduced to 45% (fig. 1A). A similar result was obtained

when the M8-qV andM8-qHmodels that allow for positive
selection were compared (50% reduced to 44% after a 0.05-
level FDR adjustment). Accordingly, the distribution of the
aq parameter that quantifies q variability among the genes
explained significantly better by the qV model was dom-
inated by aq, 2 values (fig. 2A). When the alignments
were augmented with more sequences by using the 17-
way vertebrate data, this trend became even more pro-
nounced. The qV model showed a significantly better fit
to 95% of the genes (remaining 95% after a 0.05-level
FDR adjustment) when positive selection was not allowed
(M8a models; fig. 1B). Similar to the 5-way data, the ma-
jority of 17-way genes explained better by the qV model
were found to be characterized by aq values lower than
2 (fig. 2B). These results clearly suggest that variability in
DNA-/RNA-level substitution rates is prevalent and can
be detected even with relatively low taxonomic sampling.
In addition, the ability to detect this signal is only margin-
ally affected whether or not positive selection is allowed.
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FIG. 1. Histograms of maximum log-likelihood difference obtained by comparing models M8a-qV versus M8a-qH on the (A) 5-way data and
(B) the 17-way data. A value of 1.92 is considered significant at P value 5 0.05.
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In the results above, a gamma distribution was assumed
to model the variability of the baseline DNA/RNA substitu-
tion rate. We tested whether this assumption is justified by
comparing three variants of the qV model, in which the var-
iation ofq is assumed to follow a gamma, a beta, or a uniform
distribution. We analyzed all 5-way genes in which the qV
model was found to fit the data significantly better than the
qH model for all of the assumed q distributions. The Akaike
Information Criterion (Akaike 1974) values showed a better
fit for a gamma distribution compared with either a beta
distribution or a uniform distribution (;96% and 100%
of the compared data sets; P values , 10�12 and 10�7, re-
spectively; Wilcoxon signed-rank test). We note that this on-
ly means that a gamma distribution most suitably captures
the variation at the DNA-/RNA-level selective forces and not
that the selective forces operating at the DNA/RNA level
actually give rise to a gamma distribution (see Felsenstein
2001 for a related discussion).

The Effect of Accounting for Variability in the
Baseline DNA/RNA Substitution Rate on the
Inference of Positive Selection
Establishing that variability in the baseline DNA/RNA sub-
stitution rate is prevalent and our model has the power to
detect it, we next assessed how it affects inference of pos-
itive selection. We compared the performances of the qV
and the qH models in detecting positive selection when
proteins evolve under variable degrees of DNA/RNA sub-
stitution rates. We treated this issue as a classification prob-
lem and hence simulated data with (xs52) and without
(xs51) positive selection, with varying intensities of vari-
ability in the DNA/RNA substitution rates. We then used
these data to perform a receiver operating characteristic
(ROC) analysis. Subsequently, we used the area under
the receiver operating characteristic curve (AUC) to assess
the performance of the different models across the whole
range of P values that are used as the threshold to
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FIG. 2. Distribution of the aq parameter that quantifies the intensity of the among-site variability of the baseline DNA/RNA substitution rate.
The values were obtained by the M8a-qV model for the (A) 5-way and (B) 17-way genes that were found to be significantly better explained by
the M8a-qV model compared with the M8a-qH model.
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determine statistical significance. An AUC of 1 indicates
optimal performance (i.e., the model can perfectly distin-
guish cases of positive selection from those of no positive
selection), whereas an AUC of 0.5 indicates poor perfor-
mance, comparable with that of a random predictor.

When sequences were simulated with strong variability
in the baseline DNA/RNA substitution rates (aq50:1), the
qHmodel obtained a poor AUC of 0.43. In contrast, the qV
model obtained an AUC of 0.73 (fig. 3A). The difference in
AUCs obtained by the two models remained considerable
through the entire range of q variability intensities
(aq50:2; 1:1; 0:5; 0:8; 1:1; 1:4; 1:7; and 3:2; fig. 3A).
We thus conclude that in cases of strong-to-moderate var-
iability in the baseline DNA/RNA substitution rates, the de-
tection of positive selection is more accurate when
q variability is accounted for, regardless of the P value used
as threshold for invoking significant positive selection.

