
1

Implementation of Concurrent Checking Circuits by Independent 

Sub-circuits
1

Vladimir Ostrovsky and Ilya Levin 

School of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel 

Abstract

The present paper proposes a new method for detecting arbitrary faults in a functional 

circuit when the set of codewords is limited and known in advance. 
The method is based on implementation of the functional circuit by a plurality of separate 

independent sub-circuits.  Each of such sub-circuits generates its own subset of output signals.  
Since the sub-circuits do not have common elements, any single fault may result in errors 
only in one of the subsets.  

The paper presents a solution of the problem of optimal partition of the set of output 
variables into independent subsets. A number of properties of partitions are proven. The 

proposed algorithms of the optimal partition are based on these properties. 
A scheme of the checker for the proposed self-checking approach is presented. 

Benchmarks’ results indicate efficiency of the described technique.   

1. Introduction 

Numerous publications concerning on-line checking of output words of discrete circuits 

present serious results but the problem still remains non-solved. The problem of developing 

highly reliable and hardware economical methods for detecting faults (errors) remains the 

actual and important practical task. 

For the sake of simplicity, the task of output checking we consider only for combinational 

circuits. Faults (temporary or permanent) may occur in the functional circuit and may lead to 

distortion of one or more positions of an output codeword. Traditionally, it is supposed that 

the time interval between any two faults is sufficient for eliminating consequences of the first 

fault before the second fault occurs. Therefore, only one fault may be present in the circuit at 

given time. This assumption is used for constructing models of acceptable distortions of 

output words. 

Many publications use the following two models of possible errors distortions or their 

combinations. The first model is that the system of logic functions, describing a functional 

circuit, is monotonic. For example, circuits without invertors suit to that assumption. In such 

circuits, any single fault may lead only to unidirectional errors in an output codeword. In [1] a 

synthesis method for inverter-free circuits is described. Another solution that is based on 

duplication of some elements of the circuit is proposed in [2] where a method for the design 

of unidirectional combinational circuits is proposed.  

The second model supposes that the number of distorted bits in the word cannot exceed a 

predetermined threshold “t” [3]. Such a model can be possibly applied to circuits where the 

splitting coefficient of the input gates is relatively small, and each of the gates participates in 

forming of a relatively small number of output signals. There are circuits where using the 

above models is non-sufficient and the duplication based solution [4-6] is preferable.  

Majority of the known concurrent checking schemes suppose that a set of output codewords 

of the functional circuit to be checked is complete i.e., any binary vector is a codeword. 

However, it is often necessary and rational to construct a so-called “context-oriented” 

concurrent checking scheme where the set of possible codewords is limited and known in 

advance. 

1
This research was supported by Israeli Science Foundation under grant No. 545/04. 

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



2

In present paper we use the context-orientation of specific circuits in a new concurrent 

checking scheme that detects any arbitrary errors. 

For this aim, we present a concurrent checking scheme based on dividing the functional 

circuit into a number of separate independent sub-circuits.  Each of such sub-circuits 

generates its own subset of output signals.  Since the sub-circuits do not have common 

elements, any single fault may result in errors only in the subset of the output signals. 

The paper is organized as follows. Section 2 presents some important definitions and a brief 

overview of related error-detecting techniques. In Section 3 the detecting partition concept is 

introduced and a number of its properties are described and proven. Algorithms of optimized 

partition on the set of output variables into a two subsets are presented in Section 4. Design of 

the checker for the proposed scheme and estimation of its complexity is presented in Section 

5. Experimental results are presented in Section 6. Conclusions are provided in Section 7.  

2. Definitions and Related Works 

Let { }myyY ,,1=  be a set of output variables of the functional circuit to be checked. We 

will call these variables as functional variables. Let, during normal functioning, the variables 

take values from a set of codewords { }MaaA ,,
1

= . We say that the set of codewords is 

complete if 
mM 2=  and incomplete if 

mM 2< . The complete set of m-bit codewords we 

denote mW .

