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Abstract 

This paper explores how hybrid modeling may be combined with the system dynamics 
methodology in order to serve didactical and communicative goals. It describes the 
architecture of hybrid models and argues for its compatibility with the system 
dynamics outlook. The paper specifies cases suitable for hybrid modeling and 
presents examples to demonstrate its pedagogical value. 

  

1. Introduction  

In recent years the engineering community has given growing attention to models 

of hybrid systems in which continuous and discrete variables coexist. Several works 

have proposed a conceptual framework for such systems  (Asarin et. al, 2000; Maler, 

2001; Gupta et.al, 1998), while others studied specific models (Breedveld, 1999; 

Mosterman & Biswas, 2000).   This interest is due to the suitability of hybrid models 

to describe sophisticated control systems, in particular, computer-embedded systems. 

Hybrid system theory connects two models of change, one described by continuous 

differential equations and the other by discrete logical transitions. Traditionally,

differential equations have been used to describe “real time” behavior of natural 

processes (Lebinaz et al., 1997). Discrete transitions, widely applied in computer 

science, have been used to depict the “logical-time” behavior of automatic machines 

(Maler, 2003). Mixed systems have usually been reduced to “pure” forms, either 

continuous or discrete (Branicky, 1995). 

The segregation between the continuous and the discrete modes of dynamics 

dominated the social sciences as well. It is a major point of dispute between the 

cybernetic and servomechanistic threads (Richardson, 1991).  The cybernetic thread 

explored the social world on the level of messages and events, while the 

servomechanistic thread moved “one step back from events” to view a smoother 

picture of social change (Forrester, 1961). Following the hybrid approach, our 



research explores how the two threads might complement rather than contradict one 

another.   

Our motivation is to enrich system dynamics (SD) education and suggest new ways of 

interaction with SD models.  This is important because SD addresses a wide range of 

audiences with diverse backgrounds, from elementary school children through 

university graduate students to senior management staff.  Research has shown that 

system-thinking skills are scarce even among elite students  (Sweeney & Sterman, 

2000; Sterman & Sweeney, 2002; Ossimitz, 2002).  In particular, stock-flow 

reasoning, which is a basic building block of continuous systems, is far from intuitive.  

Attempts to resolve this difficulty by using qualitative causal diagrams were found 

problematic (Richardson, 1986, 1997).  We believe hybrid models are a reasonable 

approximation to continuous models but are easier to comprehend. Thus, they offer 

system dynamics educators a “good tradeoff between real-world relevance and model 

complexity” (Maler, 2001).   

The paper is organized as follows: First the hybrid architecture is introduced, and then 

an argument for its compatibility with the system dynamics methodology is given. 

The last section classifies hybrid models along pragmatic criteria and presents 

examples for their use.  

 

2. The Architecture of Hybrid Systems  

The hybrid system consists of a two-level control structure (Figure 1). On the low 

level, differential equations modeled as stock-flow diagrams form a continuous 

system. On the high level, logical functions, modeled as a finite state machine (FSM), 

constitute the discrete part  (Levin & Levin, 2002). The two levels are connected 

through a two-way channel of communication:  a binary vector of information (x1..xL ) 

is sent from the continuous to the discrete part, and a binary vector of instructions 
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Figure 1. A general structure of a hybrid system  



(y1..y N  ) is sent in  the opposite direction.  

FSM is a fundamental model in computer science (Hillis, 1998). It consists of a 

memory element, stored as the state of the machine, and Boolean functions expressing 

the transition rules between states.  In the hybrid architecture, transitions are based on 

the computations of the input vector received from the continuous system. In turn, the 

FSM sends instructions to switch between modes of the continuous system, a mode 

being a distinct continuous dynamic law (Asarin et. al, 2000). Thus the overall 

behavior is that of discrete transitions between continuous modes.  

3. Compatibility with System Dynamics 

The canonical texts of SD discourage the use of discrete variables. Though Forrester 

(1961) stated that   discreteness is not in principle incompatible with system 

dynamics, it is considered a bad modeling habit.  There are several reasons for this 

attitude.  

First, discrete variables are not compatible with the continuous nature of social reality 

(Forrester, 1961; Sterman, 2000). System dynamics views social phenomena as an 

aggregation of particular events, messages and decisions into gradual modification 

represented by continuous flows.  Second, continuous dynamics is considered easier 

to comprehend than discrete dynamics (Forrester, 1961).  Sterman (2000) explicitly 

states that “conditional statements such as IF..THEN..ELSE are more difficult to 

understand, especially when conditions are complex or nested with others”. Third, 

many model builders, especially those with a strong computer science background, 

tend to overstress the discontinuities of real situations (Forrester, 1961). To eliminate 

this bias a correction emphasizing continuity is required. 

