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Determining the Number of Paths in Decision
Diagrams by Using Autocorrelation Coefficients

Osnat Keren, Ilya Levin, and Radomir S. Stanković

Abstract—This paper deals with the number of paths in
multiterminal binary decision diagrams (MTBDDs) and shared
binary decision diagrams (SBDDs) representing a set of Boolean
functions. It is shown that the number of paths in an MTBDD
(SBDD) can be uniquely determined by values of specific
weighted-autocorrelation coefficients. An analytical expression
for the number of paths as a linear function of the values
of the weighted-autocorrelation coefficients is presented. Based
on this expression, a method of minimization of the number
of paths is proposed. The method is based on replacing the
initial set of input variables with their linear combinations. By
using this method, a deterministic paths-reduction procedure,
which provides MTBDDs and SBDDs with a reduced number of
paths, is presented. The efficiency of the suggested approach is
demonstrated on benchmark functions.

Index Terms—Autocorrelation function, binary decision dia-
gram (BDD), linear transform, logic synthesis, spectral technique.

I. Introduction

THE EXPONENTIAL scaling in sizes of lithography-
based very-large scale integrated technology and the

increase in processing power of computer circuits pushed
the technology to its fundamental physical limits and opened
the door for new nanotechnologies [23], [29]. The micro-
miniaturization complicates the task of design, verification,
and testing. These tasks become even more complex and
time consuming when the logic states are determined by
the Coulomb law [3], [29], i.e., when the logic state of a
certain cell is determined by the states of its neighboring
cells. In such cases, it is not sufficient to verify the correct
functionality of the processing elements, since the value of
an output signal is not determined solely by the functionality
of the processing elements along a single path, rather, it is
also affected by the behavior of adjacent processing elements
and adjacent wires. Consequently, the design verification and
validation requires checking the correct propagation of the
signals through the implemented circuit in all possible paths.
Therefore, the number of paths can be used as a complexity
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measure for design verification, validation and testing. This
paper deals with minimization of the number of paths. It is
focused on circuits whose underlaying structures are decision
diagrams.

A binary decision diagram (BDD) is considered as an
optional underlying structure in nanotechnology [31]. A BDD
is a form of a compact representation of a single Boolean func-
tion as an acyclic directed graph. The most popular representa-
tions of logic units of n inputs and k outputs are shared BDDs
(SBDDs) and multiterminal BDDs (MTBDDs) [28]. The min-
imization of the number of nodes in BDDs was extensively
studied [4], [5], [7], [11], [13], [18]–[20], [26], as well as
other characteristics of BDDs, such as the average path length
(APL) and the number of paths [2], [8]–[10], [14], [22], [27].

It is well known that the number of BDD paths depends
on the order of the input variables. There are functions for
which a reduction in the number of nodes may increase the
number of paths [6]. Therefore, existing techniques targeting
BDD size reduction may not be suitable for paths reduction.
In this paper, we discuss methods that are aimed to reduce the
number of paths rather than the number of nodes.

Existing techniques for minimization of the number of
paths in decision diagrams can be divided into two classes:
dynamic approaches and static (analytic) approaches. Dynamic
approaches work directly on the BDD; they are based on
swapping and modified sifting of the input variables with
acceptance criteria for a minimal number of paths [8], [10].
In general, the performance of the dynamic procedure may
depend on the number of iterations that the minimization pro-
cedure performs. This relationship between the performance of
a dynamic minimization procedure and the available resources
(memory size and time restriction) does not exist in analytic
procedures.

An analytic approach provides the exact solution of the
minimization problem. It defines analytically the ordering of
the input variables or linear combination of the input variables
(also called linearization) by considering the characteristics
of a Boolean function such as its autocorrelation function
coefficients. This paper presents an analytic technique. To the
best of our knowledge, this is the first paper that deals with
an analytic approach for the paths-reduction problem.

The main contribution of this paper is the introduction of
an explicit expression for the number of paths in decision
diagrams as a linear function of so-called weighted auto-
correlation coefficients associated with the basis vectors that
span the finite Galois field GF (2n). This relation between
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the number of paths and the weighted autocorrelation co-
efficients is then used to define an analytic paths-reduction
procedure. The suggested procedure minimizes the number
of paths in MTBDDs by choosing a set of basis vectors
corresponding to the maximal weighted autocorrelation co-
efficients. The MTBDD with the reduced number of paths is
obtained by using the ordered set of n basis vectors which
corresponds to input variables or linear combinations of the
variables.

The initial idea of this paper and first preliminary ex-
perimental results were presented in the 7th International
Workshop on Boolean Problems, September 2006, Freiberg,
Germany [16]. This paper presents a comprehensive study of
the subject.

This paper is organized as follows. Section II includes
mathematical background and defines the weighted autocorre-
lation function. Section III presents methods for counting the
number of paths and shows that the number of paths depends
on the value of the weighted autocorrelation coefficients. In
Section IV, the relationship between the number of paths
and the number of nodes is discussed. Section V describes
the paths-reduction procedure for MTBDDs and SBDDs and
analyzes the computational complexity, the dependency on the
chosen basis vectors, and the dependency on the cost function.
Experimental results on standard benchmark functions are
presented in Section VI. The conclusions summarizing the
results are presented in Section VII.

II. Mathematical Background

In this paper, the domain and the range of the multioutput
function of n-input and k-output are defined as the finite fields
GF (2n) and GF (2k), respectively, and, an assignment of the
n inputs is viewed as a binary vector x = (xn−1, . . . , x1, x0).
An element of the field GF (2n) is represented as a linear
combination of n basis vectors {δi}n−1

i=0 with the coefficient
vector x, where δi is the binary vector corresponding to 2i. The
set of δi’s is called the initial basis of GF (2n). Clearly, any set
of n independent elements of GF (2n) forms a basis. The truth
table of a Boolean function defines the mapping between the
coefficient vector that specifies an element in GF (2n) to an
element of GF (2k). This mapping depends on the set of basis
vectors.

Example 1: Consider the field GF (23) and two sets of basis
vectors: the first set is the initial set of basis vectors {δi}2

i=0
which are the columns of the 3 × 3 identity matrix I; the
second set of vectors is {τi}2

i=0 which are the columns of a
nonsingular matrix T

T = (τ2, τ1, τ0) =

⎛
⎝

1 1 0
0 1 0
0 0 1

⎞
⎠ .

An element, say the binary tuple (110) also referred as α6,
corresponds to the following linear combination of the initial
basis vectors:

α6 = (δ2, δ1, δ0)

⎛
⎝

1
1
0

⎞
⎠ = I

⎛
⎝

1
1
0

⎞
⎠

equivalently, this element can be represented as

α6 = T

⎛
⎝

0
1
0

⎞
⎠ .

TABLE I

Truth Tables of fI (x2, x1, x0) and fT (z2, z1, z0)

x Element fI

000 α0 00
001 α1 01
010 α2 00
011 α3 01
100 α4 00
101 α5 01
110 α6 10
111 α7 11

z Element fT

000 α0 00
001 α1 01
010 α6 10
011 α7 11
100 α4 00
101 α5 01
110 α2 00
111 α3 01

Therefore, the element α6 can be addressed in two ways: the
first way is by using the coefficient vector x = (x2x1x0) which
corresponds to the initial basis, i.e., x = (110); the second
way is by using the coefficient vector z = (z2z1z0) which
corresponds to the basis defined by the columns of T , i.e.,
z = (010). Clearly, the matrix T defines a linear transformation
between the coefficient vectors x = Tz or z = T −1x = σx.

A function from GF (2n) to GF (2k) maps the 2n elements
of GF (2n) to elements of GF (2k). The mapping between the
coefficient vectors depends on the basis vectors that span the
field.

