
TECHNIQUES FOR FORMAL TRANSFORMATIONS OF
BINARY DECISION DIAGRAMS1

G. Kolotov, I. Levin, V. Ostrovsky

School of Engineering, Tel-Aviv University
School of Engineering, Bar-Ilan University

1 This research was supported by BSF under grant No. 2000154.

ABSTRACT

Binary Decision Diagrams (BDDs), when used for
representation of discrete functions, permit the direct
technology mapping into multi-level logic networks.
Complexity of a network derived from a BDD is expressed
by its number of non-terminal nodes.
This paper discusses the problem of reducing the BDDs.
The paper has two main contributions: a) bounds of
potential complexity of the BDD have been determined
and proven; b) a formal technique is presented for
simplification of Boolean operations on a set of BDDs.

1. INTRODUCTION

The BDD is a graphic form of depicting the Shannon’s
expansion of a logic function. The concept of BDDs was first
proposed by Lee [5] in 1959. It was then developed into a
useful data structure by Akers [1] and subsequently by
Bryant [3], who introduced a concept of reduced, ordered
BDDs (ROBDDs), along with a set of efficient operators
for their manipulation, and proved the canonicity property
of ROBDDs. H.R. Andersen in his work [2] shows how to
implement the BDD on a computer. Below, we summarize
the most important points of their work.
Our paper deals with reducing the BDD size of a given
function by splitting it into its linear and non-linear parts.
The linear part of the function comprises the linear
members of a Reed-Muller polynomial of the function. The
linear part is defined by a linear transformation over the
input variables while the non-linear part is an
implementation of the rest of the function [4]. When
viewed as a black box, the two parts comprise the original
function. It is our task to choose the linear transformation
in such a way that the complete implementation will be
smaller in size than the original (smallest of all possible
implementation, if at all possible).
Most of known algorithms that allow choosing the linear
transformation result in permutation of the input variables.
In some cases this provides suitable results. In other cases

the results are far from optimal. The method used in our
work is based on using the autocorrelation function [4] as a
criterion for optimization of the transformation.
Our work concerns reducing the size of the BDDs.
Needless to say, an ability to perform the required
transformations upon the diagram itself is one of the
central issues. In this paper we show a technique for formal
transformation on the set of BDD. The proposed technique
can be considered a first step on the way of creating an
algebra of BDDs.
Another significant issue of our paper is the upper bound
of the BDD size. We estimate the upper bound and a
constructive way to build “the worst case” BDD.
The paper is organized as follows. Definitions are
presented in section 2. Estimation of the upper bound of
the BDD complexity is presented in section 3. Section 4 is
dedicated to a formal technique for manipulation on the set
of BDDs. Conclusions are presented in section 5.

2. DEFINITIONS

2.1. Properties of a BDD
The following properties determine the BDD of any
function.

– Each node is defined by its variable and
the two edges: T-edge that is followed
when the value of the variable is 1 and
F-edge that is followed otherwise.

– There are no redundant nodes: the T-
edge and the F-edge should point to
different nodes.

– All edges go strictly “downwards” in the
given ordering of the variables.

– All nodes are unique.

As follows immediately from the above properties, the
diagram is unique once the ordering of the variables has
been determined. The ordering of the variables may
significantly affect the size of the diagram, since the
importance of the variables in the function and the impact

5110-7803-8715-5/04/$20.00 ©2004 IEEE.

on choosing their values is not uniform. Figure 1 shows an
example of a BDD.

2.2. Data Structure for BDD Representation
The simplest way of computer representation a BDD is in
an array of structures. Each structure hold s the data of one
node: the variable in Shannon’s expansion, the index in the
array where the T-edge points and the index where the F-
edge points.
As usual, it is possible to speed up the operations by
expending some memory. Some of the algorithms require
the list of all nodes associated with a given variable. If
prepared in advance (during the building of the diagram)
such lists improve the running time of the algorithms.

3. THE MAXIMAL SIZE OF BDD

In what follows, we find the upper bound on the size of a
BDD of any function of N variables. As we will show, this
is, in fact, not a bound but a reachable maximal size.

3.1. The Upper Bound of a BDD Size
The maximal size of the BDD is the sum over the maximal
sizes of its rows. The maximal number of nodes in the row
for XK, with 0 K<N is:

222 22,min
1kNkN

k

ka

The maximal number max of nodes in a BDD with N

variables is, therefore:

1

0
222 22 1

N

K

K KNKN

,minmax

To understand the meaning of this expression, take a look
at Figure 2. It shows the fall of the ratio between the
maximal BDD size and that of a Truth Table of the same
function.