The objections to the hybrid approach are not unique to the system dynamicists. Other 

practitioners of the control community consider logical elements as “second class 

citizens” in a realm ruled by elegant smooth algebraic functions (Asarin et al., 2001). 

The way the objections are met in the engineering domain is relevant to SD as well.   

 To begin with, the hybrid approach generally agrees with the continuous account of 

dynamics: the discrete jumps are between continuous modes of change. Nevertheless, 

it refuses to accept continuousness as an ontological dogma, and applies pragmatic 

criteria for employing discrete variables. It hereby follows the steps of the rational-

critical school in the philosophy of science, who argued that the success of the 18th 



century’s continuous paradigm of natural science need not imply a dogmatic 

acceptance of calculus as the only modeling language (Bunge, 1974).  

On the psychological level, intuition contradicts the assumption that continuity is 

easier to comprehend. On the contrary, we hypothesize that when using appropriate 

notation, like that of a FSM, discrete dynamic will prevail in assisting understanding. 

For instance, we predict that given a continuous process, a discrete control mechanism 

described by FSM will be more communicative and easy to learn than its (somehow) 

equivalent stock-flow controller. We are developing research tools to examine this 

hypothesis.   

As to the methodological issue, hybrid models force a dual perspective of chance.  

Rather than encouraging fixation of bias, it educates to view change from diverse 

paradigms. The question, therefore, is not whether to use hybrid modeling but when.  

 

4. Difference from traditional SD models 

To some SD practit ioners, the hybrid approach may not seem novel.  It may look like 

merely a new name for traditional models combining stock-flow structures with 

logical statements. Indeed, FSM is equivalent to IF..THEN..ELSE statements, in a 

sense that each any FSM may be translated to an IF statement and vice versa. They 

represent the same mathematical model using different notations. Nevertheless, when 

considered as tools for assisting thought, the difference between the notations is 

significant.   

First, FSM notation is more suitable for describing complex cases of logical 

computation. Compare the simple 2-states FSM described in Figure 2 to the 4-states  

FSM in Figure 5. The first may be easily translated to IF structure, while the second 

leads to an unfriendly nested structure.   The ability to handle complexity is one of the 

reasons that the engineering community commonly uses the FSM notation to describe 

systems with logical control-dominated-architecture.  

Furthermore, the FSM notation represents a declarative mode of thinking as opposed 

to the procedural nature of IF statements. The first emphasizes thinking about rules, 

while the second presents an algorithm for action.  Part of our research tries to reveal 

cases in which students prefer to use declarative to procedural notations. The design 



of SD models may be among these cases, given the declarative characteristics of 

stock-flow maps.  

5.  Pragmatic Classification of Hybrid Systems  

We present a pragmatic classification of hybrid models from a pedagogical 

perspective.  So far we identified the advantages of using hybrid models in the 

following contexts:  

1. Presenting simple oscillating behavior   

2. Describing behavior of multivariable dependence  

3. Directing focus on events  

4. Designing meaningful mode of interaction with models.  

Below we describe each case and provide examples. The examples are not of running 

models, since the SD modeling tools do not support elegant notation for FSM design.  

Yet the graphs below describe authentic behavior of the models, based   on a 

technique for constructing FSMs in STELLA detailed elsewhere (Levin & Levin, 

2002).  

5.1 Presenting Simple Oscillation  

First-order continuous systems cannot oscillate (Sterman, 2000). Therefore to present 

oscillation, the construction of a second-order system (or more) is required.  

Alternatively, we may include discrete variables in a first-order system and launch a 

new time scale to create delay and therefore oscillation.  Thus, hybrid models offer a 

simple perspective on the phenomena of oscillation, especially for audiences with a 

weak mathematical background.  

Consider the dynamics of the love between Romeo and Juliet (Strogatz, 1988; 

Radizki, 1993). With J being a stock of Juliet’s love and R being Romeo’s love stock, 

a and b being parameters where a*b<0, an harmonic oscillation behavior is described 

by the following set of equations: 

dR/dt=a*J 

dJ/dt=b*R  

Using a hybrid model we may oscillate Romeo’s love while Juliet’s love remains a 

positive constant. In this case Romeo’s love changes in the following pattern: it grows 

in proportion to Juliet’s love till twice its value. Then it starts declining at the same 



pace, and switches back to growth once reaching the value of half Juliet’s love 

(Figure 2). Figure 3 describes the rules of Romeo’s behavior as transitions between 

states in the FSM, and the equations of the stock-flow part of the model.  
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Modification of the model leads to diverse oscillations (Figure 3). We may assume 

that the thresholds of Romeo’s love, as a function of Juliet’s love, change over time.   

