

CONSTRUCTION OF PLANAR BDDS BY USING LINEARIZATION AND
DECOMPOSITION1

1 The work was supported by BSF under Grant 2002259, by the Academy of Finland, Finnish Center
of Excellence Program, Grant No. 44876, and the EXSITE Project No. 51520.

ABSTRACT

In VLSI design, crossings of interconnections occupy space
and cause delay. In particular, it is desirable to have
planar networks for FPGA synthesis and sub-micron LSIs,
since delays in the interconnections and crossings are
comparable to the delays for logic circuits. Binary
decision diagrams (BDDs) provide a simple technology
mapping, and planar DDs result in planar networks.
Two different approaches for constructing the planar
BDDs are presented in the paper. The first approach is
oriented to constructing a linearly transformed BDD and
based on calculation of Walsh transform spectral
coefficients. The second approach is based on constructing
a newly introduced concurrent BDD (CBDD).
The paper presents corresponding algorithms of
constructing planar BDDs for both of the approaches. It is
shown that integration of the linearization technique into
the decomposition technique, and vice versa, leads to
optimization.

1. INTRODUCTION

Binary Decision Diagrams (BDDs) are a standard part of
many CAD systems in logic design, signal processing, and
other fields where efficient, in terms of space and time,
manipulation of a BDD representation for a given function
f is usually estimated by the number of non-terminal nodes
in the BDD for f, denoted as the size of BDD(f). The size
of a BDD is very sensitive to the order of variables,
ranging from the polynomial to the exponential complexity
for the same function for different orders of variables.
Therefore, majority of approaches to the reduction of sizes
of BDDs are related to development of efficient algorithms
for reordering of variables, see for example, [1], [2].
Linearly transformed BDDs are defined by allowing linear
combinations of variables [3].
Another important criterion in using the BDD based
techniques is planarity of the BDD.
Networks without crossings are advantageous in synthesis
with Field Programmable Gate Arrays (FPGAs) [4], since
crossings produce considerable delays, and delays in
interconnections is one of the most important problems for

FPGAs. Furthermore, planar networks are desirable in sub-
micron LSIs, since delays in the interconnections and
crossings are comparable to the delays in logic circuits.
Planar DDs [5], [6] result in planar networks.
Notice that a planar decision diagram can be derived by
the reduction of a decision tree if sharing of isomorphic
subtrees is restricted to subtrees rooted at neighboring
nodes at the same level in the Decision Tree (DT).
Restrictions of the order of labels and values of constant
nodes can be removed to enlarge the class of functions
with planar diagrams. However, in what follows, these
restrictions will be applied to the decision diagrams
considered.
Planar decision diagrams have been studied in a number of
works ([7], [8], [9]). In particular, [8] has derived
necessary conditions for planarity in decision diagrams of
certain functions. In [9], these results have been extended
by completely characterizing symmetric functions with
planar decision diagrams, and with the motivation that
such functions are an important set of functions being an
indispensable part of arithmetic circuits. In [10], [11],
Linear Decision Diagrams (LDDs) that are planar by
definition have been proposed as models for efficient
computation of multiple-valued functions. These decision
diagrams are based on the corresponding representations
of logic functions by arithmetic polynomials [12].
Complexity of a BDD representation, for a given function
f, is usually estimated by the number of non-terminal
nodes. Reordering and linear transformations of variables
are common methods to reduce the size of BDDs.
In this paper, we consider construction Binary Decision
Diagrams by using two different approaches: a) linear
transformation through Walsh transform coefficients
calculation; and b) decomposition into a network of
smaller BDDs operating concurrently.
Notice that BDD are aimed at representing Boolean, which
means two-valued functions. Therefore, constant nodes in
BDDs show two different values, usually encoded by 0
and 1. However, to extend decision diagram
representations to integer and complex-valued functions,
the Multi-terminal binary decision diagrams (MTBDDs)
are introduced by allowing integers and complex numbers