In practical analyses, positive selection is inferred when
the P value of the LRT comparing the M8 versus M8a mod-
els is lower than 0.05. We thus additionally measured the
percentage of false positive-selection inference of the qH
and qV models at the 0.05 significance level for the above
simulated data with the different intensities of codon site
substitution rates and without positive selection (xs51).
In the case of strong q variability (aq50:1), positive selec-
tion is erroneously inferred in 96% of the data sets using the
qH model. In contrast, the qV model erroneously infers
positive selection in only 4% of the simulated data sets
(fig. 4). The rate of false detection of the qH model gradually
declines through milder variabilities in codon site substitu-
tion rates (fig. 4), finally dropping to 22% for q variability
simulated using aq53:2. In contrast, the rate of false detec-
tion of the qVmodel was nearly constant across the range of
aq values and did not exceed 8% (expected as random error,
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P value 5 0.24; binomial test assuming a 0.05 random error
rate). These results suggest that, often, apparent statistically
significant positive selection may be an artifact obtained due
to considerable variation in q when it is ignored.

Next, we tested the ability of the models to detect pos-
itive selection in specific sequence sites. We first performed
an ROC analysis by varying the site-specific posterior prob-
abilities of Ka/Ks. 1 obtained by the M8 models (qH and
qV; fig. 3B). In this case, the true site-specific Ka/Ks ratios
are known from the simulation process, and hence protein-
coding sites that were simulated with Ka/Ks . 1 were re-
garded as under positive selection. In the case of strong q
variability (aq50:1), the qH model obtained an AUC of
0.63 whereas the qV model obtained an AUC of 0.76.
The superiority of the qV model over the qH model in
terms of AUC remained consistent yet gradually dimin-
ished through weaker degrees of variability in codon site
substitution rates, culminating in 0.94 versus 0.91 for the
qV and the qH models, respectively, for data simulated
with moderate q variability (aq53:2; fig. 3B). These results
demonstrate that the qV model has greater power in de-
tecting protein-coding site–specific positive-selection
forces than the qH model.

We next sought to better understand what causes erro-
neous inference of site-specific positive selection by the qH
model. To this end, we analyzed data sets that were sim-
ulated under the qVmodel without positive selection. We
compared the average baseline DNA/RNA substitution
rate in protein-coding sites that were erroneously inferred
to be under positive selection (according to the qHmodel)
with that of the remaining protein-coding sites. Sites in
which positive selection is erroneously inferred were found
to have a significantly higher average baseline substitution
rate compared with the remaining sites (P value, 10�4 for
all codon site rate variability intensities; paired t-test). This
comparison suggests that sites that evolve under high base-
line DNA/RNA substitution rates experience many nonsy-
nonymous substitutions not driven by positive selection
but rather by weaker selective constraints at the DNA/
RNA level. The qH model averages the Ks across the entire

protein, which leads to an underestimation of Ks for such
sites. Thus, the Ka/Ks ratio is artificially inflated at these
sites, which leads to false positive-selection inference
(see Discussion).

The ROC analyses performed above illustrate how pow-
erful the compared models in detecting positive selection
are, either according to the LRT or according to the site-
specific posterior probabilities of x.1. Notwithstanding, it
is also informative to study how accurately the models infer
x ratios in the range (0,1). To this end, we measured the
correlation between the simulated site-specific x values
and their inferred posterior expectations, according to
the qV and qHmodels. Similarly, we also measured the cor-
relation between the simulated codon site–specific substi-
tution rates (i.e., q values) and their inferred posterior
expectations according to the qV model. For data simu-
lated without positive selection and with strong variability
in the baseline DNA/RNA substitution rates (aq50:1), the
qV and the qH models showed similar correlations for the
x ratios (Pearson correlation coefficients 0.38 and 0.36, for
the qV and qHmodels, respectively; P value, 10�15 for both
correlations). This indicates that accounting for DNA-/RNA-
level selective forces does not come at the expense of re-
duced accuracy in the inference of protein-level selective
forces.

The correlations for the codon site–specific substitution
rates were higher, with Pearson correlation coefficients of
0.63, 0.61, and 0.76, for the first, second, and third codon
sites, respectively; (P value, 10�15 for all correlations). The
higher correlation obtained for the third codon site may be
explained by the fact that it is the least constrained among
the three codon sites, and it thus experiences more substi-
tutions and therefore has a stronger phylogenetic signal. In
the same vein, the slightly lower correlations for the second
codon site (compared with that of the first) is somewhat
expected as it is the most constrained among the three co-
don sites and hence the least informative.

