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ABSTRACT 

The paper deals with a problem of linearization of 
multi-output logic functions. Specifically, the case is 
discussed, when the functions have a large number of 
variables and cannot be efficiently linearized by using 
known techniques. For solution of the problem a so-
called piecewise linearization is proposed.  
The piecewise linearization comprises decomposition 
of an initial multi-output function into a network of 
components, followed by independent linearization of 
the components. The decomposition is based on the 
theory of D -polynomials described in the paper. The 
resulting piecewise linearized network is directly 
mapable onto a special type of a binary graph called 
Parallel Multi Terminal BDD.  
An efficient heuristic algorithm for the piecewise 
linearization is provided. The presented benchmarks 
results demonstrate high efficiency of the proposed 
method in comparison with known linearization 
approaches. The results also show that integrating 
linearization techniques with the described 
decomposition, thus obtaining the piecewise 
linearization, are a very promising both from practical 
and from the theoretical points of view. 

1. INTRODUCTION 
The use of the Linear Decomposition as tool for 
optimization in logic synthesis, particularly, in Binary 
Decision Diagrams (BDDs) optimization is promising 
direction of research in the field of logic design [1]. 
BDDs are a standard part of many CAD systems in 
logic design, signal processing, and other areas where 
efficient, in terms of space and time, manipulation of 
BDD representation for a given function is usually 
estimated by the number of non-terminal nodes in the 
BDD. The size of a BDD is very sensitive to the order 
of variables, ranging from the polynomial to the 
exponential complexity for the same function for 
different orders of variables. Therefore, the majority of 
approaches to the BDD size reduction are related to 
development of efficient algorithms for reordering of 
variables see for example, [2], [3]. Linearly 
transformed BDDs are defined by allowing linear 
combinations of the variables [4].  
The known linearization techniques use representation 
of logic functions in a form of the truth table. The 
present paper deals with multi-output logic functions 

defined by their implicant table. Moreover, we deal 
where the case when the implicant table is sparse 
(contains a large number of “don’t cares”), and the 
function is defined by the corresponding implicant 
table depends on the large number of variables. In 
such a case the use of known linearization techniques 
becomes inefficient or even inapplicable due to the 
great size of the corresponding truth table. The 
combination of the linearization and decomposition 
was used for implementation of planar BDDs [5] and 
for linearization of functions defined in sum-of-
product form [6]. The present paper develops the idea 
of piecewise linearization which is a functional 
decomposition followed by a linearization procedure. 
The paper proposes an algorithm for constructing the 
piecewise linear implementation of an arbitrary logic 
function defined by its sum-of-products (SOP). 
The theoretical foundation of our decomposition 
method is the algebra of D -polynomials [7]. The result 
of the decomposition is a direct mapping of the logic 
function onto a special type of a binary graph called 
Parallel Multi Terminal BDD (PMTBDD) that consists 
of the specifically connected component MTBDD.  
The decomposition approach described in this paper 
aims at practical implementations of logic functions as 
specific VLSI structures. The main purposes of the 
proposed technique are to minimize the size of the 
resulting VLSI implementation by representing the 
initial multi-output function as a network of 
component MTBDDs. Specifically, the above task, 
named piecewise linearization, can be stated as 
follows:  
Given a minimized sum-of-product representation of a 
multiple-output logic function, construct a network of 
component MTBDDs of the minimal size by applying 
linearization of components. 
The paper is organized as follows. Section 2 describes 
the general structure of PMTBDDs. Section 3 
introduces the notion of D -polynomials. Section 4 
describes the algorithm of decomposition, followed by 
the linear transformation of components. Experimental 
results and the corresponding discussion are provided 
in Section 6. Conclusions are presented in Section 5.  
 