Ilya Levin
School of Engineering

Bar-Ilan University
Ramat Gan 52900

Israel

Radomir S. Stankovic
Dept. of Computer
Science Faculty of

Electronics
Beogradska
18 000 Nis

Serbia

Mark G. Karpovsky
Dept. of Electrical and
Computer Engineering
8 Saint Marry’s Street

Boston University
Boston, Ma 02215 USA

Jaakko T. Astola
Tampere Int. Center
for Signal Processing
Tampere University of

Technology
FIN-33101, Finland

for constant nodes [13]. It is clear that MTBDDs actually
reduce to BDDs when representing two-valued functions.
The difference is basically in the interpretation of values of
constant nodes as Boolean values or integers 0 and 1.
Since we wish to exploit advantages of spectral methods,
where a Boolean function is converted into its integer-
valued spectrum, we use the term MTBDDs uniformly for
diagrams representing either functions or their spectra.
Moreover, for spectral processing of logic functions we
may prefer encoding (1,-1) instead of (0, 1) to make the
functions more compatible with the basic functions in the
transforms.
We show that in many cases, the linear transformation
based technique provides planar BDD implementations
with a relatively small number of nodes. We have noted,
however, that in two important situations the technique is
inefficient. The first situation is when no linear
transformation exists to obtain the planar BDD with a
minimized number of nodes and, consequently, the
corresponding planar solution requires significant
overhead. The second problematic situation relates to the
case when a given function is defined by its sum-of-
products form with a large number of variables. In such a
case, the linear transformation based technique is simply
inapplicable due to complexity of the calculations.
We show that both of the above problems can be resolved
by using a newly introduced decomposition technique.
This technique is based on implementing a BDD in the
form of a number of component BDDs operating
concurrently. The decomposition allows applying the
linearization procedure to each of the component BDDs
separately and, consequently, achieving the planar
solution. The main idea of the paper is to combine the
linearization and the decomposition approaches for
synthesis of planar BDDs with the minimized number of
nodes.
The paper is organized as follows. The second Section of
the paper is devoted to construction of a planar BDD from
a regular BDD by using a linear transformation. The
decomposition approach based on constructing a network
of separate concurrent BDDs is described in Section 3.
Section 4 shows integration of the decomposition
technique into the linearization method for a BDD-form of
representation of a given function. In turn, Section 5
illustrates integration of the linearization into the
decomposition technique for a PLA-form of representation
of a given function. Conclusions are given in Section 6.

2. CONSTRUCTING PLANAR BDDS BY USING
LINEARIZATION

The method to construct Linearly transformed BDDs (LT-
BDD) by Walsh coefficients exploits the property that
when a given function f is decomposed with respect to

the EXOR sum τ of variables corresponding to the
maximum value of the Walsh coefficient as

10 fff ττ ⊕= , the cofactors 0f and 1f tend to be
simple. Therefore, it may be expected that the LT-BDDs
can be represented by BDDs with small number of nodes.
Moreover, it was shown in [14] that the linearization may
lead to a planar implementation of BDDs.
Definition 1. A Binary Decision Diagram is planar if there
is no crossings of edges connecting non-terminal nodes,
under assumption that edges labeled by ix and ix emerge
to the left and to the right of a node, respectively, constant
node 0 is to the left of the constant node 1, and all edges
are directed downwards throughout their length, which
precludes arcs that extend around the root node or around
constant nodes.
Due to the relationship between Walsh functions and linear
switching functions, the following algorithm to construct
LT-BDDs can be used.

Algorithm 1 (Construction of LT-BDD)
1. Given: an n-variable switching function f in the

{1,−1} encoding. Calculate the Walsh spectrum.
2. Find the Walsh coefficient ()wS f max,

 of the

maximum absolute value, except the coefficient for w = 0.
Declare w = wmax and write its binary representation, i.e.,

()nwww ,,max K1= .

3. Determine a linear function ,rr x⊕=τ , where r goes

over the indices of 1=jw .

4. Determine co-factors for f with respect to τ, i.e.,
determine the subfunction of n−1 variables where τ =0 and
1, respectively.