Case Study: The TRIM5a Gene
To exemplify the impact of accounting for possible q var-
iability on the inference of positive selection, we chose the
alpha isoform of the TRIM5 protein (TRIM5a) as a test case.
TRIM5 is a member of the tripartite motif family in primate
genomes. It includes a Really Interesting New Gene finger
domain, a B-box domain, and a coiled-coil domain. In ad-
dition, an SPRY domain was found in the alpha isoform
(Reymond et al. 2001). Rhesus cells were found to be re-
sistant to HIV-1 infection, and it was found that TRIM5a
is responsible for this restriction (Hatziioannou et al. 2004).
This restriction factor was previously found to evolve under
positive selection (Sawyer et al. 2005).

We first analyzed the TRIM5a alignment assuming ho-
mogenous q among codon sites. Positive selection was sig-
nificantly supported (maximum log-likelihood difference of
91.25; P value, 10�40; comparing the M8-qH and M8a-qH
models), in accordance with Sawyer et al. (2005). Of its 493
protein-coding sites, 31 positively selected sites (Ka/Ks. 1)
were inferred at a posterior probability higher than 0.95 and

H
V

F
al

se
 in

fe
re

n
ce

 r
at

e

0.1 0.2 0.5 0.8 1.1 1.4 1.7 3.2

90

100

60

70

80

40

50

60

10

20

30

0

FIG. 4. The rate of falsely inferred positive selection at the 0.05
significance level of the M8 versus M8a LRT P value, obtained for
the qH and qV models, for varying degrees of DNA/RNA baseline
substitution rates, determined by the aq parameter.

Rubinstein et al. · doi:10.1093/molbev/msr162 MBE

3304



20 sites at a posterior probability higher than 0.99 (fig. 5A).
We then tested whether this gene evolved under variable q
among codon sites comparing the M8a-qV and M8a-qH
models. Indeed, the null hypothesis of among–codon site
q homogeneity was rejected (75.15 maximum log-likelihood
difference, P value , 10�33). We thus tested again for pos-
itive selection, this time comparing the M8-qV and M8a-qV
models. Positive selection was again detected, albeit with a
lower log-likelihood difference (37.22 maximum log-
likelihooddifference,P value, 10�17). However, 39positively
selected sites were inferred at a posterior probability higher

than 0.95 and 23 sites at a posterior probability higher than
0.99 (fig. 5B). Among these 23 sites are those that comprise
the SPRY domain, which was experimentally shown to ac-
countfor therestrictive functionofTRIM5a toHIV-1 inrhesus
cells (Hatziioannou et al. 2004). This test case thus exemplifies
that accounting for the baseline DNA/RNA substitution rate
variability does not eliminate the signal of positive selection, if
such is present in the data, but most probably results with
more reliable inference.

Discussion

Codon Models Accounting for Layers of Selection in
Protein-Coding Genes
Codon models have widespread use for the detection of se-
lective forces. It is becoming evident that protein-coding
genes may encode functions at the DNA and RNA levels,
and hence any type of mutation, synonymous and nonsy-
nonymous, may result with profound phenotypic conse-
quences (e.g., Duan et al. 2003; Pagani et al. 2005; Nackley
et al. 2006; Kimchi-Sarfaty et al. 2007; Kudla et al. 2009). This
suggests that DNA-/RNA-level selection intensity should
vary from site to site. Accordingly, substitution rates are ex-
pected to vary both among and within codon sites. This ob-
servation motivated us to explicitly incorporate such
selection layers into codon evolutionary models. This exten-
sion to existing codon models is expected to have major im-
plications, including the ability to detect and quantify codon
site–specific selection (including positive selection), ances-
tral sequence reconstruction, the inference of phylogenetic
trees, and accurate estimation of dating events.

