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Abstract

The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated

much excitement in recent years owing to its ability to manipulate targeted genes and geno-

mic regions that are complementary to a programmed single guide RNA (sgRNA). However,

the efficacy of a specific sgRNA is not uniquely defined by exact sequence homology to the

target site, thus unintended off-targets might additionally be cleaved. Current methods for

sgRNA design are mainly concerned with predicting off-targets for a given sgRNA using

basic sequence features and employ elementary rules for ranking possible sgRNAs. Here,

we introduce CRISTA (CRISPR Target Assessment), a novel algorithm within the machine

learning framework that determines the propensity of a genomic site to be cleaved by a

given sgRNA. We show that the predictions made with CRISTA are more accurate than

other available methodologies. We further demonstrate that the occurrence of bulges is not

a rare phenomenon and should be accounted for in the prediction process. Beyond predict-

ing cleavage efficiencies, the learning process provides inferences regarding patterns that

underlie the mechanism of action of the CRISPR-Cas9 system. We discover that attributes

that describe the spatial structure and rigidity of the entire genomic site as well as those sur-

rounding the PAM region are a major component of the prediction capabilities.

Author summary

The CRISPR-Cas9 system, a microbial adaptive immune system, was recently exploited

for modulating DNA sequences within the endogenous genome in many organisms. This

system has emerged as a technology of choice for genome editing with promising thera-

peutic and research advancements. However, these exciting developments were not paral-

leled by deep understanding of CRISPR-Cas9 cleavage efficiency. Indeed, while numerous

studies have been conducted in order to define better guidelines to determine CRISPR-
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Cas9 specificity, much ambiguity remains surrounding its mechanism of action. Here, we

present a machine-learning based algorithm that was trained on genome-wide experimen-

tal data. The algorithm considers a broad range of features that describe different attri-

butes that potentially impact the cleavage efficacy of CRISPR-Cas9 including genomic

attributes, RNA thermodynamics, and those concerning sequence similarity. We further

found that incorporating the possibility for DNA or RNA bulges play an important role in

prediction accuracy. Together, these result in a predictive model that can be used both to

predict the cleavage propensity of a new genomic site according to the genomic context,

as well as to learn on the importance of different features on CRISPR-Cas9 efficiency and

selectivity.

Introduction

The Clustered, Regularly InterSpaced, Palindromic Repeats (CRISPR), and its associated pro-

tein 9 (Cas9) constitute a microbial adaptive immune system that was exploited in recent years

for modulating DNA sequences within the endogenous genome in cultured cells and whole

organisms [1–6]. The Cas9 endonuclease is directed by a programmable single guide RNA

(sgRNA) to induce double strand breaks at specific genomic sites [7,8]. Recognition and cleav-

age occur via complementarity of a 20-nt sequence within the sgRNA to a genomic site,

upstream to a Protospacer Adjacent Motif (PAM) at its 3’-end. Early studies demonstrated

that multiple mismatches as well as DNA or RNA bulges can be tolerated [9–15], resulting in

cleavage of unintended genomic sites, termed off-targets. This gave rise to devising key consid-

erations for the design of an optimal sgRNA, namely, an efficient guide with minimal off-target

effect. Such rules asserted that the number of mismatches should not exceed a specified bound,

that mismatches at PAM-proximal positions are more influential than those occurring at

PAM-distal positions, that spatially-dispersed mismatches are better tolerated, and that cleav-

age would not occur at sites that follow PAM sequences other than the canonical NGG (and

occasionally NAG) [9–11,13]. However, early studies were not performed on a genome-wide

scale as they analyzed off-targets that were pre-selected according to sequence similarity. Thus,

such analyses were not designed to detect features outside the scope of pairwise sequence simi-

larity. Subsequently, several experimental methods for unbiased genome-wide profiling of off-

targets were introduced, including those based on integration of oligonucleotides into double

strand breaks detected by sequencing (GUIDE-Seq) [16–18], high-throughput genome-wide

translocation sequencing (HTGTS) [19], direct in situ breaks labelling (BLESS) [20,21], inte-

gration-deficient lentiviral vectors (IDLV) [22], and in-vitro nuclease-digested whole-genome

sequencing (Digenome-seq) [23,24]. These studies demonstrated that CRISPR off-targets can

be located at unexpected sites, such as sites that harbor alternative PAM sequences, sites that

contain a large number of mismatches, and off-targets that were cleaved at higher frequencies

than the intended on-targets. Thus, it is becoming clear that an intricate set of attributes play a

role in CRISPR-Cas9 function.

To date, several computational methods for sgRNA design were developed based on differ-

ent design rules [25–42]. For example, CCTop [25] considers the distance of the mismatch

from the PAM site when evaluating the specificity of candidate sgRNAs, ‘Optimized CRISPR

Design’ [26] incorporates a position-specific mismatch penalty and additionally considers the

spatial distribution of mismatches, and the CFD score [28] penalizes each mismatch according

to its specific substitution type and position. Importantly, while these and other widely-used

methods have been developed based on empirical data, they mostly neglect the genomic
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context surrounding the target sequence and instead focus on predicting off-target effects for a

given sgRNA using basic sequence features [25,29,34,35,43].

Here, we introduce CRISTA, a novel methodology based on the machine learning paradigm

for predicting the cleavage propensity of a genomic site by a given sgRNA. The method

accounts for the possibility of bulges and incorporates a wide range of features encompassing

those that are specific to the genomic content, features that define the thermodynamics of the

sgRNA, and features concerning the pairwise similarity between the sgRNA and the genomic

target. We show that CRISTA achieves a higher predictive accuracy than widely-used alterna-

tives. We further examine our approach using a leave-study-out cross-validation procedure,

thereby demonstrating that the predictive model represents general patterns of the cleavage

machinery across different detection techniques. In addition to its predictive value, our

method suggests additional information on the underlying mechanism of action of the

CRISPR-Cas9 system, including attributes that were previously overlooked.

