

PIECEWISE LINERIZATION OF LOGIC FUNCTIONS*

* The work was supported by BSF under Grant 2002259

Ilya Levin1, Osnat Keren2, George Kolotov1, Mark Karpovsky3

1Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, i.levin@computer.org
2Bar Ilan University, Ramat Gan, Ramat Gan 52900, Israel, kereno@eng.biu.ac.il
 3Boston University, 8 Saint Mary's Street, Boston, MA 02215, markkar@bu.edu

ABSTRACT

The paper deals with a problem of linearization of
multi-output logic functions. Specifically, the case is
discussed, when the functions have a large number of
variables and cannot be efficiently linearized by using
known techniques. For solution of the problem a so-
called piecewise linearization is proposed.
The piecewise linearization comprises decomposition
of an initial multi-output function into a network of
components, followed by independent linearization of
the components. The decomposition is based on the
theory of D -polynomials described in the paper. The
resulting piecewise linearized network is directly
mapable onto a special type of a binary graph called
Parallel Multi Terminal BDD.
An efficient heuristic algorithm for the piecewise
linearization is provided. The presented benchmarks
results demonstrate high efficiency of the proposed
method in comparison with known linearization
approaches. The results also show that integrating
linearization techniques with the described
decomposition, thus obtaining the piecewise
linearization, are a very promising both from practical
and from the theoretical points of view.

1. INTRODUCTION
The use of the Linear Decomposition as tool for
optimization in logic synthesis, particularly, in Binary
Decision Diagrams (BDDs) optimization is promising
direction of research in the field of logic design [1].
BDDs are a standard part of many CAD systems in
logic design, signal processing, and other areas where
efficient, in terms of space and time, manipulation of
BDD representation for a given function is usually
estimated by the number of non-terminal nodes in the
BDD. The size of a BDD is very sensitive to the order
of variables, ranging from the polynomial to the
exponential complexity for the same function for
different orders of variables. Therefore, the majority of
approaches to the BDD size reduction are related to
development of efficient algorithms for reordering of
variables see for example, [2], [3]. Linearly
transformed BDDs are defined by allowing linear
combinations of the variables [4].
The known linearization techniques use representation
of logic functions in a form of the truth table. The
present paper deals with multi-output logic functions

defined by their implicant table. Moreover, we deal
where the case when the implicant table is sparse
(contains a large number of “don’t cares”), and the
function is defined by the corresponding implicant
table depends on the large number of variables. In
such a case the use of known linearization techniques
becomes inefficient or even inapplicable due to the
great size of the corresponding truth table. The
combination of the linearization and decomposition
was used for implementation of planar BDDs [5] and
for linearization of functions defined in sum-of-
product form [6]. The present paper develops the idea
of piecewise linearization which is a functional
decomposition followed by a linearization procedure.
The paper proposes an algorithm for constructing the
piecewise linear implementation of an arbitrary logic
function defined by its sum-of-products (SOP).
The theoretical foundation of our decomposition
method is the algebra of D -polynomials [7]. The result
of the decomposition is a direct mapping of the logic
function onto a special type of a binary graph called
Parallel Multi Terminal BDD (PMTBDD) that consists
of the specifically connected component MTBDD.
The decomposition approach described in this paper
aims at practical implementations of logic functions as
specific VLSI structures. The main purposes of the
proposed technique are to minimize the size of the
resulting VLSI implementation by representing the
initial multi-output function as a network of
component MTBDDs. Specifically, the above task,
named piecewise linearization, can be stated as
follows:
Given a minimized sum-of-product representation of a
multiple-output logic function, construct a network of
component MTBDDs of the minimal size by applying
linearization of components.
The paper is organized as follows. Section 2 describes
the general structure of PMTBDDs. Section 3
introduces the notion of D -polynomials. Section 4
describes the algorithm of decomposition, followed by
the linear transformation of components. Experimental
results and the corresponding discussion are provided
in Section 6. Conclusions are presented in Section 5.