In the multilayer evolutionary models developed here,
selection at the DNA/RNA level equally affects both syn-
onymous and nonsynonymous mutations. This satisfies
the underlying biological assumption according to which
constraints at the DNA and RNA level also affect the pro-
tein level. Such parameterization is more realistic com-
pared with previous models, which used independent Ka
and Ks distributions (Pond and Muse 2005; Mayrose
et al. 2007). Our parameterization further allows explicit
testing for the presence of positive selection using model
comparisons. Nevertheless, extending the model to ac-
count for rate dependencies among sites (e.g., Mayrose
et al. 2007), heterotachy (e.g., Lopez et al. 2002; Penn
et al. 2008), and lineage-specific changes in selection inten-
sities (Yang and Nielsen 2002) is warranted.

The baseline DNA/RNA substitution rate was found to be
significantly variable in approximately half of the mammalian
genes analyzed, emphasizing the justification for using our
developed methodology. We note that our models do not
explicitly distinguish between selection and mutation aside
from estimating transition–transversion rate ratio. However,
strong variability of mutation forces within a single gene
should be rare and is thus considerably less likely to contrib-
ute to variability in the DNA/RNA substitution rates than
varying selective forces. Notwithstanding, context-dependent
mutation effects may be responsible for part of the baseline
DNA/RNA variation in substitution rates. Clearly, more

FIG. 5. Projection of the selection intensity values onto the primary
sequence of the TRIM5a protein inferred by (A) the qH model and
(B) the qV model. Inferred site-specific selective forces are colored
according to the color scale: Purifying selection is colored in shades
of burgundy, neutral selection is colored in white, and positive
selection is colored in shades of yellow. Bins 1 and 2 represent sites
with posterior probability above 0.99 and 0.95, respectively, to
evolve with Ka/Ks . 1. The two species-specific restriction
determinants are indicated by red boxes.
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studies are needed to understand the relative importance of
the various factors that contribute to such a phenomenon
(e.g., codon bias, mRNA structure stability, splicing signals,
and context-dependent mutation effects) and how they
change in various taxonomical groups.

The Inference of Positive Selection when the
Baseline DNA/RNA Substitution Rate Varies among
Sites
Classically, positive selection is invoked for protein-coding
sites that experience more fixations of nonsynonymous mu-
tations than would be expected by chance, that is, random
fixations due to drift of neutral mutations. Ks is commonly
used as a proxy for the expectation of the rate of such ran-
dom fixations. However, if synonymous mutations are under
purifying selection, their fixation rate no longer reflects the
fixation rate of neutral mutations. This begs the question:
How can positive selection be inferred under such settings?

We argue that although Ks can no longer be used to
approximate the neutral substitution rate, the Ka/Ks ratio
is still indicative of positive selection at the protein level.
Our justification for this claim is as follows. Assume that
a certain protein-coding site is not constrained by selection
at the protein level (i.e., amino acid replacements at this
site have no effect on the protein structure or function).
Further assume that strong selective constraints operate
at the DNA/RNA level of this site (e.g., due to RNA struc-
ture constraints). Ks at such a site should be lower than the
neutral substitution rate, and Ka should be equal to Ks
since synonymous and nonsynonymous mutations are
equally affected by the DNA-/RNA-level selection and
no additional constraints are imposed on nonsynonymous
mutations compared with synonymous ones. The qV
model will thus infer Ka/Ks 5 1 for that site, correctly in-
dicating neutral evolution at the protein level, even though
that site is under purifying selection at the DNA/RNA level.
The qH model, on the other hand, would most likely infer
this site to be under purifying selection because the Ka/Ks
ratio will be lower than 1 (i.e., the site-specific Ks value will
be overestimated due to the homogenous Ks assumption).

Assume now that there is a diversifying selective force
promoting fixations of nonsynonymous mutations at a cer-
tain protein-coding site and similar to the previous case, the
site is also under purifying selection at the DNA/RNA level.
Such a site evolves pleiotropically under this scenario, where
selection both at the DNA/RNA level as well as at the protein
level affects the same mutations, perhaps even differently
(i.e., opposing them at the nucleotide level yet promoting
them at the protein level). Ka at that site may be either high-
er or lower than the cross-sequence average Ks but definitely
higher than the site-specific Ks. The qV model will thus infer
Ka/Ks. 1, correctly indicating positive diversifying selection
at the protein level, which means an advantage for fixation
of nonsynonymous mutations over synonymous ones. This
conclusion would be true even if Ka at that site is lower than
the cross-sequence average Ks.