If they converge towards the value of Juliet’s love, it is a damped oscillation. If the 

thresholds constantly increase, the oscillation has growing amplitude. The case of 

random change of thresholds is interesting because it creates unpredictable oscillation. 

Back to the semantics of the love metaphor, we may say that living together leads 

towards equilibrium, living apart increases the momentum, but the moon often has the 
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Figure 2 Hybrid model of Romeo’s love: a   finite state machine, the continuous model and the linear oscillation 
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R (t) = R (t - dt) + (pdRdt_2 - mdRdt_2) * dt 
INIT R= 10;  b= 0.05;  J = 20 
pdRdt_2 = if State=0 then b_2*J else  0 
mdRdt_2 = If State=1 then b_2*J else 0  

Figure 3 the transition table of Romeo and the equations of the model 

 



last word in matters of the heart.   

5.2 Multivariable Dependence 

 Consider a bath system.  Given any initial conditions of a bath equipped with a hot 

water faucet and a drain exit, the goal is to maintain the water volume around 100 

liters and the temperature around 400c. In this case the inflow and outflow of water 

needs to be a function of two variables: the temperature and the volume. Since a two-

dimensional graphical description of the function is impossible, the simplest 

continuous solution is a linear combination of the volume and temperature gaps. 

Hybrid modeling may be more instructive. FSM with 4 states switches between 

modes of the system according to input and predefined rules (Figure 5). A description 

of the states is given in the table below (Table 2).  

 

Faucet 
 
Drain exit  

Open Closed 

Open State 1 State 2 
Closed State 3 State 4 

Table 2 The 4 states  

 The FSM receives the following Boolean input values of temperature and volume of 

the water:  “Hot”=(Temp>450); “Cold”=(Temp<450); “Full”=(Volume>110); 

“Empty”=(Volume<90). Figure 5 shows the transition function between states based 

on the input.    

 

Figure 5 Bath heating system 
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5.3 Focus on Events 

To focus on a certain detail in the system, we raise its level of abstraction (Lacoste-

Julien, 2002). With hybrid modeling we do this by assigning discrete values to the 

desired element, thus changing its time scale compared to the rest of the system.  

Consider a hybrid description of a bouncing ball. According to the laws of mechanics, 

the movement of the ball is continuous. Even the collision with the ground is a 

gradual deformation of the ball, which eventually makes it bounce. Nevertheless, 

when we describe the movement of the ball in the air with a stock-flow model, we 

prefer to emphasize the collision by mean of an instantaneous description (Figure 6). 

The equations of the model are given below.  

 

 

 

 

 

  

Vt(t) = Vt(t - dt) + (g_ + Collision) * dt;  INIT Vt = 0 
Collision = ((-Vt-Vt*c_)*Collision_Occures)/dt 
X(t) = X(t - dt) + (V) * dt;  INIT X = 100 
V = Vt ; c_ = 2 ; g_ = -9.8 
Collision_Occures = if (X=0 and V<=0) then 1 else 0 

 

 

5.4 Meaningful Interaction  

There are several possible modes of interaction with models (Alessi, 2000).   A user 

may construct models from scratch, play with existing simulation or do a half-

structured activity in between. An interaction suitable for hybrid modeling is to design 

a real time decision-making algorithm, using the FSM notation, to a given continuous 

process.  This activity may have didactical value since it combines analytic and 

synthetic modes of thinking (Levin & Lieberman, 2000).   

 

XV

Vt

g

Collision

c
Collision

Figure 6 Hybrid model of bouncing ball 



Back to the story of Romeo and Juliet, let us assume their relations result in 

continuous harmonic oscillation, with only one fourth of the time both being in love 

simultaneously (Figure 7).  Now let us introduce a third player into the model – 

Lorenzo, the “love consultant”. What can Lorenzo do to increase the poor lovers’ 

happiness? He may, for example, measure the amount of love each of them feels, and 

accordingly, decide whether to make them conscious of their feeling. Given his 

limited influence as an outsider, his behavior suits a finite state machine model 

(Figure 8). Research has shown that the harmonic oscillation may stabilize by discrete 

strategies containing two, three, of four states (Arstein, 1995). The relevance to the 
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Figure 7 Harmonic oscillation of Romeo and Juliet 

Figure 8 Romeo, Juliet and Lorenzo  



consulting profession requires further discussion.  

 

6. Summary 

The paper described how hybrid modeling may be combined with the system 

dynamics methodology in order to serve didactical and communicative goals. To 

appreciate the full potential of this suggestion, further research and development are 

required. Our research seeks to clarify the cases suitable for hybrid modeling, and to 

evaluate their pedagogical value empirically.   
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