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Abstract 
A new data structure called Split Multi-terminal Binary Decision Diagrams (Split MTBDD) is 

introduced for representing Multi–Output logic Functions (MOF). Split MTBDDs are efficient for 
some functions where conventional BDDs are not. A Split MTBDD comprises interconnected 
MTBDD components, each associated with a “dichotomic fragment”. The “dichotomy” reflects 
cognitive patterns introduced by the designer of a MOF specification. The paper describes a 
method of transforming an arbitrary MOF into a corresponding Split MTBDD. Experimental 
results indicate that Split MTBDDs are more compact than conventional MTBDDs for many 
benchmarks. Criteria for prediction of the Split MTBDD compactness are formulated and 
justified.  

1. Introduction 
Many problems in VLSI-CAD and other areas of computer science can be formulated in terms of 

Boolean functions. The central issue in providing computer-aided solutions to these problems is to find 
a compact representation for Boolean functions, where basic Boolean operations and the equivalence 
check can be efficiently performed. The requirements of compactness and manipulability are generally 
conflicting. Currently, Binary Decision Diagrams (BDDs) serve the most popular compromise between 
these conflicting requirements. In a large number of practical cases, a BDD representation of a Boolean 
function is exponential in the number of primary inputs. This fact limits complexity of the problems 
which can be solved using BDDs.  

Representation of a system of Boolean functions (usually called a Multi-output function (MOF)) by a 
truth table, as well as representation by a set of disjoint cubes belongs to a declarative type of 
specification [1, 2]. An alternative, procedural representation of a MOF is a tree-like algorithmic 
specification, for example - a Multi Terminal BDD (MTBDD).  

The simplest way to specify and/or to represent a Boolean function or a MOF is a truth table. The 
main advantage of the representation by a truth table is that such a representation is canonical. 
Moreover, it is ideal from the point of its completeness, non-contradictive character and manipulability, 
but impractical due to its exponential complexity.  

A proper specification of a MOF has to be non-contradictory. It means that all product terms of the 
MOF, initiating different outputs, have to be disjoint. The majority of relevant studies are based on this 
property.  

The initial point of this paper is an idea that an arbitrary MOF has an additional inherent feature 
which, if taken into account in synthesis, may improve the resulting overhead. The majorities of logic 
specifications of MOFs are developed by humans and, as a result, inherit some humans’ thinking 
templates. Actually, the thinking templates usually have a tree-like structure and, fortunately, may be 
formalized. Fragments of a MOF, having the tree-like structure, will be called dichotomic fragments.  

We say that a set of product terms forms a dichotomic fragment, if the set is straightforwardly 
mappable into an MTBDD. The mapping of the dichotomic fragment can be easily preformed by the 
Shannon expansion procedure. The dichotomic property guarantees that there exists a Shannon 
expansion process that will not bring additional product terms to the initial MOF. It means that the 



 

 

paths of the MTBDD are in the one-to-one correspondence with respective product terms in the 
specification.  

We hypnotize that it is possible to directly formalize and implement the thinking templates 
comprising dichotomic fragments. We study cases where an MOF is represented by a conventional 
MTBDD. Our hypothesis is that the MOF can be more efficiently defined by a set of dichotomic 
fragments. As a result, the whole MOF would be considered a set of sub-functions, the logical sum of 
which would be equal to the output of the initial MOF.  

To describe such a MOF, we introduce a new data structure– a Split MTBDD. The Split MTBDD 
consists of a number of component conventional MTBDDs having separate roots and non-shared 
nodes. These component MTBDDs correspond to our dichotomic fragments. Output vectors of each of 
the fragments are logically summed. We propose an algorithm for transforming a MOF into its Split 
MTBDD form. We check whether the structure of Split MTBDDs is more compact than the 
corresponding conventional MTBDD.  

We perform a number of experiments with standard benchmarks and compare the obtained results 
with known MTBDD parallel decomposition method [3]. Based on the benchmark results, we study the 
efficiency of the Split MTBDD data structure and its correlations with different characteristics of the 
MOFs.  