 

 



 

 

2. PARALLEL MULTI TERMINAL BDDS 
The linear decomposition of multi-output functions of 
large number of input variables, defined by a large set 
of cubes of a high order, is a significantly hard 
problem due to its complexity. 
Decomposing of an initial function into a network of 
components followed by their independent 
linearization can assist in overcoming the problem of 
complexity for the above cases. 
The proposed decomposition approach is based on a 
new concept of parallel multi-terminal binary decision 
diagram (PMTBDD) comprising component 
MTBDDs.  
The PMTBDD is constructed by combining 
component MTBDDs using the parallel and series 
operations: 
1)  Series connection: replacing one terminal node of 
an MTBDD with another MTBDD. 
2)  Parallel connection: connecting roots of two or 

more MTBDDs.  
Introducing the PMTBDD opens a way for handling 
multi-output logic functions of a large number of 
variables, defined by their SOP (implicant table) with 
a large number of cubes of a high order. 

3. D -POLYNOMIALS 
This section introduces a notion of D -polynomial 
which provides a convenient mathematical model for 
the manipulation of MTBDD. We show that the 
parallel and series connections of the MTBDD can be 
modeled as a product and substitution of D -
polynomials representing those MTBDDs. 

3.1. Representation of Logic Functions 
Consider an n-input, m-output completely specified 
Boolean function mn ZXF o: , where ^ `*,,X 10�  
and ^ `10 ,Z � . Let F be initially represented in 
minimized (prime and irredundant) sum-of-product 
(SOP) form, where each output iZ  is written as a 
logical sum (OR) of product terms (implicants): 

	 
i jj I i
Z B

�
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� �iI  denotes an index set of implicants associated with 
the output iZ . Implicants can be shared between 
different outputs. Notice that D ҏs are functions of 
input variables � �nxxx ,,, !21 . We will also refer to 
them as theD -functions. 
Let iY  be the name associated with the output iZ . 

One can also think of iY  as an operator which has to 
be performed when the corresponding output iZ  
evaluates to 1. 0Y  will denote a dummy output 
function (or an empty operator which does not produce 
any output). 
Definition 1. D -polynomial is a polynomial defined 
over a set of operators iY   

00YYZD iii
D� ¦   (2) 

while the coefficients iZ ҏsatisfying the conditions:  
a) 10  �D*i iZ  (completeness), 

b) ji,ZZ ji z� � 0 (orthogonality). 
Taking (1) into account, we have: 
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where ijD  denotes j th -implicant of function iZ .  

In this work we are interested in a class of D -
polynomials defined over a subset of variables iY  
whose coefficients are implicants of a logic function. 
Such D -polynomials are used to represent logic 
functions. Coefficients iD ҏare defined explicitly as the 
corresponding product terms of the function, while 

0D  is defined implicitly as a complement of * iD  (to 
satisfy the completeness condition).  
D -binomial is a special case of D -polynomial, with 
exactly two disjoint (orthogonal) 
implicants, 0011 YYD DD � . 
We distinguish between D -functions belonging to 
different D -polynomials by labeling them with a 
super-script index associated with the corresponding 
polynomial; k

iD  will indicate that implicant iD  is 

associated with the D -polynomial kD  ҏThe same 
implicant can be associated with different polynomials, 
so that j

i
k
i DD   for arbitrary values of k  and j . 

Example 1. The following is a D -polynomial: 

0
1
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Here, 21
1
21

1
1 xxx   DD , and 1

0 1 2x xD  . The 
corresponding MTBDD may be constructed in 
straightforward way and can be achieved by repeatedly 
applying the Shannon expansion to 1D . Notice that the 
simplicity of the above transformation is based of the 
following specific property of the 1D : for each 
application of the Shannon expansion, at least one input 
variable is present in all the implicants.   
Conceptually, a D -polynomial iD  can be interpreted 

as follows. If i
1D evaluates to 1, then

ji YD  . If all of 

the explicit functions i
1D are equal to 0, then 0YDi   

which means that no output is produced (or an empty 
operator is to be performed).  
Let us define a product of two D -polynomials.  
Definition 2. Let 

	 
 ij ii I i
D Y YB B

�
� �� 1 1

1 0 0 , 

and
	 
 kj kk I k

D Y YB B
�

� �� 2 2
2 0 0 .  The product of 
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and 2D , denoted as 21 DD D ѽҏis defined 
by: 	 
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over each pair of terms from 1D  and 2D , including 

the implicit terms 0
1
0YD and 0

2
0YD . Here 21

klij DD � is a 
logic product (AND) of the corresponding D -
functions and ji YY D  is a combination of the 
respective operators. In other words: when 