When the DNA/RNA selective force is not accounted for,
a protein-coding site is only regarded to be subject to selec-
tion at the protein level, be it purifying, neutral, or positive. In
this framework, positive selection is invoked even though
some of all the possible nonsynonymous mutations are prob-
ably deleterious and purified. Similarly, in our model, a pro-
tein-coding site is considered positively selected even though
a fraction of the nonsynonymous mutations are subject to
purifying selection stemming from the DNA-/RNA-level con-
straints. It is thus justified to invoke positive selection accord-
ing to the Ka/Ks ratio using the qV model, emphasizing the
term ‘‘positive selection at the protein level’’ in lieu of the
shorter term ‘‘positive selection.’’

Notwithstanding, there may be certain scenarios in which
it is very difficult to distinguish between positive selection at
the protein level and spatial variability of selective forces at
the DNA/RNA level. For example, the first and third sites of
a certain codon may be constrained by purifying selection to
maintain an RNA structure, whereas the second site may be
free to mutate since both at the DNA/RNA and the protein
level it is free from constraints. In such a case, even the qV
model is expected to have difficulties in distinguishing pos-
itive selection fromDNA/RNA selective forces. Although this
scenario is quite biologically farfetched, it may certainly be
present in our simulations and thus, at least in part, explain
why the qV model does not have optimal positive-selection
inference power (as indicated by the AUC range of 0.66–0.83;
fig. 3A). This scenario is also consistent with the above ob-
servation that the correlation between simulated and in-
ferred substitution rates at the second codon site is the
lowest among the three codon sites.

In practical terms, when positive selection is sought, we
first recommend testing for variability of selective forces at
the DNA/RNA level by comparing the qV and the qHmod-
els (the M8a model should suffice for that purpose). If var-
iability in the baseline DNA/RNA substitution rate is
ascertained, we recommend testing for positive selection
by comparing the M8-qV versus M8a-qV models. Only
if q homogeneity cannot be rejected, then the M8-qH ver-
sus M8a-qH test should be used.

Acknowledgments
We thank Ziheng Yang for extensive discussions and critical
reading of an early version of this manuscript. We also thank
Marcy Uyenoyama, Rasmus Nielsen, the associate editor, and
two anonymous reviewers for helpful comments and sugges-
tions. A.D.-F. and N.D.R. were supported by the Safra Bioin-
formatics Foundation at Tel Aviv University. N.D.R. and T.P.
are supported by the National Evolutionary Synthesis Center
(NESCent; NSF #EF-0905606). This study was supported by
an Israel Science Foundation grant 878/09 to T.P.

References
Akaike H. 1974. A new look at the statistical model identification.

IEEE T Automat Contr. AC-19:716–723.
Akashi H. 1994. Synonymous codon usage in Drosophila mela-

nogaster: natural selection and translational accuracy. Genetics
136:927–935.

Rubinstein et al. · doi:10.1093/molbev/msr162 MBE

3306



Baek D, Green P. 2005. Sequence conservation, relative isoform
frequencies, and nonsense-mediated decay in evolutionarily
conserved alternative splicing. Proc Natl Acad Sci U S A.
102:12813–12818.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery
rate—a practical and powerful approach to multiple testing. J
Roy Stat Soc B. 57:289–300.

Blanchette M, Kent WJ, Riemer C, et al. (12 co-authors). 2004.
Aligning multiple genomic sequences with the threaded
blockset aligner. Genome Res. 14:708–715.

Bulmer M. 1991. The selection-mutation-drift theory of synony-
mous codon usage. Genetics 129:897–907.

Castresana J. 2000. Selection of conserved blocks from multiple
alignments for their use in phylogenetic analysis. Mol Biol Evol.
17:540–552.

Chamary JV, Parmley JL, Hurst LD. 2006. Hearing silence: non-neutral
evolution at synonymous sites in mammals. Nat Rev Genet.
7:98–108.

Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR,
Gelernter J, Gejman PV. 2003. Synonymous mutations in the
human dopamine receptor D2 (DRD2) affect mRNA stability
and synthesis of the receptor. Hum Mol Genet. 12:205–216.

Felsenstein J. 1981. Evolutionary trees from DNA sequences:
a maximum likelihood approach. J Mol Evol. 17:368–376.

Felsenstein J. 2001. Taking variation of evolutionary rates between
sites into account in inferring phylogenies. J Mol Evol. 53:447–455.

