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ABSTRACT 

In VLSI design, crossings of interconnections occupy space 
and cause delay. In particular, it is desirable to have 
planar networks for FPGA synthesis and sub-micron LSIs, 
since delays in the interconnections and crossings are 
comparable to the delays for logic circuits. Binary 
decision diagrams (BDDs) provide a simple technology 
mapping, and planar DDs result in planar networks.  
Two different approaches for constructing the planar 
BDDs are presented in the paper. The first approach is 
oriented to constructing a linearly transformed BDD and 
based on calculation of Walsh transform spectral 
coefficients. The second approach is based on constructing 
a newly introduced concurrent BDD (CBDD). 
The paper presents corresponding algorithms of 
constructing planar BDDs for both of the approaches. It is 
shown that integration of the linearization technique into 
the decomposition technique, and vice versa, leads to 
optimization.  

1. INTRODUCTION 

Binary Decision Diagrams (BDDs) are a standard part of 
many CAD systems in logic design, signal processing, and 
other fields where efficient, in terms of space and time, 
manipulation of a BDD representation for a given function 
f is usually estimated by the number of non-terminal nodes 
in the BDD for f, denoted as the size of BDD(f). The size 
of a BDD is very sensitive to the order of variables, 
ranging from the polynomial to the exponential complexity 
for the same function for different orders of variables. 
Therefore, majority of approaches to the reduction of sizes 
of BDDs are related to development of efficient algorithms 
for reordering of variables, see for example, [1], [2]. 
Linearly transformed BDDs are defined by allowing linear 
combinations of variables [3].  
Another important criterion in using the BDD based 
techniques is planarity of the BDD.  
Networks without crossings are advantageous in synthesis 
with Field Programmable Gate Arrays (FPGAs) [4], since 
crossings produce considerable delays, and delays in 
interconnections is one of the most important problems for 

FPGAs. Furthermore, planar networks are desirable in sub-
micron LSIs, since delays in the interconnections and 
crossings are comparable to the delays in logic circuits. 
Planar DDs [5], [6] result in planar networks. 
Notice that a planar decision diagram can be derived by 
the reduction of a decision tree if sharing of isomorphic 
subtrees is restricted to subtrees rooted at neighboring 
nodes at the same level in the Decision Tree (DT). 
Restrictions of the order of labels and values of constant 
nodes can be removed to enlarge the class of functions 
with planar diagrams. However, in what follows, these 
restrictions will be applied to the decision diagrams 
considered.  
Planar decision diagrams have been studied in a number of 
works ([7], [8], [9]). In particular, [8] has derived 
necessary conditions for planarity in decision diagrams of 
certain functions. In [9], these results have been extended 
by completely characterizing symmetric functions with 
planar decision diagrams, and with the motivation that 
such functions are an important set of functions being an 
indispensable part of arithmetic circuits. In [10], [11], 
Linear Decision Diagrams (LDDs) that are planar by 
definition have been proposed as models for efficient 
computation of multiple-valued functions. These decision 
diagrams are based on the corresponding representations 
of logic functions by arithmetic polynomials [12]. 
Complexity of a BDD representation, for a given function 
f, is usually estimated by the number of non-terminal 
nodes. Reordering and linear transformations of variables 
are common methods to reduce the size of BDDs. 
In this paper, we consider construction Binary Decision 
Diagrams by using two different approaches: a) linear 
transformation through Walsh transform coefficients 
calculation; and b) decomposition into a network of 
smaller BDDs operating concurrently.  
Notice that BDD are aimed at representing Boolean, which 
means two-valued functions. Therefore, constant nodes in 
BDDs show two different values, usually encoded by 0 
and 1. However, to extend decision diagram 
representations to integer and complex-valued functions, 
the Multi-terminal binary decision diagrams (MTBDDs) 
are introduced by allowing integers and complex numbers 
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for constant nodes [13]. It is clear that MTBDDs actually 
reduce to BDDs when representing two-valued functions. 
The difference is basically in the interpretation of values of 
constant nodes as Boolean values or integers 0 and 1. 
Since we wish to exploit advantages of spectral methods, 
where a Boolean function is converted into its integer-
valued spectrum, we use the term MTBDDs uniformly for 
diagrams representing either functions or their spectra.  
Moreover, for spectral processing of logic functions we 
may prefer encoding (1,-1) instead of (0, 1) to make the 
functions more compatible with the basic functions in the 
transforms.   
We show that in many cases, the linear transformation 
based technique provides planar BDD implementations 
with a relatively small number of nodes. We have noted, 
however, that in two important situations the technique is 
inefficient. The first situation is when no linear 
transformation exists to obtain the planar BDD with a 
minimized number of nodes and, consequently, the 
corresponding planar solution requires significant 
overhead. The second problematic situation relates to the 
case when a given function is defined by its sum-of-
products form with a large number of variables. In such a 
case, the linear transformation based technique is simply 
inapplicable due to complexity of the calculations.  
We show that both of the above problems can be resolved 
by using a newly introduced decomposition technique. 
This technique is based on implementing a BDD in the 
form of a number of component BDDs operating 
concurrently. The decomposition allows applying the 
linearization procedure to each of the component BDDs 
separately and, consequently, achieving the planar 
solution. The main idea of the paper is to combine the 
linearization and the decomposition approaches for 
synthesis of planar BDDs with the minimized number of 
nodes.  
The paper is organized as follows. The second Section of 
the paper is devoted to construction of a planar BDD from 
a regular BDD by using a linear transformation. The 
decomposition approach based on constructing a network 
of separate concurrent BDDs is described in Section 3. 
Section 4 shows integration of the decomposition 
technique into the linearization method for a BDD-form of 
representation of a given function. In turn, Section 5 
illustrates integration of the linearization into the 
decomposition technique for a PLA-form of representation 
of a given function. Conclusions are given in Section 6.  
 