21
klij DD � evaluates to 1, both iY and kY are computed 

concurrently.  
Lemma 1. An arbitrary D  -polynomial iD  can 
always be represented as follows: 
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where ij Z00  D , and 0 0
j i

ij
B B�� . 

Proof. We will demonstrate that the product of 
� �00YYZ j

ij
i
j D�  is equal to the D -polynomial with the 

same coefficients. First, notice that by definition all 
explicit functions are pairwise orthogonal, so that 

0 � k
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orthogonality of the functions and the completeness 

condition i
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j  � 0D  Also, notice that the 

concatenation ^ `0YYj D  means that both operators jY  

and 0Y  need to be performed simultaneously. Since 

0Y  is a dummy operator, only jY has to be computed; 

hence ^ ` jj YYY  0D . Finally, orthogonality and 
completeness conditions of D -functions imply 
that ,

j
j
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Therefore, the subsequent multiplication of the 
consecutive terms of expression (3) yields 

\ ^ \ ^ \ ^ \ ^	 


	 


2 1 2
1 2 1 2 1 0 1 0 2 0 2 0 0 0 0 0

2

0 0
1

i i i i i
i i i

m
i j
j j i

j

Z Z Y Y Z Y Y Z Y Y Y Y

Y Y

B B B B

B B
�

�

¸ � ¸ � ¸ � ¸

� ��

D D D D

� � � � ! ���� �
�

 

2

1
000

2
0

1
02211

m

j

j
ij

i
jii

ii YYZYYZYZ DDD

� �  ������� 00
2
0

1
02211 YYZYZYZ m

iiim
i
m

ii DDD !!

� � 00002211 YYZYYZYZYZ i
jj

i
j

i
m

i
m

ii DD � ���� ¦! . 

QED 
Theorem 1. An arbitrary D  -polynomial iD  can 

always be represented as a product of D -binomials: 
� �� � ,�¦ � � 
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Proof. Let � � � �1 1 0 0 1 1 0 0
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After performing the multiplication we have: 
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Based on this, every logic function i
jZ  of arbitrary 

D -polynomial iD  may be presented as a product of 
binomials as follows:  

� � � �� ��¦ � � 
iI
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i
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i
j YYYYZ 0000 DDDD  (5) 

Substituting (5) into (3) results in (4). QED 
An important conclusion from this theorem is that the 
product of D -polynomials can be always presented as 
a product of the corresponding terminal binomials. 
Subsequently, the terminal binomials can be multiplied 
to obtain higher level D -polynomials. Obviously, 
there are several ways to group terminal binomials to 
form a D -polynomial. Different grouping of terminal 
binomials yields different PMTBDD’s, resulting in 
different implementations of Boolean functions. This 
fact forms the basis of our decomposition approach.  

3.2 Decomposition of D -polynomials 
We construct an MTBDD corresponding to a system 
of D  -polynomials. Different groupings of the 
terminal binomials lead to different implementations 
of the logic function represented by this system. It 
defines a way to decompose the logic function by 
manipulating the system of D -polynomials 
representing the function.  
The starting point of our method is the specification of 
a logic function in the form of an implicant table.  
An initial system of D -polynomials can be easily 
derived from the implicant table by associating a 
single D -binomial with each product term of the 
table. The function can then be represented as a 
product of the D -binomials. 
Theorem 2. A multiple-output Boolean function can 
always be implemented as a product of D -
polynomials. 
Proof. Represent the implicant table of the logic 
function as a product of D -binomials and multiply the 
orthogonal binomials to create the constituent D -
polynomials. 
Conclusion: MTBDD corresponding to such an 
implementation can be realized as a parallel 
connection of subtrees corresponding to the individual 
D -polynomials. 