2. PARALLEL MULTI TERMINAL BDDS
The linear decomposition of multi-output functions of
large number of input variables, defined by a large set
of cubes of a high order, is a significantly hard
problem due to its complexity.
Decomposing of an initial function into a network of
components followed by their independent
linearization can assist in overcoming the problem of
complexity for the above cases.
The proposed decomposition approach is based on a
new concept of parallel multi-terminal binary decision
diagram (PMTBDD) comprising component
MTBDDs.
The PMTBDD is constructed by combining
component MTBDDs using the parallel and series
operations:
1) Series connection: replacing one terminal node of
an MTBDD with another MTBDD.
2) Parallel connection: connecting roots of two or

more MTBDDs.
Introducing the PMTBDD opens a way for handling
multi-output logic functions of a large number of
variables, defined by their SOP (implicant table) with
a large number of cubes of a high order.

3. D -POLYNOMIALS
This section introduces a notion of D -polynomial
which provides a convenient mathematical model for
the manipulation of MTBDD. We show that the
parallel and series connections of the MTBDD can be
modeled as a product and substitution of D -
polynomials representing those MTBDDs.

3.1. Representation of Logic Functions
Consider an n-input, m-output completely specified
Boolean function mn ZXF o: , where ^ `*,,X 10�
and ^ `10 ,Z � . Let F be initially represented in
minimized (prime and irredundant) sum-of-product
(SOP) form, where each output iZ is written as a
logical sum (OR) of product terms (implicants):

	
i jj I i
Z B

�
�� (1)

� �iI denotes an index set of implicants associated with
the output iZ . Implicants can be shared between
different outputs. Notice that D ҏs are functions of
input variables � �nxxx ,,, !21 . We will also refer to
them as theD -functions.
Let iY be the name associated with the output iZ .

One can also think of iY as an operator which has to
be performed when the corresponding output iZ
evaluates to 1. 0Y will denote a dummy output
function (or an empty operator which does not produce
any output).
Definition 1. D -polynomial is a polynomial defined
over a set of operators iY

00YYZD iii
D� ¦ (2)

while the coefficients iZ ҏsatisfying the conditions:
a) 10 �D*i iZ (completeness),

b) ji,ZZ ji z� � 0 (orthogonality).
Taking (1) into account, we have:

	
	
 	
j i ij ii j I i j I i
D Y Y Y YB B B B

� �
� � � �� � �0 0 0 0

where ijD denotes j th -implicant of function iZ .

In this work we are interested in a class of D -
polynomials defined over a subset of variables iY
whose coefficients are implicants of a logic function.
Such D -polynomials are used to represent logic
functions. Coefficients iD ҏare defined explicitly as the
corresponding product terms of the function, while

0D is defined implicitly as a complement of * iD (to
satisfy the completeness condition).
D -binomial is a special case of D -polynomial, with
exactly two disjoint (orthogonal)
implicants, 0011 YYD DD � .
We distinguish between D -functions belonging to
different D -polynomials by labeling them with a
super-script index associated with the corresponding
polynomial; k

iD will indicate that implicant iD is

associated with the D -polynomial kD ҏThe same
implicant can be associated with different polynomials,
so that j

i
k
i DD for arbitrary values of k and j .

Example 1. The following is a D -polynomial:

0
1
0221111 YYxxYxD D��

Here, 21
1
21

1
1 xxx DD , and 1

0 1 2x xD . The
corresponding MTBDD may be constructed in
straightforward way and can be achieved by repeatedly
applying the Shannon expansion to 1D . Notice that the
simplicity of the above transformation is based of the
following specific property of the 1D : for each
application of the Shannon expansion, at least one input
variable is present in all the implicants.
Conceptually, a D -polynomial iD can be interpreted

as follows. If i
1D evaluates to 1, then

ji YD . If all of

the explicit functions i
1D are equal to 0, then 0YDi

which means that no output is produced (or an empty
operator is to be performed).
Let us define a product of two D -polynomials.
Definition 2. Let

	
 ij ii I i
D Y YB B

�
� �� 1 1

1 0 0 ,

and
	
 kj kk I k

D Y YB B
�

� �� 2 2
2 0 0 . The product of

1D

and 2D , denoted as 21 DD D ѽҏis defined
by: 	
\ ^ij kl i kD D Y YB B� ¸� 1 2

1 2D D ,

over each pair of terms from 1D and 2D , including

the implicit terms 0
1
0YD and 0

2
0YD . Here 21

klij DD � is a
logic product (AND) of the corresponding D -
functions and ji YY D is a combination of the
respective operators. In other words: when

21
klij DD � evaluates to 1, both iY and kY are computed

concurrently.
Lemma 1. An arbitrary D -polynomial iD can
always be represented as follows:

	
i i i j
i j j j ijj j

D Z Y Y Z Y YB B� � � �� �0 0 0 0
 (3)

where ij Z00 D , and 0 0
j i

ij
B B�� .