Example 2: The left part of Table I shows the truth table
of the function fI(x2, x1, x0) defined by the initial set of
basis vectors. The right part of the table corresponds to the
function fT , with the basis vectors defined by the columns of
the matrix T (specified in Example 1). These functions define
the same mapping from GF (2n) to GF (2k). For example, the
element α6 is mapped to the output vector (10), i.e.,
f (α6) = fI(110) = fT (010).

Definition 1 (Characteristic Function): Let u ∈ GF (2k).
The characteristic function fu associated with the symbol u is
defined as

fu(x) =

{
1 if f (x) = u,

0 otherwise
. (1)

The autocorrelation function of fu is

Ru(τ) =
∑

x∈GF (2n)

fu(x)fu(x ⊕ τ) τ ∈ GF (2n) (2)

where the ⊕ sign stands for addition in the finite field GF (2n),
that is, a bitwise XOR operation.

Property 1: Let Ru(τ) be the autocorrelation function of fu.
Denote by Rū(τ) be the autocorrelation function of f̄u—the
complement of fu. Then

Rū(τ) =
∑

x∈GF (2n)

f̄u(x)f̄u(x ⊕ τ)

=
∑

x∈GF (2n)

(1 − fu(x))(1 − fu(x ⊕ τ))

= 2n − 2Ru(0) + Ru(τ).

We define a weighted autocorrelation function, Rw(τ), as
follows.

Definition 2: The weighted autocorrelation function of the
function f is

Rw(τ) =
∑

u∈GF (2k)

wuRu(τ), τ ∈ GF (2n) (3)

where {wu}u∈GF (2k) is a set of weights.
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In this paper, the weights are real numbers, i.e., wu ∈
R. The total-autocorrelation function, defined in [12], is
a special case where all the weights are equal to 1. The
total-autocorrelation function was used in [14] for analytical
calculation of the APL of an MTBDD. In this paper, we use
the weighted autocorrelation function to calculate analytically
the number of paths. We show that the weights {wu}u∈GF (2k)

can be chosen in a way that the autocorrelation values at a
certain τ will reflect the number of paths.

Example 3: Consider the function fI specified in Table I.
There are four distinct output combinations which correspond
to four characteristic functions, f00, f01, f10, and f11. Fig. 1(a)
shows the characteristic function f01(x) = f01(x2, x1, x0) as
a 3-D cube. The eight nodes of the cube correspond to the
eight elements in GF (23). The bold nodes represent the input
vectors for which f01 equals one. The weight of f01(x), i.e.,
the number of “ones” in f01(x), equals three. Fig. 1(b) shows
the characteristic function f01 shifted by τ = (110), that is

f01(x ⊕ τ) = f01(x2 ⊕ 1, x1 ⊕ 1, x0 ⊕ 0) = f01(x̄2, x̄1, x0).

The autocorrelation function R01(τ) at τ = (110) is

R01(110) =
∑

x∈GF (23)

f01(x)f01(x ⊕ (110))

= 0 · 0 + 1 · 0 + 0 · 0 + 1 · 1

+0 · 0 + 1 · 1 + 0 · 0 + 0 · 1

= 2.

The autocorrelation value at τ = (110) equals the weight
of the product function obtained by multiplying the two
functions f01(x) and f01(x ⊕ (110)) [see Fig. 1(c)]. Clearly,
the complexity of calculating a single autocorrelation value
according to its definition is exponential in the number of
inputs. Efficient methods for the calculation of the autocorre-
lation values with an acceptable complexity are discussed in
Section V-E. The autocorrelation values R01(τ) are shown in
Fig. 2. The horizontal axis is the value of τ when represented
as an integer number, for example, (110) = 6. Notice that
for all τ ∈ GF (23), the weight of the (product) function
f01(x)f01(x ⊕ τ) is smaller or equal to the weight of f01(x).
Therefore, τ = (000) attains the maximal autocorrelation value.

The autocorrelation values for the characteristic functions
and the weighted autocorrelation functions if all the weights
are equal to 1, are

R00 = [3, 0, 2, 0, 2, 0, 2, 0]

R01 = [3, 0, 2, 0, 2, 0, 2, 0]

R10 = [1, 0, 0, 0, 0, 0, 0, 0]

R11 = [1, 0, 0, 0, 0, 0, 0, 0]

Rw = [8, 0, 4, 0, 4, 0, 4, 0]. (4)

Notice that Rw(0) = 23.
A multioutput function of k-outputs can be represented by

an MTBDD, which is a directed acyclic graph that has at most
2k terminal nodes (leaves) [31]. Each nonterminal node in the
MTBDD is associated with a variable. A variable represents
a coefficient of a basis vector. The coefficients of the n basis

Fig. 1. Characteristic function f01(x) is shown in (a) and the function
f01(x ⊕ τ) for τ = (110) in (b). The product f01(x) · f01(x ⊕ τ) is shown
at the bottom of the figure (c).

Fig. 2. Autocorrelation function R01(τ) for Example 3.

vectors appear in some fixed order and once at each path.
Usually, the initial basis is used; the root of the tree is xn−1 (the
coefficient of δn−1), and a node associated with xi descends
from xi+1. If the order of the basis vectors is predetermined,
it is possible to reduce the number of nodes by: 1) eliminat-
ing nodes whose outgoing edges point to the same subtree,
and 2) sharing all equivalent subtrees. Such reduced ordered
MTBDD is called a reduced ordered MTBDD (ROMTBDD).
For simplification, when it is clear from the context we omit
the prefix, hence ROMTBDD is referred to as MTBDD.

A multiterminal binary decision tree (MTBDT) is derived
from a complete MTBDT by eliminating nodes whose edges
are pointing to the same subtrees, but without sharing equiv-
alent subtrees that are not rooted from the same node.

An ordered MTBDD whose root variable is xn−1 and xi

descends from xi+1, is referred to as an MTBDD with a natural
ordering of the input variables. It is possible to reduce size,
the number of paths, and APL in an MTBDD with natural
ordering, by reordering basis vectors or by replacing them with
linear combinations (EXOR sum) of subset of basic vectors.
The latter operation is called linearization.

The following property shows the relationship between the
autocorrelation values and the number of nodes that can be
eliminated from the bottom of the MTBDT:
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Property 2: The number of nodes with a node variable x0

that can be eliminated from a MTBDT with a natural ordering
of the input variables equals R(δ0)/2.

Proof: A node with a node variable x0 can be eliminated
if its outgoing edges point to leafs that carry equal value. In
other words, let Y ∈ GF (2n−1) stand for the realization of
the variables (xn−1, . . . , x1), then, a node at the end of the
path defined by Y can be eliminated if f (Y, 0) = f (Y, 1).
The number N0 of nodes with a node variable x0 that can
be eliminated is

N0 = |{Y |f (Y, 0) = f (Y, 1), Y ∈ GF (2n−1)}|
=

∑
u∈GF (2k)

∣∣∣∣
{

Y

∣∣∣∣ fu(Y, 0) = fu(Y, 1) = 1,

Y ∈ GF (2n−1)

}∣∣∣∣
=

1

2

∑
u∈GF (2k)

∑
x∈GF (2n)

fu(Y, x0)fu(Y, x̄0)

=
1

2

∑
u∈GF (2k)

∑
x∈GF (2n)

fu(x)fu(x ⊕ δ0)

=
1

2

∑
u∈GF (2k)

1 · Ru(δ0) =
1

2
Rw(δ0)

where all the weights, wu, are equal to one.
Example 4: Consider the function specified in Table I. The

value of the autocorrelation function at δ0 equals zero [see
(4)]. Therefore, no nodes can be eliminated from the bottom
of the corresponding MTBDT.

The pairing operation, defined below, will be used in the
following sections for analysis and minimization of MTBDDs.
Pairing an MTBDD is eliminating the lower level by encoding
pairs of leaves that are rooted from the same node. This
operation increases the number of distinct paired leaves. A
paired MTBDD represents a paired multioutput function of
n − 1 variables.