3.2. The Proof by Construction

We will prove the above expression by constructing a
BDD of the maximal possible size.

The number of nodes in each row of the BDD is limited by
the two following values. The first is the total number of
the nodes above it, because only they can point to the
nodes in the current row. The second is the total number of
the nodes below it, because the nodes in the current row
can only point to them.
Since there are only two leaf nodes (0 and 1), the BDD is
limited by a diamond-like shape. One point is root and the
other (albeit cut off) the two leaves.
As the diagram grows from above, we try to create the
largest possible number of nodes in each row. The row of
X0 can only hold 1 node. The row of X1 can hold up to 2
nodes; that of X2 up to 4 nodes; et cetera. The row of XK

can hold up to 2K nodes, and will hold less if at least one
node of the row of XK-1 will point to nodes in the rows
below XK.
Since there are only two leaf nodes, there can be only two
nodes for XN-1 – the one pointing to 1 with T-edge and to 0
with F-edge, the other its exact opposite.
The maximal number of nodes for XN-2 is 12. To realize
this, take a look at the definition of the BDD. Each node is
uniquely identified by its variable (XN-2) and the nodes it
points to. Each node has two edges. There are 4 nodes
below the XN-2 row. This means that there are exactly 12
distinct possibilities to create a node.
Recursively, each node of the current row must have a
unique combination of 2 different values, each in the range
[0,), where is the number of nodes below the current
row. In other words, if CK is the number of nodes in Kth

row (this time, K is counted from below), and SK is the

N 1 4 5 8 10 12 15
BDD 1 9 17 77 269 765 4349
TT 2 16 32 256 1024 4096 32768
% 50 56 53 30 26 19 13

Figure 2. The upper bound on the BDD size as a function of the
number of variables, relative to the size of the Truth Table.

0

5

10

15

15 25 35 45 55 65 75 85 95

Number of Variables

B
D

D
to

T
T

R
at

io
[%

]

Figure 1: BDD of a 3-variable function: ZXYXZY,X,F

512

sum of all rows up to Kth, we arrive at the following
recursive formula:

kkkkk

k

i
kk

ssssc

cNk

2
1

0

1

s21],,[

This recursion, when solved, yields:

22K

ks , 122 22 KK

kc

By shifting the index (so that it runs from 0), reversing it
(so that 0 corresponds to the root row) and summing over
the rows, we obtain the desired result.
All that remains now is to understand what happens at the
row where the switch in the minimum occurs. That is to
say, the BDD grows from above and shrinks towards the
leaves, so there should be a row somewhere where the
expression that determines the minimum is switched.
Let’s look at an example of N=6 variables. There is 1 root
node (level 0), 2 at level 1, 4 at level 2 and, finally, 8 at
level 3. If we were building a Binary Decision Tree instead
of a diagram, level 4 would have held 16 nodes. However,
because we are limited by the requirement of the
uniqueness of BDD nodes, this is where the switch occurs.
Level 5 has 2 nodes and therefore level 4 can only have 12
nodes, not 16. Counted altogether, we have a BDD with 29
non-terminal nodes.
The last question to answer is this: is it possible to have a
row with 2K nodes and a row below it with much less than
2K+1 nodes? The answer is, of course, that it is and the
construction holds. The reasoning is simple: if the row
K+1 is the switch-row, the number of nodes in it and
below it is SK+1, which allows us to have much more nodes
than required in the row K.
Figure 3 shows an example of a full-BDD function.

4. OPERATION ON BDDS

Just as the case is with Boolean functions, it is possible to
combine any two BDDs with any kind of a binary, Boolean
operator. The procedure can also be expanded to combine
any number of BDDs. As shown by H.R. Andersen [2],
this requires the number of operations proportional to the
product of the sizes of the BDDs involved. This is clearly
dual to combining the analytical (SOP) expressions, where
the complexity is proportional to the product of the
numbers of terms.
In 4.1 we give examples of operations that are significantly
simplified by the BDDs. In 4.2 and 4.3 we show some
special cases for which the complexity of the combining
can be drastically reduced.

4.1. Negation of a Function and of a Variable

To negate a function, one only has to swap between its 0
and 1 leaves. In practice, this means going over the nodes
list and set every 0-pointing edge to 1, and every 1-
pointing edge to 0.
To negate a variable, one has to swap between the T-edge
and the F-edge of all its nodes.
A BDD can be implemented using logical gates. The most
conventional way to do so is to use multiplexers. When
testing a digital circuit, the engineer is required to generate
faults and analyze the results. These faults can be easily
tested with a BDD.
To produce the most standard of these faults - a ‘stuck at
0’ (or ‘stuck at 1’) – we replace the required node with
either its T-Edge or its F-Edge.
Needless to say, the complexity of all the operations
described until now is linear in the size of the input BDD,
and can be further reduced if the lists of the per-variable
nodes are kept (see 2.2).