Proof. We will demonstrate that the product of
� �00YYZ j

ij
i
j D� is equal to the D -polynomial with the

same coefficients. First, notice that by definition all
explicit functions are pairwise orthogonal, so that

0 � k
i
kj

i
j YZYZ , for kj z . Furthermore,

orthogonality of the functions and the completeness

condition i
j

j
i DD 0 that must be satisfied by each

D -binomial imply that ,Z k
i

i
j 0D� , for jk z .

Hence .ZZ i
j

k
i

i
j � 0D Also, notice that the

concatenation ^ `0YYj D means that both operators jY

and 0Y need to be performed simultaneously. Since

0Y is a dummy operator, only jY has to be computed;

hence ^ ` jj YYY 0D . Finally, orthogonality and
completeness conditions of D -functions imply
that ,

j
j

i 10 * D j
i

i
00 DD � , ,,& k

i
j

i
i !000 DDD �

,
j

j
i

i �� 00 DD so that ,
j

ij
i� 00 DD

Therefore, the subsequent multiplication of the
consecutive terms of expression (3) yields

\ ^ \ ^ \ ^ \ ^	

	

2 1 2
1 2 1 2 1 0 1 0 2 0 2 0 0 0 0 0

2

0 0
1

i i i i i
i i i

m
i j
j j i

j

Z Z Y Y Z Y Y Z Y Y Y Y

Y Y

B B B B

B B
�

�

¸ � ¸ � ¸ � ¸

� ��

D D D D

� � � � ! ���� �
�

2

1
000

2
0

1
02211

m

j

j
ij

i
jii

ii YYZYYZYZ DDD

� � ������� 00
2
0

1
02211 YYZYZYZ m

iiim
i
m

ii DDD !!

� � 00002211 YYZYYZYZYZ i
jj

i
j

i
m

i
m

ii DD � ���� ¦! .

QED
Theorem 1. An arbitrary D -polynomial iD can

always be represented as a product of D -binomials:
� �� � ,�¦ � �

ijI
i
ii

i
ij

i
i

i

jji YYYYZD 0000 DDD (4)

where ij
00 DD , and i

j
j

i 00 DD � .

Proof. Let � � � �1 1 0 0 1 1 0 0
m m m m

m j j k kD Y Y Y YD D D D � �D .

After performing the multiplication we have:
^ ` ^ ` ^ `

� �
� � � � 001110001111111

0001100111

000101001011111

YYYY

YY

YYYYYYYD

mm
k

m
j

m
k

m
j

m
k

m
j

m
k

m
j

m
k

m
j

m
k

m
j

m
k

m
j

m
k

m
j

m
k

m
j

m
k

m
j

m
k

mm
k

m
j

m
k

m
jm

DDDDDDDDDDD

DDDDDDDD

DDDDDDDD

�� �������

 �������

 ������� DDD

Based on this, every logic function i
jZ of arbitrary

D -polynomial iD may be presented as a product of
binomials as follows:

� � � �� ��¦ � �
iI

i
ii

i
ij

i
iiI

i
ij

i
j YYYYZ 0000 DDDD (5)

Substituting (5) into (3) results in (4). QED
An important conclusion from this theorem is that the
product of D -polynomials can be always presented as
a product of the corresponding terminal binomials.
Subsequently, the terminal binomials can be multiplied
to obtain higher level D -polynomials. Obviously,
there are several ways to group terminal binomials to
form a D -polynomial. Different grouping of terminal
binomials yields different PMTBDD’s, resulting in
different implementations of Boolean functions. This
fact forms the basis of our decomposition approach.

3.2 Decomposition of D -polynomials
We construct an MTBDD corresponding to a system
of D -polynomials. Different groupings of the
terminal binomials lead to different implementations
of the logic function represented by this system. It
defines a way to decompose the logic function by
manipulating the system of D -polynomials
representing the function.
The starting point of our method is the specification of
a logic function in the form of an implicant table.
An initial system of D -polynomials can be easily
derived from the implicant table by associating a
single D -binomial with each product term of the
table. The function can then be represented as a
product of the D -binomials.
Theorem 2. A multiple-output Boolean function can
always be implemented as a product of D -
polynomials.
Proof. Represent the implicant table of the logic
function as a product of D -binomials and multiply the
orthogonal binomials to create the constituent D -
polynomials.
Conclusion: MTBDD corresponding to such an
implementation can be realized as a parallel
connection of subtrees corresponding to the individual
D -polynomials.