Definition 3 (Pairing): Let f (xn−1, . . . , x1, x0) be a func-
tion from GF (2n) to GF (2k). The paired function g:
GF (2n−1) → GF (2k)2 with respect to x0 is (y1, y0) = g(xn−1,

. . . , x1), where y1 = f (xn−1, . . . , x1, 1) and y0 = f (xn−1, . . . ,

x1, 0).
Recall that the field GF (2k)2 can be identified with the field

GF (22k). Thus, after applying the pairing i times the paired
function, denoted by f i, is f i : GF (2n−i) → GF (2k2i

) for
0 ≤ i < n.

Example 5: The pairing of the MTBDD representing
fI(x2, x1, x0) specified in Table I is illustrated in Fig. 3. To
simplify the presentation, we show the MTBDT and not the
MTBDD. In addition, the outputs of fI , which are binary
vectors, are represented as integers, i.e., (00) = 0, (01) =
1, (10) = 2, and (11) = 3. The pairing is done in two steps:
the initial function fI(x2, x1, x0) (denoted as f 0) is paired
with respect to x0. This results a paired function f 1(x2, x1),
whose range is GF (22)2, or equivalently, GF (24). Then, the
function f 1 is being paired with respect to x2. This results a
paired function f 2(x2) whose range is GF (22)4, equivalently,
GF (28). Notice that additional paring (with respect to x2) will
result in a single leaf which is the truth vector of fI .

Fig. 3. Pairing of the function fI (x2, x1, x0) in Table I. (a) MTBDT cor-
responding to fI . (b) MTBDT after pairing with respect to x0. (c) MTBDT
after pairing with respect to x0 and x1.

III. Determining the Number of Paths in MTBDD

In this section we present methods for counting and reduc-
ing the number of paths in a multiterminal BDD. However,
the analysis as well as the minimization procedure are also
applicable to shared BDDs.

For a fixed order of variables, the number of paths in
an MTBDD and in the corresponding MTBDT is the same.
Consequently, the number of paths in a given MTBDD equals
the number of edges connected to the terminal nodes of the
equivalent MTBDT. Recall that a multioutput function of k

outputs can also be represented by an SBDD which is a set of
k BDDs that share nodes. The number of paths in an SBDD
equals the sum of paths in each BDD.

Example 6: Consider the 4-input 4-output logic function
presented in [28]

f0 = x3x2 + (x̄3 + x̄2)x1x0

f1 = x3x2

f2 = x3x2 + (x̄3 + x̄2)x1

f3 = x3x2 + (x̄3 + x̄2)x0.

Fig. 4 shows the SBDD and the MTBDD of the same logic
function. The MTBDD has nine paths whereas the SBDD has
20 paths that are the sum of the number of paths in the four
BDDs.

Each node in a binary decision tree has a single ingoing
edge. Therefore, the number of paths that pass through a node
is equal to the number of paths in the sub-BDT rooted from
that node. Consequently, the number of paths in an MTBDD
can be calculated recursively starting from the bottom of the
MTBDT. In what follows we show how the calculation is
performed.

The leaves of the MTBDT corresponding to the paired
function f i represent the output values u, u ∈ GF (2k2i

).
The symbol u is a pair (concatenation) of symbols (um, ul),
um, ul ∈ GF (2k2i−1

). It has the following property.
Property 3: Let the symbol u (u ∈ GF (2k2i

)) at the ith
level be assigned with a weight ci

u, where the value of ci
u is

the number of paths in the sub-BDT that the leaf u represents.
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Fig. 4. (Top) MTBDD and (bottom) SBDD of the logic function presented
in Example 6.

Let each output value of the original function f = f 0 be
assigned with a weight c0

u = 1. Then, for i > 0, the weights
are

ci
u =

{
ci−1
um

+ ci−1
ul

um �= ul

ci−1
um

um = ul
(5)

where u = (um, ul), and um and ul are elements of GF (2k2i−1
).

This property is illustrated in Fig. 5. Note that the number
of distinct values of u’s of the paired function f at the level i

is at most min(2n−i, 2k2i

). At the upper level, there is a single
leaf u, which represents the truth vector F of the function
f , namely, u = (f (2n − 1), . . . f (2), f (1), f (0)) = F . This
property can be formulated as follows.

Property 4: The number of paths in an MTBDD equals cn
F .

Example 7: The number of paths in the MTBDD of fI

(specified in Table I) is calculated as shown in Table II. For
each level i (0 ≤ i ≤ 3), the second column of the table
shows the truth vector of the paired function f i, and the right
column shows the weight assigned to the leaves in the BDT
of the paired function. The first row (level 0) corresponds to
the original function, i.e., f 0 = fI . Following Property 4, the
number of paths is equal to the weight c3

F associated with the
single leaf of the third level (i = 3), namely, c3

32101010 = 6.
In this paper, we apply a different approach for counting the

number of paths. This approach allows us to derive an explicit
expression for the number of paths as a linear function of the
autocorrelation values. Based on the analytic expression, we

Fig. 5. Illustration—recursive path counting.

TABLE II

Steps in the Calculation of the Number of Paths in the MTBDD

of fI

Level Truth Vector of f i : Weights
[f i(0), . . . , f i(2n−i − 1)]

0 [0, 1, 0, 1, 0, 1, 2, 3] c0
0 = c0

1 = c0
2 = c0

3 = 1

1 [10, 10, 10, 32]
c1

10 = c0
1 + c0

0 = 2
c1

32 = c0
3 + c0

2 = 2

2 [1010, 3210]
c2

1010 = c1
10 = 2,

c2
3210 = c1

32 + c1
10 = 4

3 [32101010] c3
32101010 = c2

3210 + c2
1010 = 6

will introduce a deterministic path minimization procedure.
The main idea behind this approach is to calculate the number
of paths per level rather than the number of paths per node.
The calculation is performed by using the weighted autocor-
relation functions coefficients.

Let f i
u be a characteristic function of the paired function f i

at the level i. The autocorrelation function of f i
u is

Ri
u(τ) =

∑
x∈GF (2n−i)

f i
u(x)f i

u(x ⊕ τ) τ ∈ GF (2n−i).

Recall that a finite field GF (2w) contains the finite field
GF (2). Indeed, a field GF (2w) is an extension of the field
GF (2). The element δ0 is the unit element of GF (2) and hence
it is also the unit element in GF (2w). When δ0 is referred to
as an element of GF (2w), it is represented as a binary vector
(0, . . . 0, 1) of length w. In this paper, we address δ0 as a
basis vector that spans the domain of the function. Being a
basis vector, δ0 is associated with a variable. For example,
the variable that determines the coefficient of δ0 in the paired
function f i

u(xn−1, . . . , xi) is xi.
Definition 4: The number of accumulated paths Ci at the

ith level is the number of paths in all the sub-MTBDDs that
are represented as the leaves of the complete binary tree of
the paired function f i.

Lemma 1: Let Ni
u be the number of ON-set values in f i

u.
Then

Ci =
∑

u∈GF (2k2i )

Ni
uc

i
u.
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The correctness of this lemma follows from the fact that
there are 2n−i =

∑
u∈GF (2k2i ) N

i
u leaves in the complete binary

tree of f i. A leaf that carries the value u is associated with a
sub-MTBDDs that has ci

u paths.
Notice that the number of leaves in the complete binary

tree of the initial function f (= f0) equals 2n =
∑

u∈GF (2k) N
0
u .

Following the definition of c0
u (in Property 3), we have

C0 =
∑

u∈GF (2k)

N0
uc0

u =
∑

u∈GF (2k)

N0
u · 1 = 2n.