2. CONSTRUCTING PLANAR BDDS BY USING 
LINEARIZATION 

The method to construct Linearly transformed BDDs (LT-
BDD) by Walsh coefficients exploits the property that 
when a given function f  is decomposed with respect to 

the EXOR sum τ of variables corresponding to the 
maximum value of the Walsh coefficient as 

10 fff ττ ⊕= , the cofactors 0f  and 1f  tend to be 
simple. Therefore, it may be expected that the LT-BDDs 
can be represented by BDDs with small number of nodes.  
Moreover, it was shown in [14] that the linearization may 
lead to a planar implementation of BDDs.  
Definition 1. A Binary Decision Diagram is planar if there 
is no crossings of edges connecting non-terminal nodes, 
under assumption that edges labeled by ix  and ix emerge 
to the left and to the right of a node, respectively, constant 
node 0 is to the left of the constant node 1, and all edges 
are directed downwards throughout their length, which 
precludes arcs that extend around the root node or around 
constant nodes. 
Due to the relationship between Walsh functions and linear 
switching functions, the following algorithm to construct 
LT-BDDs can be used. 

Algorithm 1 (Construction of LT-BDD) 
1. Given: an n-variable switching function f in the 

{1,−1} encoding. Calculate the Walsh spectrum. 
2. Find the Walsh coefficient ( )wS f max,

 of the 

maximum absolute value, except the coefficient for w = 0. 
Declare w = wmax and write its binary representation, i.e., 

( )nwww ,,max K1= . 

3. Determine a linear function ,rr x⊕=τ , where r goes 

over the indices of 1=jw . 

4. Determine co-factors for f with respect to τ, i.e., 
determine the subfunction of n−1 variables where τ =0 and 
1, respectively. 

5. Create a node whose outgoing edges point to the 
cofactors f0 and f1 and label its edges by τ τ  and τ , 
respectively. 

6. Repeat the Steps 1 to 5 for co-factors, for i = 1, to n. 
Assignment of variables to the edges in LT-BDDs can be 
performed by using the following algorithm. 