Methods

Data assembly

The training dataset was assembled from published data obtained using several genome-wide

unbiased methods for CRISPR-Cas9 cleavage sites profiling: GUIDE-Seq, HTGTS, and BLESS

[16,17,19–21]. These datasets are termed hereafter Tsai [16], Kleinstiver [17], Frock [19], Ran

[20], and Slaymaker [21]. The data in these studies are composed of collections of experimen-

tally verified genomic targets throughout the genome, such that each target is denoted with the

frequency of cleavage by a given sgRNA. We note that additional systems for cleavage sites

detection are available, but these are not compatible with our objective to reveal genomic

effects on CRISPR efficacy. For example, Digenome-Seq [23,24] does not provide cleavage fre-

quencies in-vivo; the integrase-defective lentiviral vectors (IDLV) method can be used to detect

off-targets in-vivo, but does not provide their cleavage frequencies [22]. Furthermore, a num-

ber of studies employed targeted sequencing approaches [15,22] to examine the cleavage fre-

quencies of several genomic sites that were pre-selected based on prior deductions, and thus

are lacking the information at the genomic scale. In total, data from five genome-wide studies

were assembled, spanning 33 collections of sgRNAs and their respective targets obtained from

25 unique sgRNAs (S1 and S2 Tables). Combined, these sgRNAs cleaved 872 and 491 genomic

targets across the genome before and after data filtration, respectively (see “Training dataset

assembly” below). We refer to these data as the set of cleaved sites. Notably, the collection of

targets was obtained from multiple methodologies and under different experimental condi-

tions, hence, their reported cleavage efficiencies are not comparable and were thus trans-

formed to a common scale. To this end, for each platform we extracted the set of sgRNAs that

are in common with those from Tsai et al. [16], which is the most inclusive dataset. We then

fitted the cleavage frequencies of the mutual targets of each study and Tsai data using linear

regression. The inferred regression parameters were then used to transform the rest of the data

obtained from the respective study (for more details see S1 Text, S1 and S2 Figs).

Pairwise alignment to account for bulges

In an initial exploratory phase, we observed that the pairings of the sgRNAs and the corre-

sponding genomic sites, as originally reported, occasionally contained an exceedingly large

number of mismatches. For example, 243 out of 872 sites retained five to ten mismatches, 22

of these had cleavage frequencies that were ranked among the highest 25% (S2 Table). This is

in contrast to previous reports that showed that observing more than five mismatches is highly

unlikely [9–11,13]. While these studies mainly concentrated on the number of mismatches,
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more recent evidence suggested that DNA/RNA bulges are also possible [12], and these can be

represented as indel events in the context of sequence alignment. To account for this possibil-

ity and for additional specific characteristics of the CRISPR-Cas9 system, we modified the

Needleman-Wunch pairwise alignment algorithm [44] to include two additional components:

(i) Up to three single gaps are allowed over the whole alignment–a bound that was rarely met

(and was never exceeded) in the set of cleaved sites but was necessary in order to detect poten-

tial off-targets in a computationally efficient manner. (ii) Since three gaps are allowed, each

20nt long genomic target is extended or shortened by up to three nucleotides, and the best

pairwise alignment score over seven independent alignments between the DNA site (of length

17-23nt) to the corresponding sgRNA is selected.

The pairwise alignment is determined by the match, mismatch, and gap parameters, such

that a bulge (i.e., a gap), would be preferred over a mismatch only if the penalty paid for its

insertion is compensated by the matches it induces. To determine the ideal parameters for

pairwise alignment, we repeated the alignment procedure by ranging over different combina-

tions of parameter values. The parameters that resulted in the maximal averaged squared Pear-

son correlation coefficient (r2) between the cleavage intensities and the pairwise-alignment

scores were then selected. In this optimization procedure, targets of exact match were removed

since these always result in the highest possible score and could shift the obtained r2 values.

This procedure was performed either across the whole dataset, as well as for the partial data

used in cross-validation (see below).

A total of 119 targets, as obtained from the original studies, follow a non-NGG PAM (54 in

Tsai data, 31 in Kleinstiver data, 34 in Frock data). Originally, the coordinates of the cleaved

sites were detected by matching sequences to the reference genome while considering mis-

matches only. Thus, for example, if bulges are disregarded, a possible DNA-bulge upstream to

a canonical PAM would be interpreted as a target with a non-canonical PAM. The introduc-

tion of gaps in the alignment allowed us to correct such instances. Hence, we re-evaluated the

position of all non-NGG targets by shifting the PAM genomic coordinates 2-nt downstream

or upstream in search for an NGG PAM or, if one did not exist, an NAG PAM at closest prox-

imity. If none were found, the original PAM was preserved.

A machine learning algorithm for predicting cleavage propensity

We developed CRISTA, a tool for predicting the cleavage propensity of potential genomic tar-

gets given a specified sgRNA. CRISTA is based on learning a regression model using the Ran-

dom Forest algorithm, and further allows the examination of the importance of features that

determine the variation of cleavage efficiency. The development of a machine learning algo-

rithm relies on (i) the assembly of a training dataset that encompasses a range of data inputs,

and (ii) the incorporation of a set of features that can be used to predict cleavage efficiencies.

The utility of the learning framework to distinguish between cleaved and uncleaved sites was

also examined within a classification learning scheme (as opposed to a regression model). As

the results were generally similar, those obtained with the regression model are presented

throughout (see Discussion).

Training dataset assembly. To enhance the learning process, a set of uncleaved sites was

assembled, representing sites that were not cleaved by each sgRNA. Theoretically, excluding

the set of cleaved sites of each sgRNA, the whole genome can be taken to represent the

uncleaved set. Because this set is too broad for meaningful analysis, we included only

uncleaved genomic sites with sufficient sequence complementarity to each sgRNA. To this

end, genomic sites were extracted from the UCSC genome assembly [45] as follows: each

sgRNA from the dataset was aligned to sites that follow NGG or NAG motifs in the genome,
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according to pairwise sequence alignment as described above. Then, sites with an alignment

score greater than 14.75 (as 95% of the cleaved instances, which on average have 16.7 matched

bases) were retained for further analysis. The number of sites in the uncleaved sets varied from

3,000 to 70,000 per sgRNA. We note that this procedure might introduce some noise for tar-

gets in which the reference genome is not identical to the genome of the cell-line used in the

experimental systems.

The combined training dataset was assembled from the experimentally validated cleavage

sites together with the uncleaved sites. The dependent variable was the cleavage efficiencies

reported in each study (following the linear transformation; S1 Text) for the cleaved samples

and zero for the uncleaved samples. Duplicated collections of samples (namely, targets of

sgRNAs that were tested in multiple experiments) were filtered out, while retaining a unique

set, corresponding to the validated targets in Tsai data, as it is the most comprehensive study.

Additionally, since Frock data was found to be incompatible with the rest of the training set

(see Results), this dataset was removed. Notably, the number of samples in the set of uncleaved

sites was much higher than the set of cleaved sites and thus combining these two sets into a sin-

gle training datasets would have resulted in a sharp bias towards the set of uncleaved sites. To

allow the incorporation of a large repertoire of uncleaved samples without biasing towards

them, we under-sampled the majority class and over-sampled the minority class as suggested

by Chawla et al. [46]. Each set of cleaved samples (targets that correspond to a single sgRNA)

was oversampled using bootstrapping, thus introducing a subset twice the size of the original

one, and an equal-sized set of uncleaved samples was randomly chosen. We repeated this pro-

cess and averaged the results over executions of the algorithm on 100 sampled datasets.