5. Create a node whose outgoing edges point to the
cofactors f0 and f1 and label its edges by τ τ and τ ,
respectively.

6. Repeat the Steps 1 to 5 for co-factors, for i = 1, to n.
Assignment of variables to the edges in LT-BDDs can be
performed by using the following algorithm.

Algorithm 2 (Assignment of labels to the edges)
1. If at a node, at the i-th level, decomposition is
performed with respect to a linear
combination rqk xxx ⊕⊕⊕ K ,

where rqk <<< K , relate the variable rx to the level
i and eliminate it from further considerations.
2. Repeat the Step 1 to all the levels in the BDD starting
from the root node.
Example 1 For a four-variable function f, defined as

[]T1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 −−−−−=F the Walsh spectrum
is []TfS 10222226226222226 ,,,,,,,,,,,,,,, −−−−−−−= .

 and the coefficient with the maximum absolute value is
() 10151 =fS , and since ()1111=maxw , we determine a

linear function 43211 xxxx ⊕⊕⊕=τ , where each xi
corresponds to the appearance of coordinate i with value 1
in the binary representation for maxw . The co-factors of f

with respect to τ1 are []TF 111111110 ,,,,,,,= , and

[]TF 1,1,1,1,1,1,1,11 −−−−−= . We create a node where

outgoing edges point to subfunctions 0F and 1F and

edges are labeled by 4321 xxxx ⊕⊕⊕ and

4321 xxxx ⊕⊕⊕ respectively. The variable 4x is
eliminated from further considerations. Since F0 is a
constant function, the edge 4321 xxxx ⊕⊕⊕ points to
the constant node 1 directly. The Walsh spectrum for F1 is

[]TfS 22226222
1

,,,,,,, −−−= .

The maximum Walsh coefficient for F1 is 6
for ()011=maxw , thus we determine 322 xx ⊕=τ , and
perform decomposition of f1 into co-factors of two
variables []T1,1,1,10,1 −=F and []T1,1,1,11,1 −−−−=F . Since

1,1F is a constant function, we proceed with

decomposition of 0,1F . This co-factor depends on

variables x1 and x2 only, since x3 was the last variable in τ2.
The Walsh spectrum of it is []TfS 2222

01
,,,

,
−= . Since all

the coefficients in this spectrum have the same absolute
value, we can chose, for example, 13 x=τ and we do not
have to continue the decomposition. In this way, we derive
the LT-BDD for f as shown in Fig. 1. This LT-BDD
represents f as

() () ()()3221324321 xxxxxxxxxxf ⊕⊕⊕⊕⊕⊕= . Thus,
the proposed linearization by Walsh coefficients resulted in
the reduction of a size of the BDD for f from 9 nodes for

the original BDD to only 4 nodes for the LT-BDD of Fig.

1.

S

S

-1

x1 x1

_

f

S
x x21 3 4x x⊕ ⊕ ⊕

x x2 3⊕ x x2 3⊕

1 -1

S

1 1

x2

_

x x21 3 4x x⊕ ⊕ ⊕

x2

Figure 1. LT-BDD for f from Example 1

Table 1.
f n BDD BDDv BDDr LT-BDD

5xp-1 7 14 11 35 13
5xp-4 7 16 11 19 15
9sym 9 33 33 33 57

apex4-10 9 95 91 193 148
clip-1 9 37 34 67 35
clip-2 9 58 42 156 45
clip-3 9 73 32 196 51
clip-4 9 76 36 169 27
clip-5 9 36 36 36 22
con-1 7 12 11 11 16
con-2 7 8 7 8 8

ex1010-2 10 155 148 390 156
ex1010-8 10 154 147 377 209

rd73-3 7 16 16 16 16
rd-84-1 8 32 25 54 82
rd-84-2 8 25 22 169 15
rd-84-4 8 19 19 22 59
sao2-1 10 46 32 75 32
sao2-2 10 48 34 85 31