4. PARALLEL DECOMPOSITION 
The aim of the proposed parallel decomposition is 
creating the PMTBDD for an arbitrary multi-output 
function. The proposed decomposition algorithm is 
based on partition of the set of product terms 
representing the ON-set of the function into a set of 
logic blocks. It is followed by a hierarchical 



 

 

decomposition of blocks into a common header and a 
set of block fragments.  
This is accomplished by extracting a set of common 
factors (so-called prefixes) from the subset of product 
terms of the original implicant table.  
Definition 4: A product term or a part of the product 
term, is called a prefix.  
A set of all prefixes defines a block header. A subset 
of product terms with a common prefix is called a 
block. A set of all blocks is referred to as a block set.  
Definition 5: The set of terms including the given 
prefix precisely is called its family.  
The remaining set of product terms, not included in the 
block set, is called a remainder.  
Definition 6: The set of all the rows of the implicant 
table that do not belong to any of the families is called 
the remainder of the current stage.  
A set of product terms obtained by extracting a 
common prefix from all the members of the block will 
form a block fragment or tail.  
Definition 7: The prefix’s family, after all the prefix’s 
variables are set to “don’t care”, is called its tail.  
Header is a fragment (subset of rows and columns) of 
the implicant table composed of the prefix variables. 
The header is selected in such a way as to provide 
minimization of the resulting PMTBDD. We propose 
to select the header by taking into account the 
following underlying principle. 1) increase the 
percentage of “non-don’t care” cells (density) of the 
corresponding fragment the implicant table. 2) ensure 
the efficiency linearization of the corresponding block.  
By construction, the block header is a logic function 
whose ON-set is a superset of the ON-sets of the logic 
functions associated with the individual blocks. It will 
be implemented as an MTBDD whose internal nodes 
are associated with the prefix variables. The terminal 
nodes of the tree represent the block fragments, each 
to be implemented as a separate MTBDD.  
The target of the proposed decomposition algorithm is 
to minimize the total size of the diagram. The 
algorithm divides the initial function into a block 

sB and a remainder sR . The block is a sum of 
products of simpler sub-functions with prefix terms. 
The group of prefixes i,sp  – the dense fragment 
chosen for the BDD implementation – forms the 
header of the block and is, indeed, implemented as a 
MTBDD, with the sub-functions playing the role of 
the terminals. Each of the sub-functions and the 
remainder function sR  can be repeatedly decomposed 
in the same way, until no further decomposition is 
possible.  
An important feature of the proposed method is its 
ability to benefit from any other optimization method 
the user may wish to employ – Sifting, K -Procedure, 
etc [8, 1]. These will be applied to the component 
MTBDDs, and further reduce the total diagram’s size. 

PMTBDD with linearized blocks is denoted 
LPMTBDD. 

4.1 Decomposition Algorithm 
The following algorithm details the flow of a particular 
iteration. 
L = Empty list of pairs {Prefix, Tail} 
Let R = Set of prodict terms, Y = vector of integer outputs. 
Let B = Basic Prefix, TF = its family, TT=TF\B = its tail 
L = [L, (B, TT)] 
TU = R \ (TF U TR) 
C = {t: t�R and t·BŁ0} 
TR = {t: t�R\(C � TF)} 
C = COMMON_PARTS(C) 
While |C| > 0, 
     Let S = Secondary Prefix 
     TF = its family 
     TT = TF\S = its tail 
     L = [L, (S, TT)] 
     TO = {t: t�C and t·SŁ0} 
     TNO = {t: t�C\TO} 
     C = TO 
     TR = TR � TNO  
End While. 
Classify and enumerate the tails in L 
Construct the Block’s BDD from L 
LT = {l: l�L, Tail(l) is trivial} 
LNT = {l: l�L\LT} 
If the remainder is trivial, 
     LT = [LT, Remainder] 
Else 
     LNT = [LNT, Remainder] 
End If 
For all the list elements in LT 
     Implement the tail 
End For 
For all the list elements in LNT 
     Recursively call this procedure 
End For 
The main part of a particular iteration consists of 
choosing the prefixes for the block. The prefixes are 
chosen one by one. Each time a prefix is chosen, all 
the prefixes not orthogonal to it and belonging to 
different Z  -functions are moved to the remainder. 
Non-orthogonal prefixes belonging to the same 
function as the prefix in the block are included in the 
block. This continues until no more suitable prefixes 
are present. Thereafter the iteration proceeds to 
enumerate the tails and constructs the block’s 
MTBDD. The non-trivial tails and remainder serve as 
inputs to the next iterations. The trivial tails are 
implemented immediately as separate conjunction 
BDDs and do not require additional iterations. 
Example 2: The imlicant table used in the example is 
presented in Table 1.  
Table 1: The imlicant table for Example 2 