Predictive features. We computed a wide range of possible explanatory attributes that

range from features that are specific to the target site (e.g., the type of the PAM sequence,

nucleotide composition and GC content, chromatin structure, CpG islands, gene expression

levels of coding regions), to those that are specific to the sgRNA (e.g., sgRNA secondary struc-

ture), to those concerning the similarity between the sgRNA and the target (e.g., number and

spatial distribution of mismatches and bulges). For a full description of the features and their

extraction procedures, see S3 Table.

Implementation and availability. Given the training dataset and a set of features, we

implemented CRISTA using the RandomForestRegressor, implemented in the python scikit-

learn module [47,48]. The score provided by CRISTA, essentially represents the log number of

sequencing reads identified by GUIDE-seq (divided by the maximal number), which in turn

represents a proxy for the cleavage frequency, as was shown by Tsai et al. [16]. This score is

hereafter referred to as the inferred cleavage propensity. Notably, this score is continuous, and

thus does not provide a binary classification for potentially cleaved and uncleaved sites by a

given sgRNA. Yet, such categorizations could be practically needed by users. The scores pre-

dicted by CRISTA for the observed cleaved sites can be used to set a strict or a lenient thresh-

old. This can be determined according to either the training dataset or the data used for

external validation [15,22]. For example, 95% of the cleaved sites in the cleaved dataset used by

CRISTA obtained a score higher than 0.12, while 50% surpassed the score of 0.4. In the valida-

tion dataset, these thresholds were 0.39 and 0.54 for 95% and 50%, respectively.

The CRISTA algorithm is available for online use at http://crista.tau.ac.il/ and the source

code is available for offline use. The server provides three optional entry points: (1) given a set

of nucleotide targets with the corresponding sgRNAs, CRISTA provides the predicted cleavage

score for each pair. The genomic targets can be given by their extended genomic sequence or

genomic coordinates. (2) Given a specified nucleotide sequence, CRISTA identifies all poten-

tial targets within it (i.e., those followed by ‘NGG’) and ranks these according to the predicted

cleavage score. (3) Given an sgRNA and a specified genome (currently 230 genome assemblies
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are supported encompassing vertebrates, plants, yeast, insects, and deuterostomes [49,50]),

CRISTA detects possible off-targets throughout the genome. As opposed to most currently

available alternatives, the off-targets detected by CRISTA also include DNA/RNA bulges. A

comprehensive detection of off-targets using the pairwise alignment approach described above

is computationally demanding. Thus, the search in the online web server is based on an

approximate search using BWA-ALN [51] with the following parameters: “-N -l 20 -i 0 -n 5 -o

3 -d 3 -k 4 -M 0 -O 1 -E 0”. This identifies all targets with up to four mismatches and/or gaps

in the 20-nt matching region. Increasing this number to five, resulted in exceedingly long run-

ning times.

Assessing algorithm performance

We evaluated the prediction performance of CRISTA using two cross-validation procedures

(Fig 1). We devised a leave-one-sgRNA-out procedure, such that in each iteration the samples

of a single sgRNA were excluded and used as a test set. The algorithm, trained on the rest of

the data, was then used to predict the cleavage probabilities for the test set. Each iteration of

the cross-validation consisted of a preliminary step: the pairwise alignment parameters were

first optimized as previously described using the training set only, and then were used to re-

compute the pairwise alignment features for the training and the test sets. Similarly, we used a

leave-study-out cross-validation strategy such that in each iteration all samples from a single

study were excluded from the training data and used as a test set (note that Tsai data were

divided to two datasets, S1 Text). Whereas the training dataset of CRISTA—which was used in

the leave-one-sgRNA-out procedure and for all reported comparisons—did not include

redundant sgRNAs to avoid overfitting of the model to the data, here we calculated the perfor-

mance scores separately for sgRNAs that were uniquely inspected in one study (termed

‘unique guides’), and sgRNAs that were analyzed in more than one study (termed ‘common

guides’; S1 Table).

Several metrics (squared Pearson correlation coefficient and the area under the Receiver

Operator Characteristics and Precision-Recall curves), were used to evaluate the performance

of CRISTA and to compare it to three widely used alternatives; CCTop [25], the function for

scoring single off-targets used in the online tool ‘Optimized CRISPR Design’ [26] (hereafter

termed OptCD), and the CFD score [52]. The performance evaluation reported throughout

was computed over the original set of cleaved sites for each sgRNA (without bootstrapping as

was performed in the training set), and an equally-sized sample of uncleaved sites (see Results

for the effect of this sample size on the performance evaluation).

Identifying a succinct set of influential features

The Random Forest algorithm computes the relative contribution of the examined features to

the regression model, termed feature importance. When the entire set of features is examined

(S3 Table), some features may receive seemingly low importance values due to the presence of

a correlated feature (e.g., the pairwise alignment score and the number of mismatches). To

learn on the independent importance of the various features, we reduced the number of fea-

tures by applying a forward selection procedure. Features were added iteratively by examining

the performance of the leave-one-sgRNA-out cross-validation procedure for incremental sets

of features. First, we tested which feature provides the highest Pearson r2 when examined inde-

pendently. Then, in each iteration, the feature that increased the r2 the most was adjoined to

the set. This procedure was repeated for 15 iterations. Random Forest was then applied to the

resulting set of features and the relative importance of each feature was extracted.
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Results

Accounting for bulges

The introduction of gaps to the pairwise sequence alignment affected 18% of the targets in

the training dataset, such that 87 of 491 sites contain 1.1 bulges on average (or an average

of 1.23 in 175 out of 872 sites if considering the full dataset; S2 Table). This resulted in r2 =

0.34 (squared Pearson correlation coefficient between the pairwise alignment score and the

observed cleavage frequencies) averaged over the sgRNAs datasets compared to r2 = 0.27 when

gaps are not allowed. The optimized parameter values were 1 for a match, 0 for a mismatch

and -1.25 for a gap (S3 Fig). We note that although mismatches are not explicitly penalized,

matches are still awarded and so longer complementarity is generally preferred. Following this

procedure, the number of mismatches was reduced from an average of 3.64 to 3.36 per target,

such that six mismatches became very rare (S4 Fig). Reconsidering the PAM locations, such

that NGG or NAG PAMs were found, resulted in a shift of 33, 17, and 22 instances (out of 54,

31, and 34 targets with rare PAMs) of Tsai, Kleinsteiver, and Frock data, respectively (S2 and

S4 Tables). Notably, the pairwise similarity score explains merely 34% of the observed variation

among the cleaved sites, which motivated us to integrate additional features in the prediction

process.