The paper is organized as following. Section 2 presents theoretical fundamentals of Split MTBDDs. 
Decomposition algorithms for transformation MOF into the Split MTBDD form described in Section 3. 
Experimental results is presented and discussed in Section 4. Conclusions are given in Section 5. 

2. Split MTBDDs 
Multi-Terminal Binary Decision Diagram (MTBDD) [4. 5. 6] is a rooted directed acyclic graph with 

two types of nodes – terminal and non-terminal. A non-terminal node is labeled with an input variable 
and has two successors. A terminal node is labeled with a variable of an output finite set.   

A multiple-output function can be represented in the MTBDD form. To transform an arbitrary MOF 
into its MTBDD form, a well known Shannon expansion procedure can be applied. Efficiency of the 
representation is usually evaluated by a number of non-terminal nodes in the corresponding MTBDD 
[7].  

The main problem of the MTBDD representation is a problem of complexity. There are efficient 
methods for Boolean functions decomposition [8, 9, 10], as well as methods for decomposition of 
BDDs [11, 12, 13]. Nevertheless, the problem of efficient representation of MOFs still remains actual 
and challengeable [14].   

We extend the concept of MTBDD by introducing a new data structure –a Split MTBDD. We define 
the Split MTBDD by introducing a parallel connection of several conventional MTBDDs as it is shown 
in Figure 1: 
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Figure 1. Parallel connection of two conventional MTBDDs. 

The following example illustrates the construction of a Split MTBDD.  
Example 2. Let a MOF is defined in the PLA form as follows:  



 

 

y4y3y2y1x3x2x1x0
01001*01
0110*101
00111*11
0001*111
01011*00
1101*100
11001*10
1010*110  

It comprises one dichotomic fragment (defined by the variables 0 1,x x ) and a number of non-
dichotomic “tails”. The corresponding MTBDD and Split MTBDD representations are shown in Figs. 
2 and 3.  Notice that we use decimal numbers of output vectors within the terminal nodes of both of 
BDDs. 
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Figure 2. MTBDD for Example 2.   Figure 3. Split MTBDD for Example 2. 

The MTBDD for our example has 13 non-terminal nodes (NTN) and 10 terminal nodes (TN). The Split 
MTBDD has 11 NTN and 8 TN. 

3. Decomposition Algorithm 
An algorithm for constructing a parallel network of component MTBDDs was described in [3]. It 

comprised a step of sequentially extracting component MTBDDs from a MOF and a step of 
constructing a network having a minimized total number of non-terminal nodes. As the main criterion 
for selecting the components, the algorithm uses a so-called “density factor”, which is a percent of cells 
not comprising “don’t-cares” (DC) in a corresponding PLA fragment.  

In the present paper, we propose an algorithm for transforming a MOF into the Split MTBDD form. 
According to the nature of a Split MTBDD being a set of interconnected dichotomic fragments, we 

propose a different criterion for selecting components of the Split MTBDD. Obviously, a dense 
fragment, which was preferred in the previous method, not always has the dichotomy property. 
Sometimes, the density and the dichotomy properties are contradictory.  

The proposed new algorithm of constructing the Split MTBDD not only changes the main criterion of 
selecting the components. Unlike the “density-oriented” previous algorithm that uses heuristics for 
selecting the components, the new one has the exact nature. The proposed new algorithm gives exact 
estimation of a “rank of dichotomy” of an arbitrary MOF, which is further reflected by the number and 
the size of the dichotomic fragments in the corresponding Split MTBDD.  

Both the “density-oriented” and the newly introduced “dichotomy-oriented” algorithms use one and 
the same general decomposition method. The general method is based on partitioning of the set of 
cubes of a MOF into a number of components. This partitioning is performed recursively. On each step 
of the recursive procedure, the corresponding MOF component is partitioned into two subsets: a subset 
of components having a common header and a remainder. Each of the components with the common 
header is implemented as a conventional MTBDD. The main concern of the general decomposition 
method is searching for optimal “common headers”, for obtaining optimal resulting component 
MTBDDs. 