Moreover, at the top level (i = n), there is a single leaf that
shows the truth vector of the function. This can be formulated
as follows.

Property 5: The number of paths in the MTBDD equals

Cn = Nn
Fcn

F = cn
F .

Example 8: Consider the paired functions f i presented in
Table II. The number of accumulated paths C0 equals

N0
0c0

0 + N0
1c0

1 + N0
2c0

2 + N0
3c0

3 = 3 · 1 + 3 · 1 + 1 · 1 + 1 · 1 = 23.

The number of accumulated paths C1 equals

N1
10c

1
10 + N1

32c
1
32 = 3 · 2 + 1 · 2 = 8.

Similarly, C2 = 1 · 2 + 1 · 4 = 6, and C3 which is the number
of paths in the MTBDD equals 6.

In what follows, we derive an analytic expression showing
the relationship between the weighted autocorrelation values
and the number of paths in the MTBDT. We do it in two
steps. First, in Theorem 1 we show the relationship between
the number of accumulated paths Ci and the autocorrelation
value of Rc,i−1 at δ0. Then, in Theorem 2 we show that Cn,
which is the number of paths in the MTBDD, is a linear
function of the weighted autocorrelation coefficients of the
paired functions. We start by defining the weights in the
weighted autocorrelation.

Definition 5: Let ci
u be the weights defined by (5). The

weighted autocorrelation function Rc,i of the paired function
f i is defined as

Rc,i(τ) =
∑

u∈GF (2k2i )

ci
uR

i
u(τ) τ ∈ GF (2n−i). (6)

The following theorem states that the number of accu-
mulated paths at the level i depends on: 1) the number of
accumulated paths at the level i − 1, and 2) the weighted
autocorrelation of the paired functions.

Theorem 1: Let Rc,i denote the weighted autocorrelation of
the paired function f i with weights {ci

u} as defined by (5).
Then, C0 = 2n and for all i, 0 < i ≤ n, the number of
accumulated paths at the level i is

Ci = Ci−1 − 0.5Rc,i−1(δ0). (7)

Proof: Following the definition of the accumulated num-
ber of paths, we have, Ci =

∑
u∈GF (2k2i ) N

i
uc

i
u. The symbol u

is a concatenation of two symbols, i.e., u = (um, ul) where um

and ul are elements of GF (2k2i−1
). Hence

Ci =
∑
um

∑
ul,ul �=um

Ni
(um,ul)c

i
(um,ul) +

∑
ul

Ni
(ul,ul)c

i
(ul,ul).

By using Property 3 we get

Ci =
∑
um

∑
ul,ul �=um

Ni
(um,ul)

(ci−1
um

+ ci−1
ul

) +
∑

ul

Ni
(ul,ul)

ci−1
ul

=
∑
um

ci−1
um

∑
ul

Ni
(um,ul)

+
∑

ul

ci−1
ul

∑
um

Ni
(um,ul)

−
∑
um

Ni
(um,um)c

i−1
um

or

Ci =
∑
um

ci−1
um

∑
ul

(Ni
(um,ul) + Ni

(ul,um)) −
∑
um

Ni
(um,um)c

i−1
um

.

The pairing of the (i − 1)th level has paired (Ni
(um,ul) +

Ni
(ul,um)) leaves carrying the value um with the same number

of leaves carrying the value ul, (ul �= um). Additionally,
2Ni

(um,um) leaves carrying the value um were paired into leaves
of the form (um, um). Therefore, the inner sum,

∑
ul

(Ni
(um,ul)

+Ni
(ul,um)) in the last equation, which goes over all the possible

values of ul (including the case where ul equals um), is equal
to Ni−1

um
. Hence we have

Ci =
∑
um

ci−1
um

Ni−1
um

−
∑
um

Ni
(um,um)c

i−1
um

.

The last equality consists of two sums. The first one equals
Ci−1. In the second sum we have Ni

(um,um) which is the number
of leaves, in the complete binary tree of f i, that carry the value
um and are rooted at the same node. From Property 2, the
number of such leaves equals 0.5

∑
u Ri−1

u (δ0). Consequently

Ci = Ci−1 − 0.5
∑

u

Ri−1
u (δ0)ci−1

u = Ci−1 − 0.5Rc,i−1(δ0). (8)

Note that since Rc,i−1(δ0) ≥ 0, then the accumulated number
of paths at the ith level decreases as i increases.

The following Theorem 2 states that the number of paths
is a linear function of the weighed autocorrelation coefficients
of the paired functions.

Theorem 2: Let Rc,i be the weighted autocorrelation of the
paired function f i at level i with weights {ci

u} as defined by
(5). Then, the number of paths in the corresponding MTBDD
equals

Cn = 2n − 0.5
n−1∑
i=0

Rc,i(δ0).

The proof of Theorem 2 follows directly from Theorem 1.
Note that a reordering or a linear transformation of the input

variables is equivalent to a permutation of the autocorrelation
coefficients. The explicit expression for the number of paths
as a function of the weighted autocorrelation coefficients
explains why it is possible to reduce the number of paths
by performing a reordering and/or a linear transformation.
Moreover, Theorem 2 opens the way to define a determin-
istic paths-reduction procedure that maximizes

∑n−1
i=0 Rc,i(δ0)

by permuting the weighted autocorrelation coefficients. The
paths-reduction procedure (presented in Section V-B) performs
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the permutation by replacing the initial basis that spans the
domain of the function by another basis the elements of which
are linear combinations of elements of the initial basis.

IV. Number of Paths vs. the Number of Nodes

In this section we present two examples. The first example
illustrates the use of autocorrelation coefficients for determin-
ing analytically the ordering of the variables. In the second
example (Example 10), we present a function for which there
exists no ordering that can minimize the number of paths
and the number of nodes simultaneously. That is, the optimal
ordering that minimizes the number of nodes differs from the
optimal ordering that minimizes the number of paths.

The relationship between the number of nodes in a BDD
and the number of paths was discussed in [6]. It was shown
that a reduction in the number of nodes does not necessarily
reduce the number of paths.

Theorem 3: [6] For any n ≥ 5, there exists a function f

(xn−1, . . . , x0), such that for at least one pair of orderings of
the input variables, πi, πj , the number of nodes is Ni > Nj ,
but the number of paths is Ci < Cj .

For the proof, the authors in [6] constructed the function

f (xn−1, . . . , x0) = x0h̄ + x̄1h + x0x2 + x̄0x1x̄2 (9)

where h(xn−1 . . . x4, x3) = x3 ⊕ x4 ⊕ · · · ⊕ xn−1, and they
specified two orderings of the input variables that satisfy this
property. These two orderings are π1 = (x1, x2, (h), x0), and
π2 = ((h), x1, x2, x0), where (h) denotes any ordering of the
variables of the function h. The corresponding BDDs have
C1 < C2 and N2 < N1.

The following example illustrates the use of autocorrelation
coefficients for determining the ordering of the variables ana-
lytically. We analyze the above function in terms of its autocor-
relation coefficients and show that the ordering by decreasing
autocorrelation coefficients, referred to as π3, determines a
BDD that has C3 < min(C1, C2) and N3 = min(N1, N2).

Example 9: The function f [specified above in (9) in its
SOP form] can be presented as a set of five disjoint cubes
{Pi}5

i=1, where Pi is a cube in the variables x0, x1, x2 and h.
Namely

P1 = x̄0x̄1h P2 = x̄0x1x̄2

P3 = x0x̄1 P4 = x0x1x̄2h̄

P5 = x0x1x2.

Each cube represents a cluster of binary vectors, which
form a coset (a coset is a linear subspace shifted by a
constant vector). The order of a cube is the dimension of the
corresponding linear subspace. For example, the cube P3 is
of order n − 2 since it represents all the 2n−2 binary vectors
of length n in which x0 = 1 and x1 = 0. The cubes in our
example are of orders w − 1, w and 1 + w, where w = n − 3.