Algorithm 2 (Assignment of labels to the edges) 
1. If at a node, at the i-th level, decomposition is 
performed with respect to a linear 
combination rqk xxx ⊕⊕⊕ K , 

where rqk <<< K , relate the variable rx  to the level 
i and eliminate it from further considerations. 
2. Repeat the Step 1 to all the levels in the BDD starting 
from the root node. 
Example 1 For a four-variable function f, defined as 

[ ]T1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 −−−−−=F  the Walsh spectrum 
is [ ]TfS 10222226226222226 ,,,,,,,,,,,,,,, −−−−−−−= . 



   

 and the coefficient with the maximum absolute value is 
( ) 10151 =fS , and since ( )1111=maxw , we determine a 

linear function 43211 xxxx ⊕⊕⊕=τ , where each xi 
corresponds to the appearance of coordinate i with value 1 
in the binary representation for maxw . The co-factors of f 

with respect to τ1 are [ ]TF 111111110 ,,,,,,,=  , and 

[ ]TF 1,1,1,1,1,1,1,11 −−−−−=  . We create a node where 

outgoing edges point to subfunctions 0F  and 1F  and 

edges are labeled by 4321 xxxx ⊕⊕⊕  and 

4321 xxxx ⊕⊕⊕  respectively. The variable 4x is 
eliminated from further considerations. Since F0 is a 
constant function, the edge 4321 xxxx ⊕⊕⊕  points to 
the constant node 1 directly. The Walsh spectrum for F1 is 

[ ]TfS 22226222
1

,,,,,,, −−−= . 

The maximum Walsh coefficient for F1 is 6 
for ( )011=maxw , thus we determine 322 xx ⊕=τ , and 
perform decomposition of f1 into co-factors of two 
variables [ ]T1,1,1,10,1 −=F  and [ ]T1,1,1,11,1 −−−−=F  . Since 

1,1F  is a constant function, we proceed with 

decomposition of 0,1F . This co-factor depends on 

variables x1 and x2 only, since x3 was the last variable in τ2. 
The Walsh spectrum of it is [ ]TfS 2222

01
,,,

,
−=  . Since all 

the coefficients in this spectrum have the same absolute 
value, we can chose, for example, 13 x=τ  and we do not 
have to continue the decomposition. In this way, we derive 
the LT-BDD for f as shown in Fig. 1. This LT-BDD 
represents f  as 

( ) ( ) ( )( )3221324321 xxxxxxxxxxf ⊕⊕⊕⊕⊕⊕= . Thus, 
the proposed linearization by Walsh coefficients resulted in 
the reduction of a size of the BDD for f from 9 nodes for 

the original BDD to only 4 nodes for the LT-BDD of Fig. 

1.  
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Figure 1.  LT-BDD for f from Example 1 

Table 1. 
f n BDD BDDv BDDr LT-BDD

5xp-1 7 14 11 35 13
5xp-4 7 16 11 19 15
9sym 9 33 33 33 57

apex4-10 9 95 91 193 148
clip-1 9 37 34 67 35
clip-2 9 58 42 156 45
clip-3 9 73 32 196 51
clip-4 9 76 36 169 27
clip-5 9 36 36 36 22
con-1 7 12 11 11 16
con-2 7 8 7 8 8

ex1010-2 10 155 148 390 156
ex1010-8 10 154 147 377 209

rd73-3 7 16 16 16 16
rd-84-1 8 32 25 54 82
rd-84-2 8 25 22 169 15
rd-84-4 8 19 19 22 59
sao2-1 10 46 32 75 32
sao2-2 10 48 34 85 31

squar5-1 5 5 5 6 5
z5xp1-3 7 20 14 22 12
z5xp1-6 7 15 9 21 9

av. 45 36 96 46  
Table 1 (taken form [14]) compares the sizes of BDDs for 
the initial (BDD) and optimal (BDDv) order of variables, 
planar BDDs (BDDr), and planar LT-BDDs produced by 
decomposition with respect to Walsh coefficients (LT-
BDD). With this comparison we estimate impact of 
keeping decision diagrams planar and efficiency of the 
linearization of planar BDDs by Walsh coefficients under 
this restriction as in the definition of planar DDs. As can 
be seen, on the average, LT-BDDs are for 48% smaller 
than planar BDD, and for 2% and 26% larger than BDDs 
for initial and optimal order of variables. It should be 
noticed that, compared to planar BDDs, planar LT-BDDs, 
when smaller, are considerably smaller (about 70% on 
average), and when larger, they are just for about 20% 
larger.  
It should be noted that the above technique can directly be 
applied not only to regular BDDs but also to multi terminal 



   

BDDs (MTBDDs). We will use the MTBDDs as the main 
subject of inquiry in the remaining part of the paper. 