4. PARALLEL DECOMPOSITION
The aim of the proposed parallel decomposition is
creating the PMTBDD for an arbitrary multi-output
function. The proposed decomposition algorithm is
based on partition of the set of product terms
representing the ON-set of the function into a set of
logic blocks. It is followed by a hierarchical

decomposition of blocks into a common header and a
set of block fragments.
This is accomplished by extracting a set of common
factors (so-called prefixes) from the subset of product
terms of the original implicant table.
Definition 4: A product term or a part of the product
term, is called a prefix.
A set of all prefixes defines a block header. A subset
of product terms with a common prefix is called a
block. A set of all blocks is referred to as a block set.
Definition 5: The set of terms including the given
prefix precisely is called its family.
The remaining set of product terms, not included in the
block set, is called a remainder.
Definition 6: The set of all the rows of the implicant
table that do not belong to any of the families is called
the remainder of the current stage.
A set of product terms obtained by extracting a
common prefix from all the members of the block will
form a block fragment or tail.
Definition 7: The prefix’s family, after all the prefix’s
variables are set to “don’t care”, is called its tail.
Header is a fragment (subset of rows and columns) of
the implicant table composed of the prefix variables.
The header is selected in such a way as to provide
minimization of the resulting PMTBDD. We propose
to select the header by taking into account the
following underlying principle. 1) increase the
percentage of “non-don’t care” cells (density) of the
corresponding fragment the implicant table. 2) ensure
the efficiency linearization of the corresponding block.
By construction, the block header is a logic function
whose ON-set is a superset of the ON-sets of the logic
functions associated with the individual blocks. It will
be implemented as an MTBDD whose internal nodes
are associated with the prefix variables. The terminal
nodes of the tree represent the block fragments, each
to be implemented as a separate MTBDD.
The target of the proposed decomposition algorithm is
to minimize the total size of the diagram. The
algorithm divides the initial function into a block

sB and a remainder sR . The block is a sum of
products of simpler sub-functions with prefix terms.
The group of prefixes i,sp – the dense fragment
chosen for the BDD implementation – forms the
header of the block and is, indeed, implemented as a
MTBDD, with the sub-functions playing the role of
the terminals. Each of the sub-functions and the
remainder function sR can be repeatedly decomposed
in the same way, until no further decomposition is
possible.
An important feature of the proposed method is its
ability to benefit from any other optimization method
the user may wish to employ – Sifting, K -Procedure,
etc [8, 1]. These will be applied to the component
MTBDDs, and further reduce the total diagram’s size.

PMTBDD with linearized blocks is denoted
LPMTBDD.

4.1 Decomposition Algorithm
The following algorithm details the flow of a particular
iteration.
L = Empty list of pairs {Prefix, Tail}
Let R = Set of prodict terms, Y = vector of integer outputs.
Let B = Basic Prefix, TF = its family, TT=TF\B = its tail
L = [L, (B, TT)]
TU = R \ (TF U TR)
C = {t: t�R and t·BŁ0}
TR = {t: t�R\(C � TF)}
C = COMMON_PARTS(C)
While |C| > 0,
 Let S = Secondary Prefix
 TF = its family
 TT = TF\S = its tail
 L = [L, (S, TT)]
 TO = {t: t�C and t·SŁ0}
 TNO = {t: t�C\TO}
 C = TO
 TR = TR � TNO
End While.
Classify and enumerate the tails in L
Construct the Block’s BDD from L
LT = {l: l�L, Tail(l) is trivial}
LNT = {l: l�L\LT}
If the remainder is trivial,
 LT = [LT, Remainder]
Else
 LNT = [LNT, Remainder]
End If
For all the list elements in LT
 Implement the tail
End For
For all the list elements in LNT
 Recursively call this procedure
End For
The main part of a particular iteration consists of
choosing the prefixes for the block. The prefixes are
chosen one by one. Each time a prefix is chosen, all
the prefixes not orthogonal to it and belonging to
different Z -functions are moved to the remainder.
Non-orthogonal prefixes belonging to the same
function as the prefix in the block are included in the
block. This continues until no more suitable prefixes
are present. Thereafter the iteration proceeds to
enumerate the tails and constructs the block’s
MTBDD. The non-trivial tails and remainder serve as
inputs to the next iterations. The trivial tails are
implemented immediately as separate conjunction
BDDs and do not require additional iterations.
Example 2: The imlicant table used in the example is
presented in Table 1.
Table 1: The imlicant table for Example 2