The cubes are disjoint and therefore the autocorrelation
function can be calculated by using the technique introduced in
[15] and [30] or directly on the BDD by using the method pre-
sented in [25]. In this example, we used the method presented
in [15]. The advantage of the method presented in [15] is that it

TABLE III

BDD’s Characteristics for the Orderings π1, π2 , and π3

Ordering Nodes N Paths C

π1 4w + 2 6 · 2w−1 + 2

π2 2w + 5 10 · 2w−1

π3 2w + 5 4 · 2w−1 + 4

calculates a number of autocorrelation values simultaneously.
The low computational complexity of the method results from
the disjointness of the cubes. To simplify the presentation,
we illustrate the principles of this method by calculating a
single autocorrelation value. The generalization of the method
for calculating a set of values simultaneously, is described in
details in [15].

There are two characteristic functions f0 and f1. The
corresponding autocorrelation functions are R0(τ) and R1(τ).
The initial weights are c0

0 = c0
1 = 1. Indeed, it is sufficient to

calculate only one autocorrelation function, say R1(τ), since
from Property 1 we have

Rc,0(τ) = 1 · R0(τ) + 1 · R1(τ) = 2n − 2R1(0) + 2R1(τ). (10)

Define P̂i(h, x2, x1, x0) = P(h, x2, x1, x̄0) = P(x ⊕ δ0). Since
the cubes are disjoint, we have PiPj = 0, P̂iP̂j = 0, and,
P̂iPi = 0. The value of R1(δ0) equals the weight of the
function obtained by multiplying f =

∑5
i=1 Pi by the function

f (x ⊕ δ0) =
∑5

i=1 P̂i. The product of the two functions equals

P1P̂3 + P2P̂4 + P3P̂1 + P4P̂2 = x̄1h + x1x̄2h̄.

The weight of the latter function is 22 · 2w−1 + 2 · 2w−1. Thus,
R1(δ1) = 6 · 2w−1.

Similarly, the values of R1(τ) for τ = 0, δ0, δ1, δ2, δi and h

are
R1(0) = 2w + 2w + 2w+1 + 2w−1 + 2w = 11 · 2w−1

R1(δ0) = 22 · 2w−1 + 2 · 2w−1 = 6 · 2w−1

R1(δ1) = 2 · 2w−1 + 2 · 2w−1 + 2 · 2w = 8 · 2w−1

R1(δ2) = 2 · 2w−1 + 0 + 2w+1 + 2 · 2w−1 = 8 · 2w−1

R1(δi) = 2w + 2 · 2w + 2w = 8 · 2w−1 for i ≥ 4

R1(h) =

{
11 · 2w−1 ω is even
8 · 2w−1 ω is odd.

(11)

The basis vector associated with x0 carries the minimal
(weighted) autocorrelation value. From (10) and (11) we have

Rc,0(δ0) < Rc,0(δ1) = Rc,0(δ2) ≤ Rc,0(h).

Any analytic reordering algorithm that orders the variables by
decreasing autocorrelation coefficients (e.g., [11], [13], [15]
and the procedure suggested in Section V-B) may derive (in
the worst case) the ordering π3 = (x0, x1, x2, (h)). Fig. 6 shows
the three BDDs defined by the orderings π1, π2, and π3, and
Table III compares them in terms of their size and the number
of paths. The ordering π3 defines a BDD having a smaller
number of nodes and a smaller number of paths with respect
to the BDDs with orderings π1 and π2.

The ordering π3 defined by using the autocorrelation coef-
ficients leads to a better result, with respect to π1 and π2, in
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Fig. 6. BDDs of the function in Example 9 with orderings (left) π1, (center)
π2, and (right) π3.

Fig. 7. BDDs in Example 10 with the orderings (left) π1 and (right) π2.

both the number of paths and the number of nodes. However,
although π3 reduces both parameters, it does not contradict
Theorem 3. The theorem justifies the need for a dedicated
paths-reduction procedure, especially when suboptimal mini-
mization procedures are considered, since for some functions
the number of nodes and the number of paths may not decrease
simultaneously. The following example presents a function for
which the minimal number of nodes and the minimal number
of paths are obtained by different orderings.

Example 10: Consider the function f (x3, x2, x1, x0) =
x̄0x̄1x̄2x̄3 + x0x1x2 + x0x1x3. The BDDs of the function with
the orderings π1 = (x3, x2, x1, x0) and π2 = (x0, x1, x2, x3) are
shown in Fig. 7. The BDD defined by π1 has the minimal
possible number of nodes, N = 6, and has 9 paths. The BDD
defined by π2 has the minimal possible number of paths,
C = 8, but has 7 nodes. For this function, there exists no
permutation of the input variables that minimizes the number
of nodes and the number of paths simultaneously.

V. Reduction of the Number of Paths in MTBDD

In this section, we present a procedure for minimizing the
number of paths in MTBDD and analyze the performance and
computational complexity of the procedure.

A. Optimization Problem

A linear decomposition [12] is a well-known technique that
allows a representation of a function f as a superposition of
a linear transformation function σ and a nonlinear function,
fσ , such that f (x) = fσ(σ(x)). In this paper, the cost function
for the linearization is the number of paths in the MTBDD
corresponding to the linearized function fσ .

Let T = σ−1 = (τn−1, . . . τ1, τ0) be a nonsingular matrix. The
columns of T form a basis that spans the domain GF (2n). The

Fig. 8. Paths-reduction procedure.

weighted autocorrelation function, Rw
fσ

(x), of the linearized
function fσ , (defined by σ), is Rw

fσ
(x) = Rw

f (σ−1x) = Rw
f (Tx),

where Rw
f (x) is the weighted autocorrelation function of f (x),

and we have Rw
fσ

(δ0) = Rw
f (Tδ0) = Rw

f (τ0). Therefore, the
optimization problem for reducing the number of paths can
be formulated as follows:

Construct a set of vectors τi ∈ GF (2n−i), i = 0, . . . n − 1,
for which

∑n−1
i=0 R

c,i
f (τi) is maximal.

Note that for i > 0, the vectors τis are not in GF (2n).
In order to construct a set of linearly independent basis
vectors that span GF (2n), we have to extend the τs to τ̂is by
multiplying their corresponding decimal value by 2n−i, i.e.,
τ̂i = (τi, 0, 0 . . . 0).

B. Procedure for Minimization of the Number of Paths

The computational complexity of constructing an optimal
set of basis vectors (the optimal linear transformation matrix
σ), or an optimal permutation of an initial set of basis vectors
is NP-hard [1]. For that reason, greedy algorithms are used to
solve the minimization problem.

The proposed path-reduction procedure is presented in
Fig. 8. The procedure constructs deterministically a set of
basis vectors that provides an MTBDD or SBDD with reduced
number of paths. At each step of the procedure a vector τ

which carries the maximal weighted autocorrelation value is
chosen, and the corresponding τ̂ is added to the set of basis
vectors instead of one of the initial vectors. In other words, at
level i, a vector τ̂i = (τi, 0, 0 . . . 0), τi ∈ GF (2n−i) replaces a
basis vector δk, k ≥ i, if its weighted autocorrelation satisfies

Rc,i(τi) ≥ Rc,i(τ)

for all τ ∈ GF (2n−i), τ �= 0. Hence, the corresponding local
linear transformation matrix σi is determined deterministically.

The following example illustrates how the linearization
procedure works.

Example 11: Consider the benchmark function 9sym, which
has 9 inputs and a single output. The BDD of 9sym has
220 paths. Since the function is a totally symmetric function,
a simple permutation of the input variables cannot improve
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the path count. However, it is possible to reduce the number
of paths by applying a linear transformation on the input
variables. In this example, we restrict the Hamming weight
of τ to be less or equal to two. This restriction reduces the
number of paths in the linearized part (fσ) and also in the
linear part (σ).