# X0 X1 X2 X3 X4 F0 F1 F2 F3
0 0 1 – 0 – 1 0 0 0 
1 0 1 – 1 – 0 1 1 0 
2 – – 1 – 0 0 0 1 1 
3 – – – – 1 0 0 0 1 
4 1 0 – 1 – 1 1 0 0 

  



 

 

BDD, LTBDD, PMTBDD and LPMTBDD for the 
example are presented in Figures 1-4 correspondingly.  

 
Figure 1. Straightforward implementation of the 
MTBDD for the Example 2. 

 
Figure 2. Linearly Transformed MTBDD for the 
Example 2 

 
Figure 3. PMTBDD corresponding to the Example 2. 

 
Figure 4. Linearly Transformed PMTBDD for the 
Example 2. 

Terminal nodes of MTBDDs in Figures 1-4 are 
marked by decimal numbers of corresponding outputs. 
A standard implementation of the exemplary MTBDD, 
as an ordered MTBDD, is presented in Figure 1a. 
Figure 1b shows an implementation based on the 
proposed decomposition approach, in a form of 
PMTBDD. The PMTBDD comprises two portions – 
the block (left) and the remainder (right). The portions 
are assembled by the newly introduced parallel 
connection of MTBDDs. Notice that according to the 
product operation introduced in Definition 2, sets of 
terminal nodes in the PMTBDD and in the standard 
MTBDD are not the same. It is the result of the 
concatenation operation between the original terminal 
nodes. The concatenation is calculated as the OR 
function between corresponding output vectors (see 
Definition 2). For example, terminal node 7 in the 
MTBDD (Figure 1) corresponds to two terminal nodes 
3 and 6 in the PMTBDD (Figure 3). Such cases reflect 
the non-disjoint property, as in cubes 1 and 2 from 
Table 1. 
The proposed approach, presented by Example 2, 
allows achieving significant improvement: indeed, the 
standard MTBDD has 17 non-terminal nodes (NTNs), 
after linearization this is reduced to 12 NTNs (and 2 
XOR gates). PMTBDD has 8 NTNs, linearization 
further reduces it to 6 NTNs (and 2 XOR gates).  

4.2. Choosing the Prefixes 
In this section the process of choosing the suitable 
block header of the iteration is discussed. The 
requirements for the first (basic) prefix and all other 
(secondary) prefixes are given and the criteria the 
choosing them are suggested. 
The choice is performed by grading all the potential 
candidates, computing a weighted average of the 
different grades for each candidate, and then selecting 
the candidate with the highest grade. 
The following notations are used: P  – the prefix under 
consideration. R  – the set of rows of the implicant 
table. 
For a selected prefix: FT  – the family of the prefix. 

RT  – the set of the terms that don’t depend on any of 

the prefix’s variables. � �RFU TT\RT �  – the set 
of terms depending on some of the prefix’s variables. 
It is called the “undecided” set, since these terms are 
neither the prefix’s family nor its remainder. 0T – the 

set of terms orthogonal to the prefix. UTT �0 . M  – 

the number of variables in the prefix. FTN  . 