Giardine B, Riemer C, Hardison RC, et al. (13 co-authors). 2005.
Galaxy: a platform for interactive large-scale genome analysis.
Genome Res. 15:1451–1455.

Gibbs RAJ, Rogers MG, Katze R, et al. (176 co-authors). 2007.
Evolutionary and biomedical insights from the rhesus macaque
genome. Science 316:222–234.

Goren A, Ram O, Amit M, Keren H, Lev-Maor G, Vig I, Pupko T,
Ast G. 2006. Comparative analysis identifies exonic splicing
regulatory sequences—The complex definition of enhancers and
silencers. Mol Cell. 22:769–781.

Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. 2008. miRBase:
tools for microRNA genomics. Nucleic Acids Res. 36:D154–D158.

Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape
splitting by a molecular clock of mitochondrial DNA. J Mol Evol.
22:160–174.

Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD.
2004. Retrovirus resistance factors Ref1 and Lv1 are species-
specific variants of TRIM5alpha. Proc Natl Acad Sci U S A.
101:10774–10779.

He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW.
2008. The antisense transcriptomes of human cells. Science
322:1855–1857.

Hellmann I, Zollner S, Enard W, Ebersberger I, Nickel B, Paabo S.
2003. Selection on human genes as revealed by comparisons to
chimpanzee cDNA. Genome Res. 13:831–837.

Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D.
2006. The UCSC Known Genes. Bioinformatics 22:1036–1046.

Hurst LD. 2002. The Ka/Ks ratio: diagnosing the form of sequence
evolution. Trends Genet. 18:486.

Ikemura T. 1985. Codon usage and tRNA content in unicellular and
multicellular organisms. Mol Biol Evol. 2:13–34.

Katayama S, Tomaru Y, Kasukawa T, et al. (31 co-authors). 2005.
Antisense transcription in the mammalian transcriptome.
Science 309:1564–1566.

Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM,
Ambudkar SV, Gottesman MM. 2007. A ‘‘silent’’ polymorphism in
the MDR1 gene changes substrate specificity. Science 315:525–528.

Kudla G, Murray AW, Tollervey D, Plotkin JB. 2009. Coding-
sequence determinants of gene expression in Escherichia coli.
Science 324:255–258.

Lopez P, Casane D, Philippe H. 2002. Heterotachy, an important
process of protein evolution. Mol Biol Evol. 19:1–7.

Mayrose I, Doron-Faigenboim A, Bacharach E, Pupko T. 2007.
Towards realistic codon models: among site variability and
dependency of synonymous and non-synonymous rates.
Bioinformatics 23:i319–i327.

McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the
Adh locus in Drosophila. Nature 351:652–654.

McVean GAT, Charlesworth B. 1999. A population genetic model
for the evolution of synonymous codon usage: patterns and
predictions. Genet Res. 74:145–158.

Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. 2008.
Specific expression of long noncoding RNAs in the mouse brain.
Proc Natl Acad Sci U S A. 105:716–721.

Miyata T, Yasunaga T. 1978. Evolution of overlapping genes. Nature
272:532–535.

Muse SV, Gaut BS. 1994. A likelihood approach for comparing
synonymous and nonsynonymous nucleotide substitution rates,
with application to the chloroplast genome. Mol Biol Evol.
11:715–724.

Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K,
Korchynskyi O, Makarov SS, Maixner W, Diatchenko L. 2006.
Human catechol-O-methyltransferase haplotypes modulate
protein expression by altering mRNA secondary structure.
Science 314:1930–1933.

Nielsen R, Bauer DuMont VL, Hubisz MJ, Aquadro CF. 2007.
Maximum likelihood estimation of ancestral codon usage bias
parameters in Drosophila. Mol Biol Evol. 24:228–235.

Nielsen R, Yang Z. 1998. Likelihood models for detecting positively
selected amino acid sites and applications to the HIV-1 envelope
gene. Genetics 148:929–936.

Pagani F, Raponi M, Baralle FE. 2005. Synonymous mutations in
CFTR exon 12 affect splicing and are not neutral in evolution.
Proc Natl Acad Sci U S A. 102:6368–6372.

Penn O, Stern A, Rubinstein ND, Dutheil J, Bacharach E, Galtier N,
Pupko T. 2008. Evolutionary modeling of rate shifts reveals
specificity determinants in HIV-1 subtypes. PLoS Comput Biol.
4:e1000214.