squar5-1 5 5 5 6 5
z5xp1-3 7 20 14 22 12
z5xp1-6 7 15 9 21 9

av. 45 36 96 46
Table 1 (taken form [14]) compares the sizes of BDDs for
the initial (BDD) and optimal (BDDv) order of variables,
planar BDDs (BDDr), and planar LT-BDDs produced by
decomposition with respect to Walsh coefficients (LT-
BDD). With this comparison we estimate impact of
keeping decision diagrams planar and efficiency of the
linearization of planar BDDs by Walsh coefficients under
this restriction as in the definition of planar DDs. As can
be seen, on the average, LT-BDDs are for 48% smaller
than planar BDD, and for 2% and 26% larger than BDDs
for initial and optimal order of variables. It should be
noticed that, compared to planar BDDs, planar LT-BDDs,
when smaller, are considerably smaller (about 70% on
average), and when larger, they are just for about 20%
larger.
It should be noted that the above technique can directly be
applied not only to regular BDDs but also to multi terminal

BDDs (MTBDDs). We will use the MTBDDs as the main
subject of inquiry in the remaining part of the paper.

3. CONCURRENT MTBDD

There are two important cases when the above-described
linear transformation technique is ineffective for
constructing planar BDDs. They are the following.
1. The initial function is defined by a regular BDD, a
planar BDD is then obtained there-from, but no linear
transformation exists to minimize the number of nodes of
the planar BDD. Consequently, the corresponding planar
solution has significant overhead.
2. The initial function is defined by its non-disjoined
sum-of-products form (PLA) with a large number of
variables. In such cases, the linear transformation based
technique is inapplicable due to complexity.

In this paper, we propose achieving the property of
planarity of BDDs by using a new approach. This new
approach is based on decomposing the MTBDD into a
number of concurrently operating component MTBDDs.
For this aim, we introduce a concurrent binary decision
diagram. The concurrent MTBDD (CMTBDD) can be
constructed by combining several MTBDDs using the
parallel and the series operations as follows:
1) Series connection: replacing one terminal node of one
MTBDD with another MTBDD.
2) Parallel connection: connecting inputs of the roots of
two or more MTBDDs.
The above two operations allow us to define a CMTBDD
recursively as follows:
1. A single decision node is an CMTBDD.
2. Series connection of two CMTBDD is an CMTBDD.
3. Parallel connection of two CMTBDD is an CMTBDD.
This section introduces a notion of D-polynomial, which
provides a convenient mathematical model for the
manipulation of the CMTBDD. It will be shown that the
parallel and series connections of the CMTBDD can be
modeled as a product and substitution of D-polynomials
representing those CMTBDD.
Consider an n-input, m-output completely specified
Boolean function mn ZXF →: , where { }*,,10∈X
and { }10,∈Z . Let F be initially represented in
minimized (prime and irredundant) sum-of-product (SOP)
form, where each output Zi is written as a logical sum of
product terms:

()∑= iI jiZ α ; where ()iI is an index set of

implicants associated with output Zi. Implicants can be
shared between different outputs. We will refer to all jα
as α -functions.
Let iY be the terminal node associated with a product term

iα . 0Y will denote a dummy output function, which does
not produce any output.

Definition 2. D-polynomial is a polynomial defined over a
set of terminal nodes iY 00YYiii

αα +∑ , whose

coefficients α satisfy the following conditions
a) 10 =+∑ αα

ii
 (completeness) and

b) jiji ≠∀= ,& 0αα (orthogonality).

D-binomial is a special case of D-polynomial, with exactly
two orthogonal terms, 0011 YYD αα +=
Using the terminology of logic synthesis, explicit α -
functions iα represent the ON-set of the function, while

the implicit coefficients 0α represent the OFF-set.
Thanks to the orthogonality between α -functions, a D-
polynomial can be naturally implemented by a binary
decision tree whose nodes represent input variables ix , and
whose leaf cells represent the corresponding terminal
node 1Y . It is clear that, without any restriction, D-
polynomials can be associated with specific MTBDDs.
Obviously, such a MTBDD is planar.
A D-polynomial

iD can be interpreted as follows. If
i
1α evaluates to 1, then ji YD = . If all of explicit

functions i
1α are equal to 0, then 0YD i = which means

that no output is produced.
Define a product of two D-polynomials.