3. CONCURRENT MTBDD  

There are two important cases when the above-described 
linear transformation technique is ineffective for 
constructing planar BDDs. They are the following. 
1. The initial function is defined by a regular BDD, a 
planar BDD is then obtained there-from, but no linear 
transformation exists to minimize the number of nodes of 
the planar BDD. Consequently, the corresponding planar 
solution has significant overhead.  
2. The initial function is defined by its non-disjoined 
sum-of-products form (PLA) with a large number of 
variables. In such cases, the linear transformation based 
technique is inapplicable due to complexity.  

In this paper, we propose achieving the property of 
planarity of BDDs by using a new approach. This new 
approach is based on decomposing the MTBDD into a 
number of concurrently operating component MTBDDs.  
For this aim, we introduce a concurrent binary decision 
diagram. The concurrent MTBDD (CMTBDD) can be 
constructed by combining several MTBDDs using the 
parallel and the series operations as follows: 
1)  Series connection: replacing one terminal node of one 
MTBDD with another MTBDD. 
2)  Parallel connection: connecting inputs of the roots of 
two or more MTBDDs. 
The above two operations allow us to define a CMTBDD 
recursively as follows: 
1. A single decision node is an CMTBDD. 
2. Series connection of two CMTBDD is an CMTBDD. 
3. Parallel connection of two CMTBDD is an CMTBDD.  
This section introduces a notion of D-polynomial, which 
provides a convenient mathematical model for the 
manipulation of the CMTBDD. It will be shown that the 
parallel and series connections of the CMTBDD can be 
modeled as a product and substitution of D-polynomials 
representing those CMTBDD. 
Consider an n-input, m-output completely specified 
Boolean function mn ZXF →: , where { }*,,10∈X  
and { }10,∈Z . Let F be initially represented in 
minimized (prime and irredundant) sum-of-product (SOP) 
form, where each output Zi is written as a logical sum of 
product terms: 

( )∑= iI jiZ α ; where ( )iI  is an index set of 

implicants associated with output Zi. Implicants can be 
shared between different outputs. We will refer to all jα  
as α -functions. 
Let iY  be the terminal node associated with a product term 

iα . 0Y  will denote a dummy output function, which does 
not produce any output. 

Definition 2. D-polynomial is a polynomial defined over a 
set of terminal nodes iY 00YYiii

αα +∑  , whose 

coefficients α satisfy the following conditions  
a) 10 =+∑ αα

ii
 (completeness) and 

b) jiji ≠∀= ,& 0αα  (orthogonality).  

D-binomial is a special case of D-polynomial, with exactly 
two orthogonal terms, 0011 YYD αα +=  
Using the terminology of logic synthesis, explicit α -
functions iα represent the ON-set of the function, while 

the implicit coefficients 0α represent the OFF-set. 
Thanks to the orthogonality between α -functions, a D-
polynomial can be naturally implemented by a binary 
decision tree whose nodes represent input variables ix , and 
whose leaf cells represent the corresponding terminal 
node 1Y . It is clear that, without any restriction, D-
polynomials can be associated with specific MTBDDs. 
Obviously, such a MTBDD is planar. 
A D-polynomial 

iD  can be interpreted as follows. If 
i
1α evaluates to 1, then ji YD = . If all of explicit 

functions i
1α are equal to 0, then 0YD i =  which means 

that no output is produced. 
Define a product of two D-polynomials.  