For any set A  of terms: 
� � � �^ `""xt,At:xAX ii �z�� . In other words, 

� �AX  is the set of variables in all the terms of A . 
� � � �^ `¦

�

�z 
At

ii ""xt:xAS . In other words, � �AS  is the 

number of literals in all the terms of A. 



 

 

� �
^ `
*
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tSsupAY
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 , where tS  is the row in the Sums 

matrix of the implicant table corresponding to t . In 
other words, � �AY  is the set of outputs corresponding 
to all the terms of A . 

4.2.1 List of Candidates 
The prefix can be either a complete row of the 
Products matrix of the implicant table, or a subset of 
literals common to several terms. A straightforward 
procedure is proposed below for constructing the list 
of the candidates from the list of terms of the implicant 
table. 
Let y,x be variables with values from {0, 1, –}. The 
operator � �y,x\ compares the two Boolean variables 
and returns the value of one of them if they are equal, 
“don’t care” otherwise: 

� � � � � �yxI"care tdon'"yxxIy,x z�  \  (5) 

The function Common( 1T , 2T ) accepts the two terms 

1T  and 2T  and applies ȥ in a bitwise manner to each 
of the variables in the set � � � �21 TXTX � . Finally, the 
following method summarizes the suggested 
procedure. 
Constructing the List of Candidates. 
INPUT: List of prodict terms. 
OUTPUT: List of candidates. 
Output ĸ Input 
Temp1 ĸ Output 
REPEAT 
      Temp2 ĸ Empty set 
      Apply Common() to every pair of terms from Temp1.  
If the result is not empty, add it to Temp2. 
      Output ĸ Output U Temp2 
      Temp1 ĸ Temp2 
UNTIL |Temp1| = 0 

4.2.2 Choosing the Basic Prefix 
The basic prefix is the foundation of a block. It is 
chosen so as to make the block header the most 
suitable for a BDD implementation. For this, the basic 
prefix has to attract the secondary prefixes “close” to it 
and repel those “far” from it. 
There are three main concerns to consider here: the 
input variables, the output functions and the length of 
the prefix. In addition, since the secondary prefixes 
will be chosen from the set OT , it is imperative to 

measure the self-orthogonality of UT . 
The first criterion answers the “Inputs” requirement: 

� � � �
� � � �� � � �RF

RF
X TXPX\TX

TXTX
�

�
� 1D  (6) 

It counts the variables common to the tail and the 
remainder corresponding to the prefix. The ratio has to 
be reduced as much as possible, in order to separate 
the block (with its tails) from the remainder. This 
criterion has values in [0, 1] interval, 0 corresponding 
to the case when all the remainder's variables are 
present in the tail and 1 to the opposite. 

The second criterion answers the “Outputs” 
requirement: 

� � � �
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RF
Y TYTY

TYTY
�

�
� 1D    (7) 

It counts the outputs common to the tail and the 
remainder corresponding to the prefix. The rationale 
here is the same as for the “Inputs” requirement. 
The third criterion, called “Prefix Area”, measures the 
percentage of the area covered by the prefix within its 
family. 

� �F
P TS

MN
 D    (8) 

The reasoning is simple: the longer the basic prefix, 
the longer the list of candidates for the secondary 
prefixes. 
The final criterion, called “Orthogonality” answers the 
additional requirement. 

� �
� �Ub
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T TS

TS
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It counts the number of literals in the terms orthogonal 
to the prefix relative to the number of literals in all the 
candidates.  