X0 X1 X2 X3 X4 F0 F1 F2 F3
0 0 1 – 0 – 1 0 0 0
1 0 1 – 1 – 0 1 1 0
2 – – 1 – 0 0 0 1 1
3 – – – – 1 0 0 0 1
4 1 0 – 1 – 1 1 0 0

BDD, LTBDD, PMTBDD and LPMTBDD for the
example are presented in Figures 1-4 correspondingly.

Figure 1. Straightforward implementation of the
MTBDD for the Example 2.

Figure 2. Linearly Transformed MTBDD for the
Example 2

Figure 3. PMTBDD corresponding to the Example 2.

Figure 4. Linearly Transformed PMTBDD for the
Example 2.

Terminal nodes of MTBDDs in Figures 1-4 are
marked by decimal numbers of corresponding outputs.
A standard implementation of the exemplary MTBDD,
as an ordered MTBDD, is presented in Figure 1a.
Figure 1b shows an implementation based on the
proposed decomposition approach, in a form of
PMTBDD. The PMTBDD comprises two portions –
the block (left) and the remainder (right). The portions
are assembled by the newly introduced parallel
connection of MTBDDs. Notice that according to the
product operation introduced in Definition 2, sets of
terminal nodes in the PMTBDD and in the standard
MTBDD are not the same. It is the result of the
concatenation operation between the original terminal
nodes. The concatenation is calculated as the OR
function between corresponding output vectors (see
Definition 2). For example, terminal node 7 in the
MTBDD (Figure 1) corresponds to two terminal nodes
3 and 6 in the PMTBDD (Figure 3). Such cases reflect
the non-disjoint property, as in cubes 1 and 2 from
Table 1.
The proposed approach, presented by Example 2,
allows achieving significant improvement: indeed, the
standard MTBDD has 17 non-terminal nodes (NTNs),
after linearization this is reduced to 12 NTNs (and 2
XOR gates). PMTBDD has 8 NTNs, linearization
further reduces it to 6 NTNs (and 2 XOR gates).

4.2. Choosing the Prefixes
In this section the process of choosing the suitable
block header of the iteration is discussed. The
requirements for the first (basic) prefix and all other
(secondary) prefixes are given and the criteria the
choosing them are suggested.
The choice is performed by grading all the potential
candidates, computing a weighted average of the
different grades for each candidate, and then selecting
the candidate with the highest grade.
The following notations are used: P – the prefix under
consideration. R – the set of rows of the implicant
table.
For a selected prefix: FT – the family of the prefix.

RT – the set of the terms that don’t depend on any of

the prefix’s variables. � �RFU TT\RT � – the set
of terms depending on some of the prefix’s variables.
It is called the “undecided” set, since these terms are
neither the prefix’s family nor its remainder. 0T – the

set of terms orthogonal to the prefix. UTT �0 . M –

the number of variables in the prefix. FTN .

For any set A of terms:
� � � �^ `""xt,At:xAX ii �z�� . In other words,

� �AX is the set of variables in all the terms of A .
� � � �^ `¦

�

�z
At

ii ""xt:xAS . In other words, � �AS is the

number of literals in all the terms of A.

� �
^ `
*

At
tSsupAY

�

 , where tS is the row in the Sums

matrix of the implicant table corresponding to t . In
other words, � �AY is the set of outputs corresponding
to all the terms of A .