A machine learning algorithm for predicting cleavage propensity

We devised CRISTA, a machine learning methodology that is based on the Random Forest

regression model [47,48]. CRISTA was trained on several genome-wide experimental studies

and combines a large set of explanatory features, to compute the cleavage propensity of a DNA

target by an sgRNA. The resulting regression function of CRISTA is composed of a complex

interaction between the incorporated features as represented by a set of decision trees. We

evaluated the prediction performance of CRISTA in a leave-one-sgRNA-out cross-validation

procedure, and compared it to the alternative tools. First, we calculated the squared Pearson

correlation coefficient (r2) between the experimentally observed cleavage frequencies and the

predictions. The scores that were predicted in the cross-validation conformed to the observed

values with an r2 of 0.65. In comparison, OptCD produced an r2 of 0.13, the scores obtained

using CCTop resulted in an r2 of 0.23, while the CFD score correlated best out of the three

commonly-used alternatives with an r2 of 0.52 (Fig 2A–2D, S5 Table). A similar trend regard-

ing the relative performance of the four scoring functions was obtained when Spearman rank

correlation was computed (Spearman rho coefficients for CRISTA, OptCD, CCTop, and the

CFD score were 0.81, 0.66, 0.64, and 0.74 respectively).

Second, the receiver operating characteristic (ROC) curve was used in order to compare the

abilities of the tools to discriminate between experimentally cleaved and uncleaved sites (thus,

for this performance evaluation we treat these as the positive and negative sets, respectively),

as measured by the area under the curve (AUC, values closer to 1.0 represent better predic-

tions). To this end, we used the predicted scores as thresholds to delineate positives and

Fig 1. Schematic flow of the cross-validation procedures. The main components of the learning pipeline

for the leave-one-sgRNA-out and leave-study-out cross-validation procedures are presented. 1 This step was

applied to the leave-one-sgRNA-out procedure only. 2 In each iteration, the samples of a single sgRNA (in the

case of the leave-one-sgRNA-out procedure) or all samples from a single study (in the case of leave-study-

out) were excluded from the training data and used as a test set. The algorithm was trained on the rest of the

data. 3 Each set of cleaved samples (targets that correspond to a single sgRNA) was oversampled using

bootstrapping, thus introducing a subset twice the size of the original one, and an equal-sized set of

uncleaved samples was randomly chosen. 4 For each original set of cleaved samples in the test set (targets

that correspond to a single sgRNA), an equal-sized set of uncleaved samples was randomly chosen.

https://doi.org/10.1371/journal.pcbi.1005807.g001
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Fig 2. Comparison of four prediction algorithms on the assembled dataset. (a-d) Pearson correlation coefficient computed over all the

samples in the dataset. The horizontal axis represents the scaled observed values published in the experimental studies, and the vertical axis

represents the scores predicted by: (a) CRISTA applied using cross-validation (r2 = 0.65), (b) CCTop (r2 = 0.23), (c) OptCD (r2 = 0.13), (d) CFD

score (r2 = 0.52). (e) Receiver Operator Characteristics curves computed over all the samples in the test dataset: CRISTA (AUC = 0.96), CCTop

(AUC = 0.85), OptCD (AUC = 0.85), CFD score (AUC = 0.91). Positives and negatives represent cleaved and uncleaved sites, respectively. True

(and false) positives rate is computed as the true-positives (false-positive) number divided by the number of positives (negatives). (f) Precision-

Recall curves computed over all the samples in the dataset: CRISTA (AUC = 0.96), CCTop (AUC = 0.87), OptCD (AUC = 0.88), CFD score

(AUC = 0.93). Precision is computed as the true-positive number divided by the sum of true-positives and false-positives. Recall is computed as

the true-positives number divided by the positives number. (g) Pearson correlation coefficient computed for each sgRNA: CRISTA (averaged r2 =

0.80, sd = 0.13), CCTop (averaged r2 = 0.46, sd = 0.22), OptCD (averaged r2 = 0.32, sd = 0.28), CFD score (averaged r2 = 0.65, sd = 0.28). (h)

Receiver Operator Characteristics curves computed for each sgRNA: CRISTA (averaged AUC = 0.99, sd = 0.02), CCTop (averaged AUC = 0.86,

sd = 0.13), OptCD (averaged AUC = 0.9, sd = 0.12), CFD score (averaged AUC = 0.9, sd = 0.11). (i) Precision-Recall curves computed for each

sgRNA: CRISTA (averaged AUC = 0.99, sd = 0.02), CCTop (averaged AUC = 0.92, sd = 0.09), OptCD (averaged AUC = 0.93, sd = 0.07), CFD

score (averaged AUC = 0.94, sd = 0.06). Mean values are marked with horizontal lines. The whiskers reach 1.5 times past the first and third

quartiles.

https://doi.org/10.1371/journal.pcbi.1005807.g002
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negatives for the ROC calculation. Using this measure a similar trend was observed regarding

the relative accuracy of the prediction methods (Fig 2E). CRISTA had the highest AUC score

of 0.96 followed by the CFD score (AUC = 0.91), OptCD (AUC = 0.85) and CCTop

(AUC = 0.85). Noticeably, all methods received high AUC scores, but this could be due to the

large number of uncleaved sites that were included in the dataset. Hence, we further compared

the ability to detect and to rank among the positive samples, as measured using the area under

the Precision-Recall curve (PRC-AUC). Similar to the ROC curve, PRC-AUC values closer to

1.0 indicate highly successful predictions. Again, the ability of CRISTA to rank among the

cleaved samples was favorable to the other three methods, with a PRC-AUC of 0.96, compared

to 0.93, 0.88, and 0.87 that were obtained using the CFD score, OptCD, and CCTop, respec-

tively (Fig 2F).

The accuracy measures described above were computed while combining the predicted val-

ues across the whole dataset. Additionally, we tested whether the alternative prediction tools

are consistent, that is, whether or not similar accuracies are obtained across different sgRNAs.

The accuracy of CRISTA was found to be the most persistent across distinct sgRNA datasets,

with an averaged r2 of 0.8 and a standard deviation of sd = 0.13. In comparison, the CFD score,

OptCD, and CCTop obtained averaged r2 values of 0.65 (sd = 0.2), 0.32 (sd = 0.28) and 0.46

(sd = 0.25), respectively (Fig 2G; similar results were obtained when considering the

ROC-AUC and PRC-AUC measures, Fig 2H–2I; averaged Spearman correlation coefficients

were 0.88, 0.77, 0.76, and 0.72, respectively). Notably, while the uncleaved sites are an integral

part of the learning process, as well as for assessing the accuracy of the different tools, the

reported metrics could be biased to those sites with a “0” cleavage frequency. To examine to

what extent the set of uncleaved sites affects the results, the averaged r2 was re-computed while

altering the sample size of this set from 100% to 0% (relative to the size of the set of cleaved

sites). Our results show that reducing the sample size has little impact on the relative success of

the different tools. While the obtained r2 values decrease with lower proportion of uncleaved

sites, the ones achieved by CRISTA are still better than the other alternatives (evidently, the

decline for CRISTA is shallower than that obtained by the CFD score, which is the second-

ranked tool; S6 Table).