4.2.3 Choosing the Secondary Prefix 
In selecting the basic prefix it’s important to establish 
a solid foundation for the block. For secondary 
prefixes the goal is different, and the requirements 
change accordingly. The prefixes already chosen into 
the block have to be taken into account.  
In the following equations, the superscript indices i  
and 1i �  stand for “current situation” and “after 
adding the considered prefix”, respectively. 
The first criterion, called “Additional Inputs”, counts 
the number of variables common to the tail and to the 
remainder of the considered prefix, but only those not 
hitherto present in the block. 
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The second criterion, called “Additional Outputs”, 
counts the number of output functions common to the 
tail and to the remainder of the considered prefix. 
Here, like in the previous criterion, only the newly 
added outputs are considered. 
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The third criterion, called “Additional Area”, measures 
the additional area brought to the block and to the 
remainder by selecting the considered prefix. 
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This equation can be rewritten as follows: 
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Each of the two fractions is limited to the interval [0, 
1], but the total value of ȕS is in the interval [–1, 1]. In 



 

 

this it differs from all the other criteria and ruins 
somewhat the elegance of the total, but does not bear 
any serious impact on the results. 

4.2.4 Combining the Criteria 
The four criteria and the three criteria for the basic 
prefix are combined in the following weighted 
average.  

SSYYXX

TTPPYYXX
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When choosing the basic prefix, the candidate with the 
highest D  is taken. Likewise, when choosing the 
secondary prefix, the candidate with the highest E  is 
taken. The coefficients of the criteria have to be 
chosen so as to get the optimal result. 

5. EXPERIMENTS 
The experiments demonstrate that the proposed 
decomposition, when successful, greatly reduces the 
size of the BDD. Its success strongly depends on the 
density of the implicant table. Therefore, its 
effectiveness can be predicted quite reliably by making 
some preliminary study of the implicant table 
functions' representation. 
The goals of the conducted experiments are as follows: 
1. Comparing the effectiveness of the complete 
linearization (performed with K -Procedure) and that 
of the Parallel decomposition. 
2. Investigating the relative importance of the 
coefficients and formulating the guidelines concerning 
the weights. 
During the experiments the implicant table 
representations of the standard combinatorial-circuit 
benchmarks (LGSYNTH93) were used. The 
experiments were limited to the following subset of 
benchmarks: 
– Number of terms the implicant table is limited by 
200. This limitation may seem somewhat severe, and, 
indeed, the Parallel decomposition can be performed in 
certain cases for implicant tables of over 500 terms. In 
general, however, since the search for common parts 
grows polynomially in the number of input terms, it is 
suggested that this value is kept below 200. 
– Number of input variables limited by 23. This is a 
necessary condition for running the Exhaustive K -
Procedure in its tabular form. 
– Number of output functions limited by 31. This is 
the weakest of all requirements and is dictated by the 
treatment of the outputs as integers.  
Both the Parallel decomposition and the K -Procedure 
based linearization of resulting blocks were checked 
on standard combinatorial-circuit benchmarks 
(LGSYNTH93). For each benchmark, the sizes of the 
following diagrams were recorded and compared: 
original BDD; LTBDD; PMTBDD; and LPMTBDD. 
The results are shown in the Tables 2 and 3. The first 
lists the benchmarks for which the Parallel 
decomposition is more effective than the linearization 

of the initial implicant table without decomposition. 
The second shows the failures. 
The columns in the tables are as follows. For each 
benchmark, the number of the input variables and the 
implicant table density are followed by the four 
columns of the results. The two additional columns 
show the improvement/degradation ratios: from BDD 
to PMTBDD, with and without the linearization. The 
ratios are given in per cents. Both tables are sorted by 
the ascending the implicant table density. 
 
Table 2. Benchmarks results, |LPMTBDD| < |LTBDD| 

Title |X|
Densit

y 
[%] 

BDD LTBDD PBDD LTPBDD
PBDD / 

BDD 
[%] 

LTPBDD / 
LTBDD 

[%] 
ALU1 12 18 982 632 25 25 2.55 3.96 
B12 15 29 155 155 145 139 93.55 89.68 

DK48 15 31 3428 1877 58 57 1.69 3.04 
DK27 9 34 79 42 22 19 27.85 45.24 
CON1 7 37 16 16 15 14 93.75 87.5 
ALU2 10 39 264 264 150 147 56.82 55.68 