4.2.1 List of Candidates
The prefix can be either a complete row of the
Products matrix of the implicant table, or a subset of
literals common to several terms. A straightforward
procedure is proposed below for constructing the list
of the candidates from the list of terms of the implicant
table.
Let y,x be variables with values from {0, 1, –}. The
operator � �y,x\ compares the two Boolean variables
and returns the value of one of them if they are equal,
“don’t care” otherwise:

� � � � � �yxI"care tdon'"yxxIy,x z� \ (5)

The function Common(1T , 2T) accepts the two terms

1T and 2T and applies ȥ in a bitwise manner to each
of the variables in the set � � � �21 TXTX � . Finally, the
following method summarizes the suggested
procedure.
Constructing the List of Candidates.
INPUT: List of prodict terms.
OUTPUT: List of candidates.
Output ĸ Input
Temp1 ĸ Output
REPEAT
 Temp2 ĸ Empty set
 Apply Common() to every pair of terms from Temp1.
If the result is not empty, add it to Temp2.
 Output ĸ Output U Temp2
 Temp1 ĸ Temp2
UNTIL |Temp1| = 0

4.2.2 Choosing the Basic Prefix
The basic prefix is the foundation of a block. It is
chosen so as to make the block header the most
suitable for a BDD implementation. For this, the basic
prefix has to attract the secondary prefixes “close” to it
and repel those “far” from it.
There are three main concerns to consider here: the
input variables, the output functions and the length of
the prefix. In addition, since the secondary prefixes
will be chosen from the set OT , it is imperative to

measure the self-orthogonality of UT .
The first criterion answers the “Inputs” requirement:

� � � �
� � � �� � � �RF

RF
X TXPX\TX

TXTX
�

�
� 1D (6)

It counts the variables common to the tail and the
remainder corresponding to the prefix. The ratio has to
be reduced as much as possible, in order to separate
the block (with its tails) from the remainder. This
criterion has values in [0, 1] interval, 0 corresponding
to the case when all the remainder's variables are
present in the tail and 1 to the opposite.

The second criterion answers the “Outputs”
requirement:

� � � �
� � � �RF

RF
Y TYTY

TYTY
�

�
� 1D (7)

It counts the outputs common to the tail and the
remainder corresponding to the prefix. The rationale
here is the same as for the “Inputs” requirement.
The third criterion, called “Prefix Area”, measures the
percentage of the area covered by the prefix within its
family.

� �F
P TS

MN
 D (8)

The reasoning is simple: the longer the basic prefix,
the longer the list of candidates for the secondary
prefixes.
The final criterion, called “Orthogonality” answers the
additional requirement.

� �
� �Ub

Ob
T TS

TS
 D (9)

It counts the number of literals in the terms orthogonal
to the prefix relative to the number of literals in all the
candidates.

4.2.3 Choosing the Secondary Prefix
In selecting the basic prefix it’s important to establish
a solid foundation for the block. For secondary
prefixes the goal is different, and the requirements
change accordingly. The prefixes already chosen into
the block have to be taken into account.
In the following equations, the superscript indices i
and 1i � stand for “current situation” and “after
adding the considered prefix”, respectively.
The first criterion, called “Additional Inputs”, counts
the number of variables common to the tail and to the
remainder of the considered prefix, but only those not
hitherto present in the block.

� � � � � � � �
� � � �� � � �R

ii
F

i

R
i

F
i

R
i

F
i

X
TXPXTX

TXTXTXTX
111

11

\
1

���

��

�

���
� E

(10)

The second criterion, called “Additional Outputs”,
counts the number of output functions common to the
tail and to the remainder of the considered prefix.
Here, like in the previous criterion, only the newly
added outputs are considered.

� � � � � � � �
� � � �R

i
F

i

R
i

F
i

R
i

F
i

Y TYTY

TYTYTYTY
11

11

1
��

��

�

���
� E (11)

The third criterion, called “Additional Area”, measures
the additional area brought to the block and to the
remainder by selecting the considered prefix.

� � � �
� �

� � � �
� �R

i
R

i
R

i

F
i

F
i

F
i

S TS
TSTS

TS
TSTS

1

1

1

1

�

�

�

� �
�

�
 E (12)

This equation can be rewritten as follows:
� �
� �

� �
� �

� �
� �

� �
� �F

i
F

i

R
i

R
i

R
i

R
i

F
i

F
i

S TS
TS

TS
TS

TS
TS

TS
TS

1111 11 ���� � ¸
¹
·

¨
©
§

��� E
 (13)

Each of the two fractions is limited to the interval [0,
1], but the total value of ȕS is in the interval [–1, 1]. In

this it differs from all the other criteria and ruins
somewhat the elegance of the total, but does not bear
any serious impact on the results.

4.2.4 Combining the Criteria
The four criteria and the three criteria for the basic
prefix are combined in the following weighted
average.