Definition 3. Let 0
1
0

1
1 YYD iii

αα += ∑ , and

0
2
0

2
2 YYD iii

αα += ∑ . The product of 1D and 2D ,

denoted as 21 DD o is defined as
follows () jiij ji YYDD ∑= 21

21 αα &o ,

over each pair of terms from 1D and 2D , including the
implicit terms 0

1
0Yα and 0

2
0 Yα . Here 21

ji αα & is a logic

product of the corresponding α -functions and jiYY is a

concatenation of the respective terminal nodes.
Interpretation: when 21

ji αα & evaluates to 1, both iY and

jY are computed concurrently.
The following two theorems, given here without the proof
for the limited space, are important in study and
applications of D-polynomials.
Theorem 1. An arbitrary D-polynomial iD can always be
represented as a product of D-
binomials (),∏∑ +=+=

j iiiii
YYYYD 0

1
0

1
0

1
0

1
1 αααα

where ij
00 αα = , and i

j
j

i 00 αα =∏ .

We will call expression (2) a binomial form of the D-
polynomial. The terms of this expression will be called
terminal binomials.

An important conclusion from the above theorem is that
the product of D-polynomials can be always presented as a
product of the corresponding terminal binomials.
Subsequently, the terminal binomials can be multiplied to
obtain higher level D-polynomials. Obviously, there are
several ways to group (multiply) terminal binomials to
form a D-polynomial. Different grouping of terminal
binomials yields different MTBDDs, resulting in different
implementations of a Boolean function. This fact forms the
basis of the proposed decomposition approach; an
implementation of planar MTBDDs with minimum
number of nodes.
Theorem 2. A multiple-output Boolean function can
always be implemented as a product of D-polynomials.
Conclusion: CMTBDD corresponding to such an
implementation can be realized as a parallel connection of
MTBDDs corresponding to the individual D-polynomials.

4. COMPLEMENTING LINEAR
TRANSFORMATION WITH DECOMPOSITION

In this section, we discuss a case when the linearization
technique discussed in Section 2 is inapplicable or
ineffective for synthesis of a planar MTBDD. This
situation is possible when no linear transform exists that
allows transforming an initial MTBDD into the planar
form with the minimized number of nodes. In this case we
recommend checking whether the MTBDD can be firstly
decomposed into a number of CMTBDDs such, that at
least one of these CMTBDDs is transformable into the
planar form.
The example given below illustrates that the answer to this
question can be positive.

Example 3. Let D0 be the D-polynomial:

36321353212632125321

253212432115321143210

YxxxYxxxYxxxYxxx
YxxxYxxxYxxxYxxxD

+++

++++= Let’s

try to apply the linear transformation described in Section
2. For the application of the Walsh spectrum based
procedure, we encode

.,,,,,, 7654321 36352625241514 ======= YYYYYYY
Thus, these coefficients are represented by a
vector []TY 76435421 ,,,,,,,= . It is clear, that in this
case the linearization procedure is inefficient since there
just one pair of equal values and it belongs to different
subtrees.
Let us now apply the decomposition described in Section
3. According to the decomposition technique the initial D-
polynomial 0D can be presented as the product of two D-

polynomials 21 DD , as follows:
()

()432532532632

121221221321210

YxxYxxYxxYxx
YxxYxxYxxYxxDDD

+++

+++==

o

o Here

jiij YYY = , which is a concatenation of iY and jY . Let us

now apply the linearization procedure to D-
polynomials 21 DD , separately. For 1D we have:

122 xxx ⊕= . For 2D we have: 322 xxx ⊕= . Finally,

for the initial D-polynomial 0D we have the
implementation in the form of concurrent LT-BDD as it is
shown in Fig. 2.

.