The autocorrelation function of 9sym with the natural order-
ing is equal to the weighted autocorrelation function Rc,0(τ).
The values of Rc,0 for τ ′s whose Hamming weight is smaller or
equal to two, are shown in Fig. 9 (top). The x-axis corresponds
to the integer value of τ when referred to as a number in base
two. To avoid confusion, the autocorrelation values associated
with τ’s having Hamming weight greater than two (and hence
are not considered as candidate basis vectors) are assigned
with the value “−1.”

Notice that all the original basis vectors (δi) carry the
maximal autocorrelation value, which equals 400. Thus, one
of them will be chosen randomly (see Step b in the algorithm).
Assume that the algorithm chooses δ0 [i.e., the binary vector
(000000001)]. Consequently, at the first step (i = 0) the
set of the basis vectors is kept unchanged (see Step c in
the algorithm). This is equivalent to applying a local linear
transformation matrix σ̂0 (= σ0) that equals I9×9, where I is
the identity matrix. The paring operation (see Step d) results
in an 8-input function, which is referred to as the partially lin-
earized function fσ̂0 . This function takes four possible values:
(00), (01), (10) and (11), with weights c1

00 = 1, c1
01 = 2, c1

10 = 2
and c1

11 = 1, respectively. The number of paths at this step is
unchanged, it equals 220.

At the second step (i = 1) the weighted autocorrelation
Rc,1(τ), of fσ̂0 is calculated. The autocorrelation values are
shown in Fig. 9. The maximal autocorrelation value (for τ �= 0)
is equal to 192. Several vectors attain this value, assume that
we choose τ = (00000011). Notice that this τ is an eight-bit
vector, i.e., it is an element of GF (28). In order to map it to
an element in GF (29) we have to multiply it by 29−8, i.e.,
τ̂ = (000000110). Replacing the node variable at the second
level by the chosen τ results in a partially linearized function
fσ̂1 = fσ1σ0 which has 196 paths. The corresponding local
linear transformation matrix equals

σ̂1 = σ1σ0 = σ1 = (δ8, δ7, . . . δ2, τ̂, δ0)−1.

Table IV presents for each level i (the first column) the
number of paths in the BDD of the partially linearized
function (the second column). Namely, the number of paths
in the BDD corresponding to fσ̂i

, where σ̂i = σiσi−1 · · · σ0.
The third column shows the maximal value of the weighted
autocorrelation function of level i, Rc,i(τ), and the fourth
column shows the corresponding τ. The last three columns
show the number of characteristic functions at level i (denoted
as |u|) and the minimal and maximal values of the accumulated
weight ci. The first row in the table, labeled as “orig,” shows
the number of paths in the BDD with the natural ordering of
the input variables, and, the weighted autocorrelation of the
leaf-variable x0.

Note that after the pairing at the sixth step, all the leaves
carry different values (i.e., max Rc,6 = 0). Hence, a further
reduction in the number of paths is not possible, and therefore,

TABLE IV

Linearization of the Function 9sym

i C Max Rc,i(τ) τ |u| min max
(τ �= 0) ci ci

Orig 220 400 000 000 001 2
0 220 400 000 000 001 2 1 1
1 196 192 00 000 011 4 1 2
2 152 116 0 000 110 10 1 3
3 116 80 001 100 12 1 6
4 88 58 11 000 19 1 12
5 88 2 0 001 12 1 24

Fig. 9. Weighted autocorrelation functions Rc,i(τ), for Example 11 plotted
in increasing order. The weighted autocorrelation of the first level Rc,0 is
placed at the top of the figure, and Rc,5 is placed at the bottom.

the procedure ends. The final number of paths in the linearized
BDD according to Theorem 2 is

C = 29 − 0.5 · (400 + 192 + 116 + 80 + 58 + 2 + 0 + 0 + 0) = 88.

In this example, the linearization reduces the number of
paths from 220 to 88.

Notice that the number of paths in the linear part is
negligible, as can seen in Fig. 10. The left-hand side of the
figure presents a logic scheme of the combinatorial circuit that
implements the linear transformation of the input variables
x = (x8, . . . , x0) into z = (z8, . . . , z0). The right-hand side of
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Fig. 10. Implementation of the linear transformation σ in Example 11 as a combinatorial circuit (left). Representation of σ as a concatenation of six local
linear transformations (right).

TABLE V

Truth Table and Weighted Autocorrelation

off (x2, x1, x0) = x0x
′
1 + x′

0x2

x 0 1 2 3 4 5 6 7

f (x) = f 0(x2, x1, x0) 0 1 0 0 1 1 1 0

R = Rc,1 8 4 4 4 4 4 0 4

the figure presents the linear transformation σ as a concatena-
tion of the above six local linear transformations defined by
the τs in Table IV.

C. Number of Paths as a Function of the Chosen Basis Vector

The algorithm is greedy since at the ith iteration it chooses a
τ of the maximal weighted autocorrelation value while ignor-
ing how it affects the weighted autocorrelation function of the
paired function at level i+1. Therefore, the linearized MTBDD
may be suboptimal. The following example illustrates such a
case. For simplification, the Hamming weight of the candidate
basis vectors was restricted to one, i.e., only permutations of
the input variables were considered.

Example 12: Consider the function f (x2, x1, x0) =
x0x̄1 + x̄0x2 given in Table V. There are six possible
orderings of the input variables. The best two orderings are
π1 = (x0, x1, x2) and π2 = (x0, x2, x1) which define a BDD
that has N = 3 nodes and C = 4 paths. The worst orderings
are π3 = (x1, x2, x0) and π4 = (x2, x1, x0), they provide N = 5
and C = 6. The other two orderings, π5 = (x1, x0, x2) and
π6 = (x2, x0, x1), have the same number of paths (C = 6) but
a smaller number of nodes (N = 4).

The (weighted) autocorrelation coefficients of f 0(x2, x1, x0)
are written in the last row of Table V. Note that the
autocorrelation value corresponding to the three initial basis
vectors are all equal to 4. Therefore, any one of them may be
selected by the procedure as the basis vector for level 0. If
the variable x2 (or x1) is chosen as the first basis vector, then
the algorithm generates the optimal ordering π1 = (x0, x1, x2)
(or π2 = (x0, x2, x1)). However, if x0 is selected for the first
level (i = 0), then the worst ordering is obtained.

In general, when there is more than one τ that attains
the maximal weighted autocorrelation value, the minimization
results are affected by the random selection of τ. In such cases,
an exhaustive search procedure that simultaneously works on
several adjacent levels may reduce the degradation caused by
the local decisions.

Fig. 11. MTBDD of the function in Example 13.

D. Dependency of Paths-Reduction Results on the Cost
Function

In this section, we compare the cost function that we use
for path minimization to the cost function used in [13] for
reducing the BDD size. A local linear transformation (or
a basis vector) is chosen by considering the autocorrelation
coefficients of the paired functions. In [13], the authors use
the total-autocorrelation function (i.e., ci

u = 1 for all 0 ≤ i < n

and u ∈ GF (2k2i

)), while the paths-reduction procedure uses
the weighted autocorrelation coefficients. When the number
of variables is small, the differences between the accumulated
weights ci

u are negligible. Thus, the performance of the sug-
gested algorithm and the procedure presented in [13] may be
similar.

The difference between the cost functions is clearly ob-
served in large values of n. However, for some functions,
it can affect the minimization results even if the number of
variables is small. The following example shows the effect
of the accumulated weights on the linerization results for
n = 5. To simplify the presentation, we restrict the Hamming
weight of the basis vectors to 1, which means that the linear
transformation matrix σ is restricted to a permutation matrix.