Pond SK, Muse SV. 2005. Site-to-site variation of synonymous
substitution rates. Mol Biol Evol. 22:2375–2385.

Pruitt KD, Tatusova T, Maglott DR. 2005. NCBI Reference Sequence
(RefSeq): a curated non-redundant sequence database of genomes,
transcripts and proteins. Nucleic Acids Res. 33:D501–D504.

Resch AM, Carmel L, Marino-Ramirez L, Ogurtsov AY, Shabalina SA,
Rogozin IB, Koonin EV. 2007. Widespread positive selection in
synonymous sites of mammalian genes. Mol Biol Evol.
24:1821–1831.

Reymond A, Meroni G, Fantozzi A, et al. (14 co-authors). 2001. The
tripartite motif family identifies cell compartments. EMBO J.
20:2140–2151.

Rogozin IB, Spiridonov AN, Sorokin AV, Wolf YI, Jordan IK,
Tatusov RL, Koonin EV. 2002. Purifying and directional selection
in overlapping prokaryotic genes. Trends Genet. 18:228–232.

Sabeti PCP, Varilly B, Fry J, et al. (264 co-authors). 2007. Genome-
wide detection and characterization of positive selection in
human populations. Nature 449:913–918.

Sawyer SL, Wu LI, Emerman M, Malik HS. 2005. Positive selection of
primate TRIM5alpha identifies a critical species-specific retro-
viral restriction domain. Proc Natl Acad Sci U S A.
102:2832–2837.

Scheffler K, Martin DP, Seoighe C. 2006. Robust inference of positive
selection from recombining coding sequences. Bioinformatics
22:2493–2499.

Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y,
Moore IK, Wang JP, Widom J. 2006. A genomic code for
nucleosome positioning. Nature 442:772–778.

Modeling Layers of Selection · doi:10.1093/molbev/msr162 MBE

3307



Sharp PM, Li WH. 1987. The codon Adaptation Index—a measure of
directional synonymous codon usage bias, and its potential
applications. Nucleic Acids Res. 15:1281–1295.

Tajima F. 1989. Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism. Genetics 123:585–595.

Warnecke T, Batada NN, Hurst LD. 2008. The impact of the
nucleosome code on protein-coding sequence evolution in
yeast. PLoS Genet. 4:e1000250.

Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD,
Tatusova TA, Rapp BA. 2000. Database resources of the National
Center for Biotechnology Information. Nucleic Acids Res. 28:10–14.

Xing Y, Lee C. 2005. Evidence of functional selection pressure for
alternative splicing events that accelerate evolution of protein
subsequences. Proc Natl Acad Sci U S A. 102:13526–13531.

Yang Z. 1994a. Estimating the pattern of nucleotide substitution.
J Mol Evol. 39:105–111.

Yang Z. 1994b. Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate
methods. J Mol Evol. 39:306–314.

Yang Z. 2005. The power of phylogenetic comparison in revealing
protein function. Proc Natl Acad Sci U S A. 102:3179–3180.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood.

Mol Biol Evol. 24:1586–1591.
Yang Z, Nielsen R. 2002. Codon-substitution models for detecting

molecular adaptation at individual sites along specific lineages.

Mol Biol Evol. 19:908–917.
Yang Z, Nielsen R. 2008. Mutation-selection models of codon

substitution and their use to estimate selective strengths on

codon usage. Mol Biol Evol. 25:568–579.
Yang Z, Nielsen R, Goldman N, Pedersen AM. 2000. Codon-

substitution models for heterogeneous selection pressure at

amino acid sites. Genetics 155:431–449.
Yi X, Liang Y, Huerta-Sanchez E, et al. (64 co-authors). 2010.

Sequencing of 50 human exomes reveals adaptation to high

altitude. Science 329:75–78.
Zhou T, Gu W, Wilke CO. 2010. Detecting positive and purifying

selection at synonymous sites in yeast and worm. Mol Biol Evol.

27:1912–1922.
Zhou T, Weems M, Wilke CO. 2009. Translationally optimal codons

associate with structurally sensitive sites in proteins. Mol Biol

Evol. 26:1571–1580.

Rubinstein et al. · doi:10.1093/molbev/msr162 MBE

3308