Accuracy across different detection techniques

The learning dataset of CRISTA combines data from three experimental methodologies for

genome-wide profiling of CRISPR cleavage sites with some of these applied in multiple experi-

mental settings. Thus, we used a leave-study-out cross-validation procedure to examine whe-

ther the accuracy of CRISTA is dependent on a single platform that dominates the learning

dataset. This allowed us to examine both the compliance of the different methods, and the per-

formance of the predictive model on data that is similar to the training set (the set of common
guides, see Methods, S1 Table) and on new data (unique guides). Our results demonstrated

that, with the exception of the data by Frock et al., the different experimental procedures com-

ply with one another (Fig 3, S7 Table). That is, when each study was used as a test set, without

being included in the training set, the prediction made by CRISTA resulted in r2 higher than

0.8, and ROC-AUC and PRC-AUC values close to 1. In addition, the prediction accuracies of

the common guides did not overwhelmingly exceed those of the unique guides, indicating that

the prediction of cleavage efficiencies was accurate not only when the predictor was trained on

similar sgRNAs as in the test data, but also when it was applied to unfamiliar data. Our analysis

further demonstrated that the datasets obtained with HTGTS for unique sgRNAs are not com-

parable with those obtained with the other platforms. Therefore, Frock data was eliminated

from the training dataset of CRISTA.
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The contribution of the uncleaved sites to the learning procedure

A central component of the learning procedure implemented in CRISTA is the ample amount

of data contained within the set of uncleaved sites as it conceals significant information regard-

ing the features that hinder CRISPR-Cas9 action. Yet, such wealth of information was generally

ignored by previous studies that aimed at devising rules regarding CRISPR-Cas9 specificity. To

examine whether the enhanced accuracy achieved by CRISTA, as compared to other tools,

Fig 3. Accuracy across different studies in a leave-study-out cross-validation. (a) Observed cleavage intensities versus predicted intensities. The

top and bottom rows represent the nuclear targets of the ‘unique guides’ and ‘common guides’, respectively. Pearson r2 values are shown; "overall"

represents the correlation calculated by taking all points, and "mean" is the average correlation calculated for each sgRNA individually. Different colors

represent nuclear targets of different sgRNAs. (b, c) ROC and PRC curves. The ‘unique guides’ and ‘common guides’ of each study are represented by

different curves. AUC values are denoted in the legend. Each column corresponds to a single experimental platform.

https://doi.org/10.1371/journal.pcbi.1005807.g003
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stems from the inclusion of a large set of uncleaved sites, we repeated the leave-one-sgRNA-out

procedure while retaining only the set of cleaved sites in the training set. The accuracy achieved

by this model, referred to as CRISTA+, was substantially lower compared to CRISTA when

trained on the whole dataset (S5 Fig), and is more similar to the one obtained using the CFD

score.

Features importance

Beyond prediction capabilities, the learning process provided the opportunity to systematically

learn the attributes that are most important for Cas9 function. When examining the entire set

of features (S3 Table), three clusters emerged among the top first 25 (Fig 4): (i) features con-

cerning the pairwise similarity between the sgRNA and the DNA site. Besides the pairwise

alignment score, this cluster included the number of mismatches, the number of RNA/DNA

bulges, and the mismatches types (i.e., whether they are transition, transversion, or wobble);

(ii) features concerning the nucleotides content of the 20-nt site and its adjacent genomic

region. These included the GC content, DNA enthalpy (a proxy for the DNA duplex stability

[53]), and several measures that describe the spatial structure of the DNA including the minor

groove width and the bending stiffness [54]; (iii) features concerning the PAM site and the sur-

rounding nucleotides. These included the PAM type (i.e., NGG or NAG) and DNA geometry

scores calculated in and around this region (i.e., NNGGNN if considering the canonical

PAM).

To learn about the features that are most important for prediction, and to reduce the redun-

dancy introduced by correlated features, we obtained a succinct group of 15 elementary fea-

tures using a forward selection process for which the relative importance was extracted (Fig 5,

for the accuracy measurements achieved for the first 30 selected features see S8 Table). As

expected, the pairwise alignment score was selected first and ranked as the most important.

Additional attributes of the pairwise similarity, including the number of mismatches and their

position, and the number of DNA/RNA bulges were also highly ranked. Additionally, a num-

ber of attributes describing the mismatch type (wobble, transversion, purine-purine, and

pyrimidine-pyrimidine transitions) were found as important discriminative features. Particu-

larly, we found that the relative frequency of wobble mismatches significantly increases with

the total number of mismatches (p<0.05; S6 Fig) supporting the notion that wobble mis-

matches are better tolerated by Cas9 [16].

Extending beyond the pairwise similarity, our results revealed that the types of nucleotides

in several positions also affect the sensitivity of CRISPR-Cas9. The selected features indicated

the importance of the nucleotide at the second position upstream to the PAM, as was previ-

ously observed [28]. Additional nucleotides that were indicated to contribute to the prediction

accuracy are the couple of nucleotides at positions 4–5, the site where cleavage occurs, and

those in the first five positions downstream to the PAM (S7 Table). In addition, the results

pointed at the significance of the nucleotide at the 20th position from the PAM site. Previous

studies observed that there is a strong preference for guanine at the 5’-end of the genomic tar-

get [56,57]. However, given that all the sgRNAs in our data contain guanine in the 5’-end, the

importance of the type of nucleotide at this position could well be an artifact of the assembled

dataset.

Among the genomic features that were examined, the presence of the target within DNase I

Hypersensitive sites as well as within an exon (either on the coding strand or on the opposite

one) were selected. These results support previous observations that reported higher tendency

of targets near or around DNase I hypersensitive sites and in coding regions [58–60]. While

both attributes signify an exposed DNA structure, the latter is also biased by the selection of
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on-targets. Interestingly, in addition to a simple categorization of the PAM type (i.e., NGG or

NAG), the continuous measure that describes the width of the minor groove surrounding the

PAM site was selected. Indeed, some DNA-binding proteins tend to interact with either the

minor or major groove of the helix, and it was previously shown that changes in the groove

width may affect their fit and therefore their function [61]. Cas9 crystallography highlighted

that the PAM-interacting domain of Cas9 makes contacts with the major groove of the PAM

duplex [62], and our results suggest that this interaction may be consequently influenced by

the groove width.