Example 13: Consider the function f (x4, x3, x2, x1, x0)
shown in Fig. 11. The BDD of f has 13 nodes and 17 paths.
The total-autocorrelation function of f = f 0 (denoted by
RTotal,0(τ)), and the weighted autocorrelation Rc,0(τ), are equal
since the initial weights are all set to one, i.e., c0

0 = c0
1 = 1.

The autocorrelation coefficients for τ = δ0, δ1, δ2, δ3 and
δ4 are 22, 22, 14, 18, and 18, respectively. Assume that the
first basis vector is δ0, namely, there is no permutation at
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TABLE VI

Characteristics of the BDDs in Example 13

Initial Ordering Using RTotal,i [13] Ordering Using Rc,i

Order π1 π2 π3

Paths 17 16 12
Nodes 13 12 10
APL 3.8125 3.5625 3.3125

Fig. 12. MTBDD of the paired function f 1(x4, x3, x2, x1) in Example 13.

level 0. The MTBDD of the paired function f 1(x4, x3, x2, x1)
with the natural ordering π1 = (x4, x3, x2, x1, x0) is shown
in Fig. 12. The MTBDD has four leaves with accumulated
weights c1

00 = c1
11 = 1 and c1

01 = c1
10 = 2. Therefore, the

corresponding autocorrelation functions are different

RTotal,1 = [16, 8, 2, 2, 8, 4, 6, 6, 4, 4, 6, 4, 2, 2, 6, 6]

Rc,1 = [21, 8, 2, 2, 12, 4, 6, 6, 4, 4, 8, 4, 2, 2, 8, 6].

The value of RTotal,1(τ), τ �= 0, is maximal for τ = δ0

and δ2. If δ0 is chosen, then the final ordering becomes
π2 = (x4, x2, x3, x1, x0) and the BDD has 16 paths. However,
the weighted autocorrelation attains its maximal value for
τ = δ2. Therefore, the final ordering obtained by the suggested
algorithm is π3 = (x4, x1, x3, x2, x0) and the corresponding
BDD has 12 paths. Table VI summarizes the characteristics
of the BDDs with three orderings.

E. Computational Complexity of the Paths-Reduction Proce-
dure

The paths-reduction procedure suggested in this paper can
be considered as an analytic reordering method if the Ham-
ming weight of the candidate basis vectors is restricted to
one. The paths-reduction procedure is greedy, and in some
cases it may produce a suboptimal solution. However, its
computational complexity is acceptable. The time complexity
of the procedure is the sum of time complexities of its
steps. The most demanding computation in each step is the
calculation of the autocorrelation function Rc,i

u . The value of
Rc,i

u (δk) can be calculated in several ways:

1) by using the Wiener–Khinchin theorem with complexity
O((n − i)2n−i) [12];

2) according to the definition of Rc,i
u with complexity

O((Ni
u)2), where Ni

u is the number of paths in the paired
MTBDD that end at the leaf u, or the number of disjoint
cubes that carry the value u [15], [25], [30];

3) directly on the BDD [25].

The above approaches were discussed in detail in [25]. The
experimental results reported in [25] show that for the con-
sidered benchmark functions, the third method calculates the
first-order autocorrelation coefficients, i.e., Rc,i

u (δk), within a
reasonable time.

F. Reduction of the Number of Paths in Shared BDD

Consider a multioutput function of n inputs and k outputs
represented by a shared BDD. The number of paths in a shared
BDD equals the sum of the paths in each of the k BDDs.
Therefore, Theorem 2 can be extended to the case of SBDD
as follows.

Corollary 1: Let f j,i be the logic function that corresponds
to the jth BDD, 0 ≤ j ≤ k, at the ith level. Let R

c,i
j be the

corresponding weighted autocorrelation function. Denote by
{ci

u} the accumulated weights as defined by (5). Then, the
number of paths in the corresponding SBDD equals

Cn = 2nk − 0.5
k−1∑
j=0

n−1∑
i=0

R
c,i
j (δ0). (12)

It is clear from the corollary that the number of paths can
be reduced by choosing a set of basis vectors that maximizes
the sum

∑k−1
j=0 R

c,i
j (δ0) of autocorrelation coefficients per level.

Namely, the suggested algorithm can be used for SBDD paths-
reduction by replacing the computation of the single weighted
autocorrelation function by the calculation of the

∑k−1
j=0 Rc,i

w (τ)
for all τ, τ ∈ GF (2n−i) of Hamming weight less or equal to
w.

VI. Experimental Results

In this section, we apply the proposed methods to a number
of relatively small MCNC benchmark functions. The corre-
sponding software was developed by using standard packages
in MATLAB; however, existing programming packages for
handling large switching functions can be equally applied
without restrictions. The performance of various algorithms
are compared in terms of the number of paths in the corre-
sponding MTBDDs.

The main advantage of suggested path-reduction procedure
is that it completes the minimization within n steps, where
n is the number of input variables. The efficiency of the
procedure (about 50% reduction in the number of paths) is
due to the fact that it uses the autocorrelation coefficients
in order to determine the set of basis vectors. In order to
demonstrate this advantage over dynamic algorithms which
do not use the autocorrelation information, we compared the
suggested procedure to a “branch-and-bound”-like dynamic
iterative procedure. Each iteration the dynamic procedure re-
places one (randomly chosen) basis vector by another random
vector, if the new vector reduces the number of paths. Fig. 13
(top) shows the probability p(x) that after N = 300 iterations
the dynamic procedure will construct an MTBDD with x

paths. Fig. 13 (bottom) shows the accumulated probability, i.e.,
the probability that the dynamic procedure will construct an
MTBDD with at most x paths. The experiment was conducted
on the benchmark function clip that has nine input variables.



42 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 1, JANUARY 2011

The candidate basis vector were randomly chosen from a set of
(29 − 1) vectors. The probabilities were obtained by repeating
the experiment 105 times. Note that the MTBDD with the
natural ordering has 454 paths and that the suggested analytic
procedure produced an MTBDD of 204 paths within seven
steps.

Tables VII and VIII show the following MTBDD and
SBDD characteristics for each benchmark function of n input
variables and k output variables.

1) CMT (natural) and CS(natural) are the number of paths
in the MTBDD and SBDD with the natural ordering of
the input variables, respectively.

2) CMT (sifting) and CS(sifting) are the number of paths
in the MTBDD and SBDD after reordering them them
by performing sifting with a cost function which is the
number of paths.

3) CMT (ordered) is the number of paths in an ordered
MTBDD. The input variables are ordered by their corre-
sponding autocorrelation values as in Example 9, that is
by using the autocorrelation values of the original (i.e.,
nonpaired) function.

4) CMT (weight) and CS(weight) are the number of paths of
the linearized MTBDD and SBDD using the suggested
algorithm with weighted autocorrelation coefficients.

The last column in each table shows the execution time (in
seconds) for both MTBDD and SBDD minimization with
weighted autocorrelation coefficients.

The experimental results indicate that a reordered MTBDD
(i.e., MTBDD with the optimized order of variables) almost
always reduces the number of paths with respect to the
MTBDD with the natural ordering. In addition, linearization
almost always reduces the number of paths with respect to the
reordered MTBDD. Note that reordering of the input variables
of symmetric functions (like 9sym) cannot reduce the number
of paths. However, for partially symmetric functions (like
add6) it can reduce the number of paths by finding the optimal
order of the symmetry-sets (a symmetry-set is a subset of input
variables for which the function is invariant to any permutation
of variables in the set; the symmetric-sets are disjoint).