S

6 45

x1
x3x1

_ _

S
x x2 1⊕ x x2 1⊕

S

3 12

S
x x2 3⊕x x2 3⊕

x3

Figure 2. Implementation of the exemplary concurrent
LT-BDD for Example 3.
As can be seen from the example, the total number of
nodes is reduced considerably by using the decomposition.
The total number of nodes in the example is only 4, while
in the initial MTBDD implementation we had 7 nodes and
the linearization technique was inapplicable.
At this stage, the content of this section should be
considered as a motivation example. We don’t yet provide
a ready-made method for the BDD decomposition.
Investigation of signs for such decomposition and
development of the suitable method are in the main stream
of our present research.

5. COMPLEMENTING LINEARIZATION WITH
DECOMPOSITION

The present section deals with the case when a given
function is defined in a form of non-disjoint sum of
products and when the total number of input variables is
large. In other words, the function is defined by a sparse
PLA form, where the majority of the cells of the AND
array are “don’t cares”. It is clear, that the linear
transformation technique is inapplicable in such cases due
to complexity of the task.
In this section we propose a decomposition technique that
is based on the concurrent BDD representation and D-
polynomials algebra observed in Section 3. The proposed
method is based on decomposition of the given function
into the network of concurrent BDDs, followed by
linearization of the resulting component BDDs
independently.
According to proposed approach, the set of logic blocks
forming the component BDDs is extracted from a set of
product terms representing the ON-set of the given

function. It is followed by a hierarchical decomposition of
the blocks into a common header and a set of block
fragments. When forming the block fragments the same
terminal nodes are likely to be included into the same
block fragments to provide effective linearization on the
next step of the technique. The remaining set of product
terms, not included in the block, is called a remainder.
(Fig. 3 shows a structure of the exemplary MTBDD
obtained by the decomposition.)
The header is a fragment (subset of rows and columns) of
the PLA table composed of prefix variables. The header is
selected in such a way as to satisfy the following
condition: it must contain at least one column without
“don’t cares” at each step of the Shannon expansion (along
the prefix variables). This strategy helps to guarantee the
planarity of each of the component MTBDDs and to limit
the number of nodes in the resulting MTBDD. By
construction, the block header is a logic function whose
ON-set is a superset of the ON-sets of logic functions
associated with the individual blocks. It will be
implemented as an MTBDD whose internal nodes are
associated with the prefix variables. The terminal nodes of
the MTBDD represent the block fragments, each to be
implemented as a separate MTBDD. The method will be
illustrated using the following example adopted from the
misex1 MCNC benchmark set.
Example 4. Consider a logic function described by the
following PLA notation with a set of input
variables { }81 xxX ,,K= , and a set of binary output
variables. Output vectors are “1-hot” coded and presented
in the PLA table as decimal numbers.

1) 0111---- 1 17) 010----- 5
2) 1010---- 1 18) 0-11---- 5
3) 010----- 2 19) 0-10---- 5
4) 0011---- 2 20) 0-00---- 5
5) 1001---- 2 21) 001---- 5
6) 001--1-- 2 22) 010----- 6
7) 0-00--1- 2 23) 0-11---- 6
8) 01-1---- 3 24)1001---- 6
9) 1001---- 3 25)1010---- 6

10) 010-1--- 3 26) 001--1-- 6
11) 0010-0-- 3 27) 0-00--1- 6
12) 0000--0- 3 28) 01-1---- 7
13) 1010---- 4 29) 1001---- 7
14) -010--1- 2 30) 1010---- 7
15) 010----0 4 31) 010-0--- 7
16) 01000--- 4 32) -010-0-- 6

The product terms of the table are divided into Block-set
and Remainder as shown in Figure 3.

 Block-set

 Header Remainder

A B E
C F D 8 28 18 20 19 14 32 23 27 7 Y 0

Y 0
Figure 3. General structure of concurrent MTBDD for
Example 4.