4.2. Product and Sum of Disjoint BDDs

We call two Boolean functions (and their BDDs) “disjoint”
when they have no common input variables. To combine
them using a binary operator, such as AND, OR, XOR etc.,
one has to work with the Boolean representation of the
operator (Truth Table, BDD, etc.) and replace the
appropriate terminal nodes of one BDD with a copy of
another (or with its negation).
For example, to create a BDD of product of the two input
BDDs, one has to locate all 1-pointing edges of the first
and change them so that they point to the root of the
second.
The complexity of this operation is, of course, linear in the
sum of the sizes of the input BDDs.
In order for the resulting BDD to be optimal (minimal
number of nodes), one has to follow two simple rules.
First, choose the ordering of the input BDDs so that the

Figure 3. Function of 4 variables with maximal-size BDD.

513

larger (or its negation) is not used twice. Second, do not
separate or mix the two sets of the input variables. The
function’s value cannot be determined until we exhaust all
its BDD nodes. Thus, keeping them separate may result in
increasing the size of the resulting BDD, and certainly will
not decrease it.
This operation can be expanded to a set of disjoint
functions, but creating an optimal BDD of the result is
trickier and depends on the combining function.

4.3. Product and Sum of two XOR BDDs
We call a BDD of the parity-check function a XOR BDD.
An example is given in Figure 4 below. When combining
two such functions with an AND or an OR operator, the
complexity is reduced to the sum of the BDD sizes, even if
their input sets are not disjoint.

Suppose we want to compute F(S1)F(S2), where F is a
XOR of all the variables in the input set, and S1 and S2 are
two sets of variables. Let’s denote C the set of the
variables common to S1 and S2, R1 the remainder of S1

when all the common variables are removed and R2 the
same for S2. It is easy to show that the result can be
calculated as follows:

212121 RFRFCFRFRFCFSFSF

Therefore, it is immediately obvious that the BDD of the
result can be created from the BDDs of the parts. In order
to create the BDD of minimal possible size, one has to
follow the rules of 4.3.
The number of nodes in the resultant BDD is equal to the
number of nodes in the BDD of the largest set, plus twice
the number of nodes in the other sets. In the example of the
Figure 5: |S1|=|S2|=4. The number of operations in a
straightforward application of the AND operator would be
proportional to (2*4–1)2=49. However, since |C|=3,
|R1|=|R2|=1, the number of operations in our construction is
proportional to (2*3–1)+1*2*2=9.
Finally, we note that if any of the sets is empty (one set of
variables is included in the other, or disjoint sets), we can

further simplify the construction by substituting 0 instead
of the XOR of this set.

5. SUMMARY

In this paper, we have presented a novel technique of
formal transformation of Boolean operations on the set of
BDDs. This technique allows improving the linear
transformation of input variables of the function to be
implemented.
We also estimate the upper bound of the size of a BDD
and show a way of constructing the BDD having the
maximum size.
The first of the above-mentioned results opens a way for
developing an algebra of BDDs, while the second result
helps to estimate a potential complexity of a BDD without
performing any optimization procedure.

6. REFERENCES

[1] S. B. Akers, “Functional testing with binary decision
diagrams,” in: Eighth Annual Conf. Fault-Tolerant Computing,
1978, pp.75–82.

[2] Henrik Reif Andersen. “An Introduction to Binary Decision
Diagrams", Lecture notes for 49285 Advanced Algorithms E97,
October 1997. Department of Information Technology, Technical
University of Denmark.

[3] R. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Trans. Computers, vol. 35, pp.677–691,
Aug.1986.

[4] M. Karpovsky, R. Stankovic, J. Astola, “Reduction of Sizes
of Decision Diagrams by Autocorrelation Functions”, IEEE
TRANSACTIONS ON COMPUTERS,VOL.52, NO.5, MAY 2003.

[5] C.Y. Lee, “Representation of switching circuits by binary
decision programs,” Bell System Techn .J. vol. 38, no.4, pp.985–
999, June 1959.

Figure 4: BDD of a 3-variable XOR function.

Figure 5: Correctly assembled BDD of a product of
two XOR BDDs. S1={X, Y, Z, V} and S2={X, Y, V,T}

514

	MAIN MENU
	Front Matter
	Table of Contents
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