Definition 3. Let 0
1
0

1
1 YYD iii

αα += ∑ , and 

0
2
0

2
2 YYD iii

αα += ∑ .  The product of 1D  and 2D , 

denoted as 21 DD o is defined as 
follows ( ) jiij ji YYDD ∑= 21

21 αα &o , 

over each pair of terms from 1D  and 2D , including the 
implicit terms 0

1
0Yα and 0

2
0 Yα . Here 21

ji αα & is a logic 

product of the corresponding α -functions and jiYY  is a 

concatenation of the respective terminal nodes. 
Interpretation: when 21

ji αα & evaluates to 1, both iY and 

jY are computed concurrently.  
The following two theorems, given here without the proof 
for the limited space, are important in study and 
applications of D-polynomials. 
Theorem 1. An arbitrary D-polynomial iD can always be 
represented as a product of D-
binomials ( ),∏∑ +=+=

j iiiii
YYYYD 0

1
0

1
0

1
0

1
1 αααα  

where ij
00 αα = , and i

j
j

i 00 αα =∏ . 

We will call expression (2) a binomial form of the D-
polynomial. The terms of this expression will be called 
terminal binomials.  



   

An important conclusion from the above theorem is that 
the product of D-polynomials can be always presented as a 
product of the corresponding terminal binomials. 
Subsequently, the terminal binomials can be multiplied to 
obtain higher level D-polynomials. Obviously, there are 
several ways to group (multiply) terminal binomials to 
form a D-polynomial. Different grouping of terminal 
binomials yields different MTBDDs, resulting in different 
implementations of a Boolean function. This fact forms the 
basis of the proposed decomposition approach; an 
implementation of planar MTBDDs with minimum 
number of nodes.  
Theorem 2. A multiple-output Boolean function can 
always be implemented as a product of D-polynomials. 
Conclusion: CMTBDD corresponding to such an 
implementation can be realized as a parallel connection of 
MTBDDs corresponding to the individual D-polynomials. 

4. COMPLEMENTING LINEAR 
TRANSFORMATION WITH DECOMPOSITION  

In this section, we discuss a case when the linearization 
technique discussed in Section 2 is inapplicable or 
ineffective for synthesis of a planar MTBDD.  This 
situation is possible when no linear transform exists that 
allows transforming an initial MTBDD into the planar 
form with the minimized number of nodes. In this case we 
recommend checking whether the MTBDD can be firstly 
decomposed into a number of CMTBDDs such, that at 
least one of these CMTBDDs is transformable into the 
planar form.  
The example given below illustrates that the answer to this 
question can be positive. 

Example 3. Let D0 be the D-polynomial: 

36321353212632125321

253212432115321143210

YxxxYxxxYxxxYxxx
YxxxYxxxYxxxYxxxD

+++

++++= Let’s 

try to apply the linear transformation described in Section 
2. For the application of the Walsh spectrum based 
procedure, we encode 

.,,,,,, 7654321 36352625241514 ======= YYYYYYY  
Thus, these coefficients are represented by a 
vector [ ]TY 76435421 ,,,,,,,= . It is clear, that in this 
case the linearization procedure is inefficient since there 
just one pair of equal values and it belongs to different 
subtrees. 
Let us now apply the decomposition described in Section 
3. According to the decomposition technique the initial D-
polynomial 0D can be presented as the product of two D-

polynomials 21 DD , as follows: 
( )

( )432532532632

121221221321210

YxxYxxYxxYxx
YxxYxxYxxYxxDDD

+++

+++==

o

o Here

jiij YYY = , which is a concatenation of iY  and jY . Let us 

now apply the linearization procedure to D-
polynomials 21 DD ,  separately. For 1D  we have: 

122 xxx ⊕= . For 2D we have: 322 xxx ⊕= . Finally, 

for the initial D-polynomial 0D we have the 
implementation in the form of concurrent LT-BDD as it is 
shown in Fig. 2. 
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Figure 2. Implementation of the exemplary concurrent 
LT-BDD for Example 3. 
As can be seen from the example, the total number of 
nodes is reduced considerably by using the decomposition. 
The total number of nodes in the example is only 4, while 
in the initial MTBDD implementation we had 7 nodes and 
the linearization technique was inapplicable. 
At this stage, the content of this section should be 
considered as a motivation example. We don’t yet provide 
a ready-made method for the BDD decomposition. 
Investigation of signs for such decomposition and 
development of the suitable method are in the main stream 
of our present research.  