Numbers of product terms included in Block-set are: 1-6,
9-13, 15-17, 21, 22, 24-26, 30-32.
The Block-set consists of a header and block-sets A-F.
Prefixes associated with blocks A - F of Block-set form the
ON-set of the header function:

A: 010- D: 1001
B: 001- E: 0000
C: 1010 F: 0111

The block-set can hence be written as the following D-
polynomial:

FxxxxExxxxDxxxx
CxxxxBxxxAxxxDB

432143214321

4321321321

++

+++= ,

where A, B, C, D, E, and F represent the block fragments.
The entire logic function can be written as a product of

BD and the D-polynomial representing the Remainder.
The header can be implemented directly as a planar
MTBDD.
Notice that some of the block fragments (in our case those
associated with blocks C, D, F) represent the final product
terms of the given function. This is because the block
fragments obtained by extraction of the respective prefixes
are composed of trivial product terms that contain only
“don’t cares”. In our example, node C is associated with
product terms 2, 13, 25, 30, node D with product terms 5,
9, 21, 24, 29, and node F with product term 1. The non-
trivial blocks (A, B, E), can be implemented directly as a
planar MTBDD. The MTBDD of the header can be
similarly derived. The algorithm can continue by
recursively decomposing the block sets and the remainders
as needed (until no planar headers can be found).
The Remainder includes the following product terms.

7) 0-00---1- 2 20) 0-00----- 5
8) 01-1----- 3 23) 0-11----- 6

14) -010---1- 2 27) 0-00---1- 6
18) 0-11----- 5 28) 01-1----- 7
19) 0-10----- 5 29) -010---1- 6

In Figure 3, rectangular nodes represent the product terms;
in the Remainder they are labeled with the corresponding
product term numbers. The triangular nodes represent the
block fragments that are yet to be implemented.
To introduce the linear transform technique to component
MTBDDs of the exemplary concurrent MTBDD, we apply
the linearization to the Remainder (Fig. 4). Notice that
linearization of the Block set is unnecessary due to its
simplicity and planarity after the decomposition.
The Remainder represents a function of four
variables 7431 xxxx ,,, . For performing the linearization
we will handle the header of the Remainder. Consequently,

7x has to be eliminated from the future considerations as
an internal variable of a component MTBDD (not
belonging to the header).
The header represents a function of three
variables 431 xxx ,, . For the header we define two new
terminal nodes 1 and 2 (see Fig. 4). Names of these “new”
terminal nodes are highlighted by the bold-italic font to
distinguish them from the original terminal nodes. The
function of the header is expressed by
vector []TR 01100022 ,,,,,,,= (the order of the variables

is: 314 xxx ,). We transform this function by replacing 3x

with linear combination 313 xxx ⊕= . This
transformation reorders elements of the vector R into a
new vector []TR 10100022 ,,,,,,,=σ . The corresponding
LT-MTBDD of the header is shown in Fig. 5. In our
example, the above transformation results in reduction of
the number of the header’s nodes from 5 to 3.

S S

S

x4

x 1

x x3 3

x1

x4

_

_

_

f

S

0

0 S SS

0
0

x x3 3

_

0

3 5 5 6

S

00 22

x7

_ x7

5

6

SS SS

2

1
x3 x_

3 x3 x_
3

x1 x1

_
x1

_

Figure 4. CMTBDD of the Remainder.

S

S

x4

x 1 x1

x4

_

_

f

S

02 1

x x1 3⊕x x1 3⊕
_

Figure 5. LT-MTBDD of the header of the Remainder

6. CONCLUSIONS

We discussed the problem of constructing planar
MTBDDs. A novel technique based on calculating Walsh
coefficients has been presented. This technique allows
achieving planarity of MTBDD and a relatively small
number of nodes in the resulting planar MTBDD.
However, there are cases when this technique appears to
be ineffective. We investigated two of such cases. In the
first of them, the linearization technique is inapplicable
since a linear transform leading to simplification of the
planar MTBDD does not exist. In the second case, the
given function is defined in its PLA form and consequently
cannot be linearly transformed due to complexity. Both
these cases can be handled by using a newly introduced
decomposition technique.