As mentioned above, the proposed “dichotomy-oriented” algorithm incorporates the general 
decomposition method. The proposed algorithm begins its operation by detecting the dichotomy within 



 

 

every PLA fragment to be decomposed. The dichotomy is detected if at least one column without 
“don’t cares” (DC) exists in the fragment. A block-scheme of the algorithm is shown in Figure. 3.  

 
Figure 3. The block-scheme of the "dichotomy" oriented decomposition algorithm 

The algorithm uses a stack for implementation of the Shannon expansion, if needed for a PLA 
fragment. The expansion is performed if at least one column without DC exists in the fragment. If all 
columns of the PLA comprise DC, the general decomposition method will be performed. Notice, that 
unlike the “density-oriented” algorithm, the new “dichotomy-oriented” algorithm a) comprises the 
Shannon expansion within the general decomposition procedure and b) repeats the expansion whenever 
possible. By this we guarantee that all dichotomic fragments of the initial MOF are separated and that 
an optimal “dichotomy oriented” Split MTBDD is constructed. 

4. Experimental Results 

In this section, we present experimental results obtained on a number of industrial benchmarks. 
Experiments have been performed by software implementing the propose algorithms. The results of the 
experiments are presented in Tables 1 and 2.  



 

 

Table 1. Benchmark results of the decomposition   Table 2. Algorithms runtime  
No Benchmark Inputs Outputs Products Density Nmt Ndich Ndens

1 dip 5 4 5 0.48 16 7 7
2 con1 7 2 9 0.3651 18 16 16
3 f2 4 4 12 0.75 14 21 21
4 xor5 5 1 16 1 9 9 46
5 dc1 4 7 9 0.7778 11 16 14
6 wim 4 7 9 0.5 13 9 9
7 dk27 9 9 10 0.3444 46 17 20
8 rd53 5 3 32 0.9 15 53 57
9 alu1 12 8 19 0.1798 1195 32 31

10 sqn 7 3 38 0.6917 61 98 106
11 squar5 5 8 32 1 30 30 67
12 misex1 8 7 32 0.4766 19 30 32
13 inc 7 9 34 0.7941 35 35 76
14 dc2 8 7 40 0.6656 128 77 88
15 z4 7 4 59 0.6102 76 146 146
16 root 8 5 57 0.6491 75 147 149
17 sqr6 6 12 50 0.6733 63 97 99
18 9sym 9 1 87 0.6667 39 265 274
19 adr4 8 5 75 0.5667 158 177 172
20 radd 8 5 75 0.5667 171 175 168
21 alu3 10 8 66 0.4227 397 162 163
22 alu2 10 8 68 0.3941 408 167 165
23 f51m 8 8 76 0.5263 255 163 163
24 5xp1 7 10 75 0.5638 127 138 139
25 rd73 7 3 141 0.8511 28 297 360
26 dist 8 5 121 0.7293 115 302 307
27 mlp4 8 8 128 0.7305 214 306 321
28 bw 5 28 65 0.7385 23 79 84
29 clip 9 5 167 0.5908 269 399 401
30 b12 15 9 431 0.286 238 184 191     

Benchmark Tmt Tdich Tdens
dip 0.16 0.7 7

con1 0.19 1.4 11
f2 0.15 1.7 15

xor5 0.18 0.1 9
dc1 0.14 1 12
wim 0.16 1 7
dk27 0.24 1.5 13
rd53 0.22 4 45
alu1 5.17 3.7 25
sqn 0.33 4.9 71

squar5 0.21 0.2 30
misex1 0.16 2.6 28

inc 0.23 0.2 35
dc2 0.53 5.7 75
z4 0.56 12 126

root 0.42 11 110
sqr6 0.37 7.9 79
9sym 1.06 23 182
adr4 0.97 16 151
radd 0.93 17 146
alu3 2.08 14 129
alu2 1.86 14 140
f51m 0.94 14 122
5xp1 0.6 13 106
rd73 0.75 121 321
dist 0.88 32 240

mlp4 1.17 62 228
bw 0.27 9.8 74
clip 2.05 66 333
b12 2.26 28 168  

First five columns of Table 1 comprise titles of the benchmarks and their parameters. The 6-th 
column indicates the density of the corresponding benchmark. Columns  7, 8 and 9 indicate the number 
of nodes in the MTBDD and in two alternative Split MTBDD representations – column 8 relates to that 
obtained by the dichotomy oriented algorithm, and column 9  – to that obtained by the density oriented 
algorithm.   