5. COMPLEMENTING LINEARIZATION WITH 
DECOMPOSITION  

The present section deals with the case when a given 
function is defined in a form of non-disjoint sum of 
products and when the total number of input variables is 
large. In other words, the function is defined by a sparse 
PLA form, where the majority of the cells of the AND 
array are “don’t cares”. It is clear, that the linear 
transformation technique is inapplicable in such cases due 
to complexity of the task.  
In this section we propose a decomposition technique that 
is based on the concurrent BDD representation and D-
polynomials algebra observed in Section 3. The proposed 
method is based on decomposition of the given function 
into the network of concurrent BDDs, followed by 
linearization of the resulting component BDDs 
independently.  
According to proposed approach, the set of logic blocks 
forming the component BDDs is extracted from a set of 
product terms representing the ON-set of the given 



   

function. It is followed by a hierarchical decomposition of 
the blocks into a common header and a set of block 
fragments. When forming the block fragments the same 
terminal nodes are likely to be included into the same 
block fragments to provide effective linearization on the 
next step of the technique.  The remaining set of product 
terms, not included in the block, is called a remainder. 
(Fig. 3 shows a structure of the exemplary MTBDD 
obtained by the decomposition.)  
The header is a fragment (subset of rows and columns) of 
the PLA table composed of prefix variables. The header is 
selected in such a way as to satisfy the following 
condition: it must contain at least one column without 
“don’t cares” at each step of the Shannon expansion (along 
the prefix variables). This strategy helps to guarantee the 
planarity of each of the component MTBDDs and to limit 
the number of nodes in the resulting MTBDD. By 
construction, the block header is a logic function whose 
ON-set is a superset of the ON-sets of logic functions 
associated with the individual blocks. It will be 
implemented as an MTBDD whose internal nodes are 
associated with the prefix variables. The terminal nodes of 
the MTBDD represent the block fragments, each to be 
implemented as a separate MTBDD. The method will be 
illustrated using the following example adopted from the 
misex1 MCNC benchmark set. 
Example 4.  Consider a logic function described by the 
following PLA notation with a set of input 
variables { }81 xxX ,,K= , and a set of binary output 
variables. Output vectors are “1-hot” coded and presented 
in the PLA table as decimal numbers.  

1) 0111---- 1 17) 010----- 5
2) 1010---- 1 18) 0-11---- 5
3) 010----- 2 19) 0-10---- 5
4) 0011---- 2 20) 0-00---- 5
5) 1001---- 2 21) 001---- 5
6) 001--1-- 2 22) 010----- 6
7) 0-00--1- 2 23) 0-11---- 6
8) 01-1---- 3 24)1001---- 6
9) 1001---- 3 25)1010---- 6

10)  010-1--- 3 26) 001--1-- 6
11) 0010-0-- 3 27) 0-00--1- 6
12) 0000--0- 3 28) 01-1---- 7
13) 1010---- 4 29) 1001---- 7
14) -010--1- 2 30) 1010---- 7
15) 010----0 4 31) 010-0--- 7
16)  01000--- 4 32) -010-0-- 6  

The product terms of the table are divided into Block-set 
and Remainder as shown in Figure 3.  

 
 Block-set  

  Header Remainder  

A B E 
C F D 8 28 18 20 19 14 32 23 27 7 Y 0 

Y 0  
Figure 3. General structure of concurrent MTBDD for 
Example 4. 