DUKE2 22 40 1435 457 326 226 22.72 49.45 
ALU3 10 42 278 278 151 132 54.32 47.48 

MISEX3C 14 43 10875 6722 705 534 6.48 7.94 
WIM 4 50 15 12 10 9 66.67 75 
F51M 8 53 255 255 155 135 60.78 52.94 
DK17 10 57 160 83 55 54 34.38 65.06 
APLA 10 64 128 94 85 77 66.41 81.91 
INC 7 79 39 37 35 34 89.74 91.89 
     MEAN RATIO 48.41 54.06 

  
Table 3. Benchmarks results, |LPMTBDD| > |LTBDD| 

Title |X| Density
[%] BDD LTBDD PBDD LTPBDD

PBDD / 
BDD 
[%] 

LTPBDD 
/ LTBDD 

[%] 
ADD6 12 52 504 384 731 569 145.04 148.18 
RADD 8 57 90 64 143 106 158.89 165.63 
CLIP 9 59 189 143 376 318 198.94 222.38 

Z4 7 61 52 29 101 79 194.23 272.41 
ROOT 8 65 72 71 134 124 186.11 174.65 
SQR6 6 67 63 63 85 75 134.92 119.05 
SQN 7 69 81 40 116 92 143.21 230.00 

MLP4 8 73 240 202 345 305 143.75 150.99 
SAO2 10 73 95 58 157 122 165.26 210.34 
DIST 8 73 125 108 326 292 260.80 270.37 
BW 5 80 25 23 58 56 232.00 243.48 

RD53 5 90 15 13 53 44 353.33 338.46 
     MEAN RATIO 193.04 212.16 

 

The analysis of these results shows that the density of 
the implicant table is, indeed, a reliable indicator of the 
success of the function’s Parallelization. The 
successful cases (|PMTBDD|<|MTBDD| and/or 
|LTPBDD|<|LTBDD|) are mostly in the low-density 
area (Density up to 45%) and the unsuccessful ones 
are mostly in the high-density area (Density at least 
60%). The middle or gray area functions (Density 
within 40-60%) are divided more or less evenly 
between the successes and the failures. Moreover, 
there are several examples where the high-density 
functions are successfully decomposed, and no 
examples where the method failed to work on low-
density functions. 
The Parallel decomposition, on the other hand, relies 
upon extracting dense fragments from the given 
implicant table, and treating the sparse remainders and 
tails separately. Therefore, sparse implicant table can 
be easily dealt with by splitting them into a network of 
concurrently working BDDs. With dense implicant 
tables, choosing suitable blocks is difficult, and 
arbitrary choices lead to ineffective implementations. 
This is summarized in Table 4. 
 
 
 



 

 

 
 
 
 
 
Table 4. Analysis of the results. 

  Density 
  Low High 

PLAÆBDD 
Lots of “don’t cares”. 

Lots of replications. 
BDD not compact. 

Few “don’t cares”. 
Number of replications small. 

BDD compact. 
Method

Parallelization

Several component 
fragments. Easy choice of

component diagrams. 
Suitable for PBDD. 

Dense PLA – difficult to determine 
separate fragments. 

Unsuitable for PBDD. 

  
6. CONCLUSIONS 

The paper describes a new method of a so-called 
piecewise linearization of logic functions, which 
comprises a) decomposing the initial implicant table of 
a logical function into a network of component Multi 
Terminal BDDs, and b) separate linearization of these 
BDDs. Two connecting operations are used in the 
decomposition network, i.e., serial and parallel 
connections of the component BDDs. A new 
mathematical basis of the parallel connection of the 
BDDs is formed by a newly introduced algebra of D -
polynomials. This new algebra, as well as a number of 
theoretical statements proven in the paper are used as a 
theoretical background of the proposed decomposition 
algorithm. 
The decomposition algorithm is presented in details. 
Benchmark results demonstrate efficiency of the 
proposed approach in comparison with straightforward 
implementations of MTBDDs (including or not 
including linearization).  solutions with linearization 
and without linearization. The proposed piecewise 
linearization opens a way for using the linearization 
technique to implement logic functions having a great 
number of variables. 
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