SSYYXX

TTPPYYXX

bbb
aaaa

EEEE
DDDDD

��
��� (14)

When choosing the basic prefix, the candidate with the
highest D is taken. Likewise, when choosing the
secondary prefix, the candidate with the highest E is
taken. The coefficients of the criteria have to be
chosen so as to get the optimal result.

5. EXPERIMENTS
The experiments demonstrate that the proposed
decomposition, when successful, greatly reduces the
size of the BDD. Its success strongly depends on the
density of the implicant table. Therefore, its
effectiveness can be predicted quite reliably by making
some preliminary study of the implicant table
functions' representation.
The goals of the conducted experiments are as follows:
1. Comparing the effectiveness of the complete
linearization (performed with K -Procedure) and that
of the Parallel decomposition.
2. Investigating the relative importance of the
coefficients and formulating the guidelines concerning
the weights.
During the experiments the implicant table
representations of the standard combinatorial-circuit
benchmarks (LGSYNTH93) were used. The
experiments were limited to the following subset of
benchmarks:
– Number of terms the implicant table is limited by
200. This limitation may seem somewhat severe, and,
indeed, the Parallel decomposition can be performed in
certain cases for implicant tables of over 500 terms. In
general, however, since the search for common parts
grows polynomially in the number of input terms, it is
suggested that this value is kept below 200.
– Number of input variables limited by 23. This is a
necessary condition for running the Exhaustive K -
Procedure in its tabular form.
– Number of output functions limited by 31. This is
the weakest of all requirements and is dictated by the
treatment of the outputs as integers.
Both the Parallel decomposition and the K -Procedure
based linearization of resulting blocks were checked
on standard combinatorial-circuit benchmarks
(LGSYNTH93). For each benchmark, the sizes of the
following diagrams were recorded and compared:
original BDD; LTBDD; PMTBDD; and LPMTBDD.
The results are shown in the Tables 2 and 3. The first
lists the benchmarks for which the Parallel
decomposition is more effective than the linearization

of the initial implicant table without decomposition.
The second shows the failures.
The columns in the tables are as follows. For each
benchmark, the number of the input variables and the
implicant table density are followed by the four
columns of the results. The two additional columns
show the improvement/degradation ratios: from BDD
to PMTBDD, with and without the linearization. The
ratios are given in per cents. Both tables are sorted by
the ascending the implicant table density.

Table 2. Benchmarks results, |LPMTBDD| < |LTBDD|

Title |X|
Densit

y
[%]

BDD LTBDD PBDD LTPBDD
PBDD /

BDD
[%]

LTPBDD /
LTBDD

[%]
ALU1 12 18 982 632 25 25 2.55 3.96
B12 15 29 155 155 145 139 93.55 89.68

DK48 15 31 3428 1877 58 57 1.69 3.04
DK27 9 34 79 42 22 19 27.85 45.24
CON1 7 37 16 16 15 14 93.75 87.5
ALU2 10 39 264 264 150 147 56.82 55.68

DUKE2 22 40 1435 457 326 226 22.72 49.45
ALU3 10 42 278 278 151 132 54.32 47.48

MISEX3C 14 43 10875 6722 705 534 6.48 7.94
WIM 4 50 15 12 10 9 66.67 75
F51M 8 53 255 255 155 135 60.78 52.94
DK17 10 57 160 83 55 54 34.38 65.06
APLA 10 64 128 94 85 77 66.41 81.91
INC 7 79 39 37 35 34 89.74 91.89
 MEAN RATIO 48.41 54.06

Table 3. Benchmarks results, |LPMTBDD| > |LTBDD|

Title |X| Density
[%] BDD LTBDD PBDD LTPBDD

PBDD /
BDD
[%]

LTPBDD
/ LTBDD

[%]
ADD6 12 52 504 384 731 569 145.04 148.18
RADD 8 57 90 64 143 106 158.89 165.63
CLIP 9 59 189 143 376 318 198.94 222.38

Z4 7 61 52 29 101 79 194.23 272.41
ROOT 8 65 72 71 134 124 186.11 174.65
SQR6 6 67 63 63 85 75 134.92 119.05
SQN 7 69 81 40 116 92 143.21 230.00

MLP4 8 73 240 202 345 305 143.75 150.99
SAO2 10 73 95 58 157 122 165.26 210.34
DIST 8 73 125 108 326 292 260.80 270.37
BW 5 80 25 23 58 56 232.00 243.48