An additional feature that corroborates the importance of DNA geometry to Cas9 function

is DNA enthalpy, which describes the binding affinity of the double helix in and around the

genomic site. Our results revealed a symmetric pattern, whereby genomic sites with medium

stability are more susceptible to Cas9 cleavage while sites at the extreme ends of the scale are

significantly less so (p< 0.05 using a permutation test; S7 Fig). This feature, which correlates

with other features concerning the local chromatin shape (Fig 4), is indicated to play an impor-

tant role in predicting Cas9 efficacy. Such geometric features have been previously reported to

affect binding of transcription factors and other DNA-binding proteins due to their contribu-

tion to the local shape of the double-helix [63,64]. To date, however, the contribution of these

aspects to Cas9 affinity has not been explored. We postulate that highly rigid double stranded

DNA (dsDNA) with high enthalpy prevents the Cas9 protein from melting the dsDNA and

Fig 4. Features importance. Clustering of top-ranked features and their relative importance. The nodes sizes represent the feature

importance as calculated by CRISTA. Edges transparencies represent correlation such that strongly correlated features are connected by

darker edges. Yellow and blue edges represent positively and negatively correlated features respectively. Abbreviations: YY- mismatches

of type pyrimidine-pyrimidine; RR–mismatches of type purine-purine; MGW–minor groove width; ‘#’ represents counts (for further expla-

nations of the features, see S3 Table). The graph was produced with Cytoscape [55] using the pairwise correlation for every pair of features

and their importance scores.

https://doi.org/10.1371/journal.pcbi.1005807.g004
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allowing the RNA/DNA duplex to form, while genomic sites with very low enthalpy tend to

coil and block access of the enzyme.

Validation

The learning dataset of CRISTA is based on genome-wide profiling of cleavage intensities of

nuclear sites. Thus, targeted evaluation of nuclear sites that were pre-selected according to

their similarity to a specified sgRNA could not be integrated within the learning dataset since

they would bias the results towards certain features. Yet, those targets could be used as external

validation to examine the performance of CRISTA on data that were not used for its training.

To this end, datasets of targeted sequencing generated from two studies were examined. Cho

et al. [15] analyzed the indel formation of 116 sites by 10 sgRNAs in the human genome using

deep sequencing. Similarly, Wang et al. [22] examined 54 sites for two sgRNAs. Combined,

these data provided 170 samples of on-targets, off-targets, and uncleaved sites (S2 Text). These

datasets differ from the data that were used for the leave-one-sgRNA-out cross-validation pro-

cedure in two ways. First, cleavage sites were not detected in an unbiased manner, thus, cleav-

ages of additional potential sites from the reference genome have not been validated and such

ones could not be included as a set of uncleaved sites. Second, in contrast to the experimental

systems used for our training dataset, the experimental systems used in the studies of Cho et al.

and Wang et al. were not sensitive enough to differentiate among nuclear sites that were

cleaved at low efficiencies [15,22]. Such sites, which were considered as ‘undetermined’ in the

two studies, were marked with zero cleavage intensities for our validation procedure.

Fig 5. Forward selection results. The top plot represents the ROC-AUC, PRC-AUC, r2, and root mean square error (RMSE) following the

addition of every feature from left to right. The bars represent feature importance, i.e., the contribution of every feature to the prediction accuracy as

computed by the Random Forest algorithm. The RMSE is divided by two for visualization.

https://doi.org/10.1371/journal.pcbi.1005807.g005
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Over the sets of 12 sgRNAs and their corresponding targets, CRISTA achieved an averaged

Pearson r2 of 0.68, ROC-AUC of 0.7, and PRC-AUC of 0.72 (S9 Table; accuracy measurements

of the four alternative tools for each dataset are denoted in S8 and S9 Figs). CRISTA, as well as

the other three alternative tools, achieved lower accuracy measurements over the validation

data in comparison to the leave-one-sgRNA-out cross-validation procedure. While CRISTA

performed better than CCTop and the CFD score according to all three metrics, the averaged

Pearson r2 obtained by OptCD (r2 = 0.92) was much higher than those of the other three scor-

ing functions. This could be explained by the dichotomous nature of the OptCD score (see Fig

2, S8 and S9 Figs), which assigns a score of 1.0 to all on-targets and to some sites with a mis-

match in unpenalized position, while assigning scores close to 0.0 to nearly all other targets. In

contrast, the predictions made by CCTop, the CFD score, and CRISTA produce a more con-

tinuous scale. Consequently, assigning the ‘undetermined’ sites with zero cleavage intensities

better matches scoring systems that highly penalize off-targets, like OptCD.

Discussion

CRISTA was developed for the assessment of the cleavage efficacy of a certain genomic target

by a specific sgRNA. This assessment integrates two aspects that have been treated separately

by currently available tools: those that are designed to predict off-target effects, and those that

are aimed at ranking different sgRNAs according to their on-target efficiency. In contrast to

the many computational tools that have been developed for these tasks, CRISTA accounts for

wider genomic-related attributes in addition to sequence considerations. Additionally,

CRISTA considers possible bulges within the DNA site or sgRNA, a concern that was mostly

overlooked to date (but see [31,34]).

Our results suggest that bulges are an integral part of the CRISPR system, as they are pre-

dicted to occur in approximately 20% of the targets in the evaluated dataset. While a large

number of these are targets with low cleavage frequencies, several of them are cleaved at

medium-to-high frequencies. These findings are in contrast to the conclusions of Haeussler

et al. [27], who argued that bulges are rare and occur in targets that are cleaved at negligible

frequencies. This discrepancy could partially be explained if certain combinations of mis-

match-gap penalties are assumed when computing the pairwise alignment. While the relative

importance of mismatches and bulges to Cas9 activity are underexplored, the experimental

results presented by Lin et al. [12], Wang et al. [22], and Ran et al. [20] support our findings

that bulges constitute an important component of the off-target spectrum.

We showed that unbiased genome-wide methods for profiling CRISPR target sites generally

comply with one another. The discrepancy in the results obtained with Frock data can be explained

by the specificities of the HTGTS method [19]. In that study, two alternative approaches were pre-

sented: one using sgRNA-generated double strand breaks at on-targets to capture off-targets, and a

second approach (termed “universal donor bait HTGTS”) uses known breaks of one sgRNA to

capture targets of another. The latter technique was executed on two sgRNAs that were also exam-

ined in other studies, and hence belong to the ‘common guides’ set. For these two sgRNAs the pre-

dictions made by CRISTA using the leave-study-out procedure were similar to the results obtained

for the other studies (Fig 3). In contrast, the sgRNAs that were examined using the first approach

were all unique in our dataset. Our analysis demonstrated that the predictions of CRISTA on data-

sets obtained with this approach were not compatible with the other techniques. Possible explana-

tions to this observation were previously described as bias for sites that are closer in proximity to

the on-target [65,66], and we thus chose to eliminate Frock data from the training dataset of

CRISTA.
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Besides the impact of some known attributes that are important to Cas9 action, namely,

attributes that describe pairwise similarity and the nucleotide composition, our results high-

light the importance of features that are associated with the DNA geometry, such as the DNA

rigidity, double-helix groove width and DNA enthalpy. These attributes are usually used for

predicting genomic elements, such as nucleosome organization and transcription factor bind-

ing sites, or for determining the optimal setting of empirical procedures (e.g., PCR). Here we

found that these features are more influential for predicting CRISPR’s efficacy than measures

that are based only on the DNA occupancy. Our findings suggest that integrating local DNA

geometry and other genomic features could enhance the prediction and ranking of on-targets.