Numbers of product terms included in Block-set are: 1-6, 
9-13, 15-17, 21, 22, 24-26, 30-32.   
The Block-set consists of a header and block-sets A-F. 
Prefixes associated with blocks A - F of Block-set form the 
ON-set of the header function: 

A:  010- D:  1001
B:  001- E:  0000
C:  1010 F:  0111  

The block-set can hence be written as the following D-
polynomial: 

FxxxxExxxxDxxxx
CxxxxBxxxAxxxDB

432143214321

4321321321

++

+++= , 

where A, B, C, D, E, and F represent the block fragments. 
The entire logic function can be written as a product of 

BD  and the D-polynomial representing the Remainder. 
The header can be implemented directly as a planar 
MTBDD.  
Notice that some of the block fragments (in our case those 
associated with blocks C, D, F) represent the final product 
terms of the given function. This is because the block 
fragments obtained by extraction of the respective prefixes 
are composed of trivial product terms that contain only 
“don’t cares”. In our example, node C is associated with 
product terms 2, 13, 25, 30, node D with product terms 5, 
9, 21, 24, 29, and node F with product term 1. The non-
trivial blocks (A, B, E), can be implemented directly as a 
planar MTBDD. The MTBDD of the header can be 
similarly derived. The algorithm can continue by 
recursively decomposing the block sets and the remainders 
as needed (until no planar headers can be found). 
The Remainder includes the following product terms. 

7)  0-00---1- 2 20)  0-00----- 5
8)  01-1----- 3 23)  0-11----- 6

14)  -010---1- 2 27)  0-00---1- 6
18)  0-11----- 5 28) 01-1----- 7
19)  0-10----- 5 29) -010---1- 6  



   

In Figure 3, rectangular nodes represent the product terms; 
in the Remainder they are labeled with the corresponding 
product term numbers. The triangular nodes represent the 
block fragments that are yet to be implemented. 
To introduce the linear transform technique to component 
MTBDDs of the exemplary concurrent MTBDD, we apply 
the linearization to the Remainder (Fig. 4). Notice that 
linearization of the Block set is unnecessary due to its 
simplicity and planarity after the decomposition. 
The Remainder represents a function of four 
variables 7431 xxxx ,,, . For performing the linearization 
we will handle the header of the Remainder. Consequently, 

7x  has to be eliminated from the future considerations as 
an internal variable of a component MTBDD (not 
belonging to the header).   
The header represents a function of three 
variables 431 xxx ,, . For the header we define two new 
terminal nodes 1 and 2 (see Fig. 4). Names of these “new” 
terminal nodes are highlighted by the bold-italic font to 
distinguish them from the original terminal nodes. The 
function of the header is expressed by 
vector [ ]TR 01100022 ,,,,,,,= (the order of the variables 

is: 314 xxx , ). We transform this function by replacing 3x  

with linear combination 313 xxx ⊕= . This 
transformation reorders elements of the vector R into a 
new vector [ ]TR 10100022 ,,,,,,,=σ . The corresponding 
LT-MTBDD of the header is shown in Fig. 5.  In our 
example, the above transformation results in reduction of 
the number of the header’s nodes from 5 to 3. 
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Figure 4. CMTBDD of the Remainder. 
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Figure 5. LT-MTBDD of the header of the Remainder 

6. CONCLUSIONS 

We discussed the problem of constructing planar 
MTBDDs. A novel technique based on calculating Walsh 
coefficients has been presented. This technique allows 
achieving planarity of MTBDD and a relatively small 
number of nodes in the resulting planar MTBDD. 
However, there are cases when this technique appears to 
be ineffective. We investigated two of such cases. In the 
first of them, the linearization technique is inapplicable 
since a linear transform leading to simplification of the 
planar MTBDD does not exist. In the second case, the 
given function is defined in its PLA form and consequently 
cannot be linearly transformed due to complexity. Both 
these cases can be handled by using a newly introduced 
decomposition technique.    



   

The main results of the paper can be summarized as 
follows. 
1. Linearization of an MTBDD with restriction of the 
sharing neighboring nodes on the same level provides 
planarity of the MTBDD. 
2. A planar and compact MTBDD can be obtained from a 
given MTBDD, if the latter is decomposed into two or 
more component MTBDDs, and they are then separately 
linearized. 
3.  A decomposition technique is proposed for obtaining 
planar MTBDDs from a given function defined by its PLA 
form. For obtaining compact MTBDDs, the decomposition 
is completed by the mentioned linearization algorithm.  
4. Algebra of D-polynomials is proposed for description 
of concurrent MTBDDs, and serves the base of the 
proposed decomposition technique. 
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