RD53 5 90 15 13 53 44 353.33 338.46
 MEAN RATIO 193.04 212.16

The analysis of these results shows that the density of
the implicant table is, indeed, a reliable indicator of the
success of the function’s Parallelization. The
successful cases (|PMTBDD|<|MTBDD| and/or
|LTPBDD|<|LTBDD|) are mostly in the low-density
area (Density up to 45%) and the unsuccessful ones
are mostly in the high-density area (Density at least
60%). The middle or gray area functions (Density
within 40-60%) are divided more or less evenly
between the successes and the failures. Moreover,
there are several examples where the high-density
functions are successfully decomposed, and no
examples where the method failed to work on low-
density functions.
The Parallel decomposition, on the other hand, relies
upon extracting dense fragments from the given
implicant table, and treating the sparse remainders and
tails separately. Therefore, sparse implicant table can
be easily dealt with by splitting them into a network of
concurrently working BDDs. With dense implicant
tables, choosing suitable blocks is difficult, and
arbitrary choices lead to ineffective implementations.
This is summarized in Table 4.

Table 4. Analysis of the results.

 Density
 Low High

PLAÆBDD
Lots of “don’t cares”.

Lots of replications.
BDD not compact.

Few “don’t cares”.
Number of replications small.

BDD compact.
Method

Parallelization

Several component
fragments. Easy choice of

component diagrams.
Suitable for PBDD.

Dense PLA – difficult to determine
separate fragments.

Unsuitable for PBDD.

6. CONCLUSIONS

The paper describes a new method of a so-called
piecewise linearization of logic functions, which
comprises a) decomposing the initial implicant table of
a logical function into a network of component Multi
Terminal BDDs, and b) separate linearization of these
BDDs. Two connecting operations are used in the
decomposition network, i.e., serial and parallel
connections of the component BDDs. A new
mathematical basis of the parallel connection of the
BDDs is formed by a newly introduced algebra of D -
polynomials. This new algebra, as well as a number of
theoretical statements proven in the paper are used as a
theoretical background of the proposed decomposition
algorithm.
The decomposition algorithm is presented in details.
Benchmark results demonstrate efficiency of the
proposed approach in comparison with straightforward
implementations of MTBDDs (including or not
including linearization). solutions with linearization
and without linearization. The proposed piecewise
linearization opens a way for using the linearization
technique to implement logic functions having a great
number of variables.

7. REFERENCES
[1] M.G.Karpovsky, R.Stancovic, J. Aastola, "Reduction of
Sizes of Decision Diagrams by Autocorrelation Functions",
IEEE Trans on Computers, May, 2003, pp.592-607.

[2] M. Fujita, Y. Kukimoto, R. K. Brayton, “BDD
minimization by truth table permutation”, Proc. Int. Symp.
on Circuits and Systems, ISCAS’96, May 12-15, 1996, Vol.
4, 596-599.

[3] Rudell, R., “Dynamic variable ordering for ordered
binary decision diagrams”, Proc. IEEE Conf. Computer
Aided Design, Santa Clara, CA, 1993, 42-47.

[4] W. Gunther, R. Drechsler, “Linear transformations and
exact minimization of BDDs”, Proc. 8th Great lake Symp.
on VLSI, February 19-21, 1998, 325-330.

[5] Levin I., Stankovic R., Karpovsky M., Astola J., (2005)
"Construction of Planar BDDs by Using Linearization and
Decomposition". Proceedings of Fourteenth International
Workshop on Logic and Synthesis, Lake Arrowhead,
California, pp. 132-139.

[6] Keren O., Levin I., "Linearization of the Logic Functions
Defined in SOP Form". Procs. of the Work in Progress
Session, DSD 2005, Porto (Portugal), September 2005, E.
Grosspietsch, K. Klockner (eds.), SEA-Publications: SEA-
SR-09, July 2005.

[7] Levin, I., Levit, V. (1998). "Controlware for Learning
with Mobile Robots. Computer Science Education", 8(3),
181-196.

[8] Meinel, C. Somenzi, F. Theobald, T. "Linear Sifting of
Decision Diagrams and its Application in Synthesis". IEEE
Transaction on Computer Aided Design of Integrated
Circuits and Systems 2000, Vol 19; part 5, pages 521-533.