To date, studies that analyzed large datasets of on-targets accounted for position-specific

nucleotide identities to evaluate the cleavage efficacy of CRISPR-Cas9 efficacy, and used these

to form predictive models [28,56,67–71]. We speculate that incorporating genomic features in

the analysis of such data will enhance the ability to rank among on-targets. In addition, we did

not find the features concerning the RNA thermodynamics to contribute much to the predic-

tive model. However, the variance of these features in our dataset is low since they are clearly

uniform for all samples of the same sgRNA. Possibly their importance will be highlighted

when the efficacy of a large number of on-targets is examined.

The CRISTA model described in this study was trained as a regression model, which was

fitted to the (transformed) cleavage efficiencies reported in the experimental studies. One diffi-

culty with this approach is the need to combine results from different experimental platforms

into a single scale (as described in S1 Text)–a procedure which may bias the results. As an

alternative, it is possible to analyze the data within a classification framework. Under such a

setting, the data provided by genome-wide profiling of CRISPR-Cas9 could be interpreted as a

binary outcome (i.e., all cleaved sites regarded as the set of positives while the uncleaved sites

as the negatives). To assess the performance of the learning scheme under these two alterna-

tives (i.e., regression and classification), we implemented a classification model using the

Random Forest classification algorithm (S3 Text). Notably, the results obtained using the

classification model were very similar—although slightly inferior—to those obtained using

the regression model (S10 Fig). This might be expected since the regression model inherently

accounts for the differential cleavage propensities among the cleaved sites, whereas the classifi-

cation approach largely overlooks the complexity present in the experimental data. While it is

possible to set a strict threshold on the cleavage propensities above which sites are considered

as positives (in contrast to sites that were cleaved at low frequencies and might as well be con-

sidered as noise), this setting imposes the difficulty regarding the exact value of the threshold

that should be chosen, and raises the question whether such a discretization process extracts

the maximum amount of information from the experimental data.

CRISTA was implemented using currently available data, which included published

genome-wide profiling of off-targets by CRISPR-Cas9 (the learning dataset) and available pre-

dictive tools for feature extraction. The future development of CRISTA would benefit both

from the further accumulation of genome-wide profiling of CRISPR-Cas9, as well as from

additional features. In turn, an important benefit of CRISTA’s prediction framework is the

ability to examine the contribution of various attributes. This use of CRISTA as a platform for

hypothesis testing only entails that genome-wide assessment of the examined feature could be

provided. A feature that is important for CRISPR-Cas9 mechanism of action would either be

highly ranked, or ultimately increase the prediction accuracy.

Genome engineering techniques have evolved rapidly since CRISPR-Cas9 first emerged,

introducing alternative endonucleases for manipulating the genome. For example, manipula-

tion of the active domains of the Cas9 enzymes to generate a single-strand break (Cas9-nick-

ase; Cas9n [72,73]) requires targeting of two sites at opposing strands at once, thus yielding a
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complex with enhanced specificity. Structural biology has been employed to generate Cas9 var-

iants by altering residuals that were identified to mediate the ability of Cas9 to cleave off-target

sites, generating eSpCas9 (enhanced SpCas9 [21]) and SpCas9-HF1 (high fidelity SpCas9

[17]). In addition, SpCas9 homologs or other CRISPR endonucleases that differ in their PAM

requirements, packaging size, and manner of action, including the Staphylococcus aureus

Cas9 (SaCas9 [20]) and the class 2 CRISPR endonuclease, Cpf1 [74], were recently detected,

and shown to reduce off-target effect. Nevertheless, Cas9 is still in wide use and protocols that

rely on the use of the wild-type SpCas9 for genome engineering, therapeutics, and reverse-

genetics have yet to be developed for its alternatives [75–77]. Notably, the learning scheme pre-

sented here is not reliant on any specific experimental system, granted this system is not biased

towards specific regions of the genome. Thus, future genome-wide experiments can be easily

integrated into the learning dataset, including those obtained with Cas9 variants and its ortho-

logs, consequently revealing enzyme-unique characteristics. Taken together, while CRISTA

was developed as an inferential tool, such a framework can be further employed to deepen our

understanding and to shed light on future research of the CRISPR system.
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S1 Fig. Normal distribution of the residuals following a log transformation. Q-Q plot of

the genome-wide studies data before and after log transformation (left and right columns),

binned to the number of reads reported in: (a) Tsai et al. [16] in U2OS cells, (b) Tsai et al. [16]

in HEK293 cell, (c) Slaymaker et al. [21] and Ran et al. [20], (d) Frock et al. [19], and (e) Klein-

steiver et al. [17]. The plots demonstrate that the data distribute similar to a normal distribu-

tion after the log transformation.

(PNG)

S2 Fig. Cleavage frequencies of the various genome-wide studies compared to GUIDE-Seq.

(a) Samples frequencies binned to the number of reads reported in Tsai et al. [16] in U2OS

(blue) and HEK293 (green) cell-lines before and after data transformation (left and right). The

vertical solid and dashed lines represent the mean number of reads in U2OS and HEK293

cells, respectively. (b-d) comparison of the number of reads reported in Slaymaker et al. [21],

Frock et al. [19], and Kleinsteiver et al. [17] to the number of reads reported in Tsai et al. [16]

filtered to samples that were found in both. The left column represents the original reported

values, whereas the right column represents the transformed values. Pearson r2 values for each

complete set and the mean over the different sgRNAs sets are denoted in the bottom-right cor-

ners.

(PNG)

S3 Fig. Optimization of pairwise alignment parameters. The colors represent averaged Pear-

son r2 across the sgRNAs between the pairwise alignment score and the samples cleavage fre-

quencies. For each cell, the optimal pairwise alignment is computed using a match score of 1.0,

and the corresponding mismatch and gap penalties.