The main results of the paper can be summarized as
follows.
1. Linearization of an MTBDD with restriction of the
sharing neighboring nodes on the same level provides
planarity of the MTBDD.
2. A planar and compact MTBDD can be obtained from a
given MTBDD, if the latter is decomposed into two or
more component MTBDDs, and they are then separately
linearized.
3. A decomposition technique is proposed for obtaining
planar MTBDDs from a given function defined by its PLA
form. For obtaining compact MTBDDs, the decomposition
is completed by the mentioned linearization algorithm.
4. Algebra of D-polynomials is proposed for description
of concurrent MTBDDs, and serves the base of the
proposed decomposition technique.

REFERENCES

[1] M. Fujita, Y. Kukimoto, R. K. Brayton, “BDD
minimization by truth table permutation”, Proc. Int. Symp.
on Circuits and Systems, ISCAS’96, May 12-15, 1996, Vol.
4, 596-599.

[2] Rudell, R., “Dynamic variable ordering for ordered
binary decision diagrams”, Proc. IEEE Conf. Computer
Aided Design, Santa Clara, CA, 1993, 42-47.

[3] W. Gunther, R. Drechsler, “Linear transformations and
exact minimization of BDDs”, Proc. 8th Great lake Symp.
on VLSI, February 19-21, 1998, 325-330.

[4] R. Murgai, R.K. Brayton, A.L. Sangiovanni-
Vincentelli, Logic Synthesis for Field-Programmable Gate
Arrays, Kluwer Academic Publishers, 1995.

[5] J. T. Butler, J. L. Nowlin, T. Sasao, “Planarity in
ROMDD’s of Multiple-Valued Symmetric Functions”,
26th IEEE International Symposium on Multiple-Valued
Logic, Santiago de Compostela, Spain, May 29-31, 1996,
236-241.

[6] T. Sasao, J. T. Butler, “Planar Multiple-Valued
Decision Diagrams”, 25th IEEE International Symposium
on Multiple-Valued Logic, Bloomington, Indiana, May 23-
25, 1995, 28-35.

[7] J. T. Butler, J. L. Nowlin, T. Sasao, “Planarity in
ROMDD’s of Multiple-Valued Symmetric Functions”,
26th IEEE International Symposium on Multiple-Valued
Logic, Santiago de Compostela, Spain, May 29-31, 1996,
236-241.

[8] T. Sasao, J. T. Butler, “Planar Multiple-Valued
Decision Diagrams”, 25th IEEE International Symposium
on Multiple-Valued Logic, Bloomington, Indiana, May 23-
25, 1995, 28-35.

[9] T. Sasao and J. T. Butler, “Planar multiple-valued
decision diagrams”, Multiple-Valued Logic, Vol. 1, No. 1 ,
1996, 39-46.

[10] Tomaszewska, A.M., Yanushkevich, S.N., Shmerko,
V.P., “The word-level models for efficient computation of
multiple-valued functions, LWL based model”, Prof. 32nd
Int. Symp. On Multiple-Valued Logic, Boston,
Massachusetts, USA, May 15-18, 2003, 209-215.

[11] Yanushkevich, S.N., Dziurzanski, P., Shmerko, V.P.,
“The word level models for efficient computation of
multiple-valued functions, LAR based model”, Proc. 32nd
Int. Symp. on Multiple-Valued Logic, Boston,
Massachusetts, USA, May 15-18, 2003, 202-208.

[12] S. Agaian, J. Astola, K. Egiazarian, Binary
Polynomial Transforms and Nonlinear Digital Filters
Marcel Dekker, 1995.

[13] E.M. Clarke, K.L. Mc Millan, X. Zhao, M. Fujita,
“Spectral transforms for extremely large Boolean
functions”, in Proc. Reed-Muller Workshop, RM-1993,
September 16-17, 1993, 86-90.

[14] M.G. Karpovsky, R. Stankovic and J. Astola,
“Construction of Linearly Transformed Planar BDDs by
Walsh Coefficients”, Proc. ISCAS, 2004.