Notably, on average, the number of nodes in the linearized
BDDs does not increase. The number of nodes in the reordered
MTBDD is reduced by 5% with respect to the MTBDD with
the natural ordering, whereas the number of paths is reduced
by 30.3%. The same occurs with the linearized MTBDD,
where the number of nodes was reduced by 15.9% and the
number of paths by 50.1%. As for the SBDDs, the number of
paths was reduced by 32.2% and the number of nodes was re-
duced by 22.9%. As was mentioned earlier, the analytic paths-
reduction approach has an advantage over dynamic approaches
since it works on a more global level. That is, it considers the
intrinsic properties of the function and thus its cost function
is similar to the cost function of analytic nodes-reduction
algorithms. Thus, inherently, the suggested procedure is not
likely to increase the number of nodes significantly.

A comparison between the performance of the conventional
sifting algorithm (modified so to minimize the number of
paths) and the suggested paths-reduction procedure, indicates a

TABLE VII

Number of Paths in MTBDDs

Func. n, k CMT CMT CMT CMT Time
ntrl Sifting Ord. Weight (s)

9sym 9, 1 220 220 220 58 0.79
add6 12, 7 4096 4096 4096 729 6.40
alu1 12, 8 1754 1641 1468 1387 7.32
alu2 10, 8 581 398 407 407 1.25
alu3 10, 8 707 483 478 487 1.27
apla 10, 12 264 127 161 166 1.62
clip 9, 5 454 434 468 204 0.52
dk17 10, 11 377 119 106 107 1.60
dk27 9, 9 86 47 47 47 0.76
misex3c 14, 14 15 288 8634 8924 8882 61.10
sao2 10, 4 237 95 95 89 1.81
Reduction 0 31.2% 30.3 % 50.1%

TABLE VIII

Number of Paths in SBDDs

Func. n, k CS CS CS Time
Natural Sifting Weight (s)

9sym 9, 1 220 220 58 0.87
add6 12, 7 2185 1441 367 5.82
alu1 12, 8 39 39 65 6.79
alu2 10, 8 452 176 263 1.16
alu3 10, 8 439 174 263 1.30
apla 10, 12 563 288 386 1.44
clip 9, 5 728 510 336 0.49
dk17 10, 11 306 161 217 1.56
dk27 9, 9 51 42 56 0.78
sao2 10, 4 431 220 236 1.79
Reduction 0 % 34.8% 32.2%

clear difference between SBDD and MTBDD paths reduction.
For SBDDs, the sifting (when adapted to path reduction)
reduces the number of paths by 34.8%, and the linearization
provides a reduction of 32.3%. In contrast, for MTBDDs,
the sifting reduces the number of paths by almost the same
amount (31.2%), while the linearization improves it by 50.1%.
The reason for this is the following. Our paths-reduction
procedure is based on Theorem 2. Namely, it is designed to
minimize the number of paths in a single diagram (MTBDD).
Since, the problem of the SBDD optimization is similar to the
problem of the minimization of the average number of paths
over several shared diagrams, the performance of the paths-
reduction procedure degrades when it is applied to SBDDs.

Notice that the performance of the sifting algorithm and
the autocorrelation-based ordering is quite similar (31.2% vs.
30.3%). However, the two algorithms differ in their com-
putational complexity. The computational complexity of the
autocorrelation-based ordering is much smaller than the com-
putational complexity of the sifting. In the sifting algorithm
[26], each variable is moved up and down in the order so that it
takes all possible positions. Then, the best position is identified
and the variable is returned to that position. In contrast, in
the autocorrelation-based ordering, there is no need to place
a variable in all possible positions (see Example 9). As was
shown in Property 2, it is sufficient to place each variable
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TABLE IX

Number of Paths in the MTBDD with the Natural Ordering and

the Linearized MTBDD with Limitations onw

Func. n, k Natural w = 1 2 3 n

9sym 9, 1 220 220 88 88 58
add6 12, 7 4096 4096 729 729 729
alu1 10, 8 1754 1387 1387 1387 1387
alu2 10, 8 581 407 407 407 407
alu3 10, 8 707 487 487 487 487
clip 9, 5 454 480 204 204 204
misex3c 14, 14 15288 8882 8882 8882 8882
sao2 10, 4 237 95 88 88 88

Fig. 13. Clip: the probability p(x) that a dynamic iterative procedure will
converge to an MTBDD of x paths within 300 iterations (top). The accu-
mulated probability that a dynamic iterative procedure will converge to an
MTBDD of at most x paths within 300 iterations (bottom).

Fig. 14. Improvement (in percentage) in the number of paths (solid line),
nodes (dashed line), and APL (dotted line) in the linearized MTBDDs with
respect to MTBDDs with the natural ordering of the inputs.

only at the bottom of the decision diagram so to extract its
autocorrelation value.

Table IX shows the reduction of the number of paths when
the Hamming weight of the basis vector is restricted to be less
or equal to w. Note that w = 1 means reordering of the input
variables. It is clear that it is sufficient to work with basis
vectors of Hamming weight less than four; thus, the number
of paths in the linear part (i.e., σ) can be reduced.

Table X shows the number of nodes (N), paths (C), and
the APL of the MTBDD with the natural ordering (denoted
by a subscript ntrl) and the MTBDD corresponding to the
linearized function (lin) for several benchmark functions.
Fig. 14 shows the reduction in the number of paths, the
number of nodes, and the APL of the linearized MTBDD with
respect to the MTBDD with the natural ordering. The x-axis

TABLE X

Number of Paths, Nodes, and APL in MTBDDs

No. Func. n, k C N APL C N APL

ntrl ntrl ntrl lin lin lin

1 9sym 9, 1 220 33 7.34 58 35 5.28
2 adr4 8, 5 256 113 8.00 81 64 6.00
3 alu2 10, 8 581 264 8.92 407 267 8.27
4 alu3 10, 8 707 278 9.27 487 324 8.55
5 clip 9, 5 454 189 8.75 204 159 7.42
6 dc2 8, 7 144 117 6.09 142 141 6.06
7 dist 8, 5 204 125 7.54 157 106 7.18
8 dk17 10, 11 377 160 8.39 107 90 5.71
9 dk27 9, 9 86 79 6.31 47 44 4.91
10 f51m 8, 8 256 255 8.00 256 255 8.00
11 inc 7, 9 40 39 4.98 38 37 4.92
12 mlp4 8, 8 241 240 7.75 221 202 7.72
13 radd 8, 5 256 90 8.00 81 64 6.00
14 rd73 7, 3 128 28 7.00 54 37 5.50
15 root 8, 5 73 72 5.55 72 71 5.54
16 sao2 10, 4 237 95 7.10 89 80 2.89
17 sqn 7, 3 88 81 6.25 69 57 5.25
18 z4 7, 4 128 52 7.00 54 49 5.50

is the benchmark number (from Table X) and the y-axis is
the improvement in percentage. Note that when the variance
of the accumulated weights (ci

u) is small, the procedure also
provides a significant reduction in the APL.

VII. Conclusion

This paper focused on an analytic approach for reducing
the number of paths in MTBDDs and SBDDs. Our approach
is based on spectral techniques. Specifically, we analyze and
use the autocorrelation coefficients for this aim.

We have shown that the number of paths in decision
diagrams is a function of the weighted autocorrelation co-
efficients at the basis vectors that span the domain of the
Boolean functions. Hence, it is possible to minimize the
number of paths by constructing an ordered set of basis vectors
of high weighted autocorrelation value. A greedy bottom-up
linearization algorithm that produces an ordered set of basis
vectors, a corresponding linear transformation matrix, and its
corresponding linearized function was introduced.

Experimental results on standard benchmark functions
clearly demonstrate the efficiency of this approach. Unlike
known dynamic reordering procedures designed to minimize
the number of paths, the suggested algorithm does not signifi-
cantly increase the number of nodes in the decision diagrams.
However, the proposed algorithm can produce a suboptimal
solution. We expect that an hybrid approach that combines the
advantages of the proposed analytic method and other known
dynamic techniques can produce better results.
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