(PNG)
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S4 Fig. The effect of allowing for bulges on the number of mismatches. The distribution of

the number of mismatches before (blue) and after (light green) allowing for DNA/RNA bulges

in the off-targets included in the evaluated positive dataset. The vertical dashed and solid lines

represent the mean number of mismatches before and after the alignment, at 3.36 and 3.64,

respectively.

(PNG)

S5 Fig. CRISTA+. The performance of CRISTA+ (CRISTA trained on positive samples only)

on the positive and negative samples in comparison to the three widely used alternatives. (a)

Pearson r2 correlation results in 0.33. (b) Pearson r2 correlation averaged over all the sgRNAs

subsets results in 0.63 as opposed to 0.80 received originally. (c-d) The averaged ROC and

PRC -AUC values are 0.92 and 0.93 respectively.

(PNG)

S6 Fig. The distribution of different types of mismatches as a function of the number of

mismatches in the targets of the training dataset. The horizontal axis represents targets with

the respective number of mismatches. The vertical axis represents the proportion of mis-

matches that belong to each type of mismatch (wobble, transversion, transitions of purine-

purine, or pyrimidine-pyrimidine) out of the total number of mismatches in the respective

group. The impact of wobble substitutions on the cleavage proportion was significantly vali-

dated with a chi-square contingency table test, where wobble counts for every bin of mis-

matches was tested against non-wobble counts (p-value = 0.004).

(PNG)

S7 Fig. Effect of the DNA enthalpy on cleavage. Observed cleavage frequency values as a

function of DNA enthalpy calculated by the Nearest-Neighbors method [53]. The DNA

enthalpy presented here was computed for a 223-nt stretched sequence that includes the 23-nt

target, 100 nucleotides downstream, and 100 nucleotides upstream. The two vertical lines rep-

resent the 5th and 95th percentiles. The cleavage intensities of nuclear sites with extremely high

or low DNA enthalpy were found to be significantly lower than those with medium values

(within the 5–95 percentiles), as observed using a permutation test (p-value = 0.021). In this

test the DNA enthalpy values were fixed, while the cleavage frequencies were shuffled among

the samples of the training set. This procedure was repeated 1000 times. In each iteration, the

average cleavage frequency of the samples at the two extreme ends was recorded. The p-value

represents the proportion of iterations in which the shuffled average values were lower than

the original average.

(PNG)

S8 Fig. Accuracy measurements on external datasets. Comparison of the performance of the

four computational tools on external data by Cho et al. [15]. Averaged r2, ROC-AUC,

PRC-AUC, and Spearman rho coefficient across the sgRNAs are denoted in parenthesis for:

(a) CRISTA (0.72, 0.68, 0.72, 0.42), (b) CCTop (0.48, 0.62, 0.67, 0.32), (c) OptCD (0.96, 0.66,

0.7, 0.39), and (d) the CFD score (0.69, 0.65, 0.7, 0.37).

(PNG)

S9 Fig. Accuracy measurements on external datasets. Comparison of the performance of the

four computational tools on external data by Wang et al. [22]. Averaged r2, ROC-AUC,

PRC-AUC, and Spearman rho coefficient across the sgRNAs are denoted in parenthesis for:

(a) CRISTA (0.51, 0.81, 0.73, 0.42), (b) CCTop (0.11, 0.77, 0.68, 0.32), (c) OptCD (0.7, 0.81,
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0.82, 0.38), and (d) the CFD score (0.37, 0.82, 0.66, 0.44).

(PNG)

S10 Fig. Regression versus classification. Comparison of the ROC and PRC curves for the

regression and classification models over the assembled dataset. (a) Receiver Operator Charac-

teristics computed over all the samples in the dataset: regression (AUC = 0.96), classification

(AUC = 0.95). True positives rate is computed as the true-positives number divided by the

number of positives. False-positive rate is computed as the false-positives number divided

by the number of negatives. Positives and negatives represent cleaved and uncleaved sites,

respectively, in these computations. (b) Precision-Recall curves computed over all the samples

in the dataset: regression (AUC = 0.96), classification (AUC = 0.95). Precision is computed

as the true-positive number divided by the sum of true-positives and false-positives. Recall

is computed as the true-positives number divided by the positives number. (c) Receiver Opera-

tor Characteristics curves computed for each sgRNA: regression (averaged AUC = 0.99,

sd = 0.02), classification (averaged AUC = 0.98, sd = 0.03). (d) Precision-Recall curves com-

puted for each sgRNA: regression (averaged AUC = 0.99, sd = 0.02), classification (averaged

AUC = 0.98, sd = 0.03). Mean values are marked with horizontal lines. The whiskers reach 1.5

times past the first and third quartiles.

(PNG)

S1 Table. Complete set of sgRNAs used in the training dataset, and the genome-wide stud-

ies in which they were profiled.

(DOCX)

S2 Table. Complete set of samples in dataset before and after pairwise alignment and cor-

rection of PAM. The denoted samples compose the complete data before filtration.

(XLSX)

S3 Table. Complete set of features used in the learning processes. Features marked with an

asterisk were selected first in the Forward Addition procedure (see main text). Features

marked with a minus symbol were excluded from the Forward Addition procedure to reduce

noise. To calculate features concerning the flanking regions of the target site, e.g., enthalpy,

GC content, etc., nucleotide sequences were extracted from the reference genome hg19, using

the coordinates provided in the referenced studies [16,17,19–21].

(DOCX)

S4 Table. Summary of samples for which the PAM was corrected. Number of targets in each

study for which NGG or NAG PAMs were found following the pairwise alignment.

(DOCX)

S5 Table. Leave-one-sgRNA-out procedure: Features and predicted scores for the training

dataset. All samples in the training dataset (including the negative samples) with detailed fea-

tures, corrected observed frequencies, CRISTA predictions in the leave-one-sgRNA-out proce-

dure, and CCTop, OptCD, and CFD scores.

(CSV)

S6 Table. Averaged Pearson r2 values for reduced sizes of the set of uncleaved sites. The

averaged Pearson r2 was re-computed while altering the sample size of this set from 100% to

0% (relative to the size of the set of the cleaved sites).

(DOCX)

S7 Table. Leave-study-out procedure: Features and predicted scores for the training data-

set. All samples in the training dataset (including the negative samples) with detailed features,
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corrected observed frequencies, and CRISTA predictions in the leave-study-out procedure.

(CSV)

S8 Table. The top 30 selected features in the forward selection procedure. The order of fea-

tures indicates the selection order. The accuracy measurements (RMSE, Pearson r2, ROC

AUC, and PRC AUC) in each row are computed over the model when trained on the incre-

mental set of features that were selected until that point.

(DOCX)

S9 Table. Validation dataset: Features and predicted scores. All samples in the validation

dataset with detailed features, corrected observed frequencies, CRISTA predictions, and

CCTop, OptCD, and CFD scores.

(CSV)
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