The results indicate that, approximately in half of cases, the proposed Split MTBDD gives more 
compact representation in comparison with the conventional MTBDD. Both the newly proposed 
“dichotomy oriented” algorithm and the “density oriented” algorithm give pretty close results. It means 
that both of them are suitable for constructing Split MTBDDs. The results indicate the high robustness 
of the proposed general algorithm, and confirm the rightness of the methodology.  

When studying regularity in transforming a MOF into the Split MTBDD form by analyzing the 
benchmark results, a number of different parameters were used. Finally, the density of the benchmark 
was chosen as the most important parameter.  To demonstrate the correlation of the results with the 
benchmark density, we introduce the following additional criteria for our data:  
• Normalized density Dn  : The normalized density is defined as D D / In = , where D - the density, 

I - the number of a MOF inputs;  
• Normalized closeness Q  : The normalized closeness Q  reflects the relation between the numbers 

of non-terminal nodes in the Split MTBDD Ndich and the number of non-terminal nodes in the 
conventional MTBDD Nmt , ( ) ( )Q 2 Ndich Nmt / Ndich Nmt= − + .  

To obtain a better visualization, an auxiliary function for Dn is used: D' 10D 1n= − . Values of 
'D and Q  for our benchmarks (numbers on the horizontal axis) are presented in the graph shown in 

Figure 4. 
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Figure 4. Benchmark results. Graph of the correlation between the density D' and the difference in 
number of non-terminal nodes of MTBDD and the Split MTBDD Q'. 

The graph indicates a correlation between the density of the initial PLA (a benchmark in our case), 
and the compactness of the proposed Split MTBDD representation. Specifically, the smaller density 
corresponds to the higher efficiency of the proposed algorithm (the graph is drawn for the dichotomy 
oriented algorithm).  

Table 2 compares runtimes of the proposed algorithms. Obviously, the transformation PLA – 
MTBDD performed by the standard Shannon expansion is very fast.  Both of the algorithms for 
constructing Split MTBDDs are much slower. Between them, the dichotomy oriented algorithm is 
significantly faster, which may look surprising taking into account the fact that the dichotomy oriented 
algorithm includes the density oriented algorithm as its component. The high speed of the dichotomy 
oriented algorithm can be explained by the following. The dichotomy oriented algorithm includes the 
Shannon expansion, which extracts portions of the dichotomy from the MOF thus making is smaller, 
which is in turn decreases the run time of the algorithm.  

5. Conclusions 
We have proposed a new data structure for representing Boolean functions, called a Split Multi 

Terminal BDD. This data structure has a number of attractive properties. Split MTBDDs, in 
comparison with the conventional BDDs, are easier to construct and more compact for a wide class of 
functions. The main concern in constructing the Split MTBDDs is the dichotomy property of 
specifications that relates to a tree-like representation of logic functions. 

We have developed a method for optimized transforming of an arbitrary multi-output function MOF 
into its Split MTBDD form. The method is based on partitioning the MOF into a set of dichotomic 
fragments.  

The proposed algorithm was tested on a number of standard benchmarks. Results of the experiments 
were compared with the known “density-oriented” algorithm which did not care about the dichotomy 
property. The results of the experiments can be summarized as follows: 
1. In comparison with the conventional MTBDD, the Split MTBDD allows reducing the number of 

non-terminal nodes required for a BDD-like representation of Boolean functions. 
2. The proposed “dichotomy-oriented“ algorithm and the known “density-oriented” algorithm 

provide close results in the total number of non-terminal nodes. This fact characterizes robustness 
and effectiveness of the proposed general approach.  

3. The new dichotomy-oriented algorithm seems preferable due to its runtime parameters. 
4. A correlation has been found between a number of nodes in the final BDD and a function of 

normalized density for the initial specification of a MOF. The correlation allows predicting, which 
representation form (Conventional or Split) is preferable for a specific MOF.   
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