In the general case, we define a fault model by operatorψ on the following way. Let, a 

codeword Aai ∈  takes an erroneous value from the set ( )iaψ  as a result of a fault in the 

circuit. Let ( ) ( )
Aa

i

i

aA
∈

= ψψ  .

According to the fault-secure property, the set of words A  allows detecting erroneous 

values designated by the operatorψ , if and only if: 

( ) AAψ =Ø   (1) 

Let us define a function ( )YFR =  on the set of functional variables, wherein the function 

R allows distinguishing a codeword from a non-codeword. Function R must take two 

alternative values: one value on the set of codewords A , and  the other value on the set of 

non-codewords ( )Aψ .  We will call this function a checking function. To be more specific, 

let us assume ( ) 1=aF  if Aa ∈ , and ( ) 0=aF  if ( )Aa ψ∈ . The function allows 

arbitrary values on the vectors not belonging to the two mentioned sets. 

The checking function is implemented by a specific circuit called checker. The checker 

must have the self-testing property i.e., for any single fault of the checker at least one 

codeword Aa ∈ must exist, for which ( ) 0== aFR . In order to ensure this property, the 

value of the checking function, as usual, are presented by two signals R1 and R2,

21 RRR ⊕= .

If A is incomplete, construction of the self-testing checker presents a complex and actually, 

almost non-resolvable task. It is known that all universals schemes of checkers may become 

non-self-testing if the set of code words is incomplete.   Actually, these schemes become non 

universal and must be adapted to the given set of code words.  Sometimes, the set of code 

words is such that one cannot check reaction of the checker to non-code words by using only 

the codewords. Owing to that fact, a number of works (for example [7]) suggests neglecting 

the above requirement and testing the checker in a specific mode by using both the codewords, 

and non-codewords. 

 Here we use a known scheme of a checker [8], where the authors propose to implement the 

checker for the context-oriented concurrent checking schemes in a form of “sum of minterms” 

(SOM) of output codewords. It is important to emphasize that, according to [8], the SOM-

checker examines whether an output vector belongs to the set of possible codewords, contrary 

to a traditional checker that checks some particular features that differ any codeword from 

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



3

any non-code word (for example, whether the number of “high” bits suits to the combination 

of check variables in the Berger code [9]). 

If the fault model on the set ( )Aψ  specifies some limitations then the condition (1) can be 

fulfilled by using suitable error-detecting coding methods. In this paper, we study the 

case ( ) mWA =ψ , where no limitations on the set ( )Aψ  are specified i.e., any arbitrary error 

may occur. In such a case there is no such a code which would ensure fulfillment of the 

condition (1), and therefore there is no code that allows distinguishing a codeword from a 

non-codeword. In such cases, the checking is usually based on duplication [4-6], but the two 

functional circuits of the scheme must have no common elements and the fault-secure 

property is preserved as long as both of the circuits do not produce identical errors. 

Duplication based solutions are neither the only possible, nor the most efficient for schemes 

where the redundant coding is combined with independent implementation of functional 

variables. For example, more economic solutions are obtained based on the parity check and 

are described in [10-12].  The main idea investigated in these papers is to divide the set of 

check variables into groups. Each group comprises variables implementable by independent 

schemes (i.e., those having no common elements).  Owing to that, any single fault may result 

in only one error in each group. Such error can be detected by the parity check, by using one 

coding variable which fulfils each group. Paper [11] proposes a method for optimal 

partitioning the variables into groups, and a method of transforming the schemes under check.  

In our paper, contrary to the above-mentioned works, we use independency between groups 

of variables, and not between separate variables. In such schemes, any fault may lead to errors 

only among variables of one and the same group. Such an approach was investigated in [12]. 

However, upon conducting benchmarks tests, the Authors have come to the conclusion that 

the optimal partition for this case is a partition where each variable under check forms a 

separate group, i.e., is implemented by a separate independent scheme. Contrary to [10-12], 

the present work describes a method that does not use the parity check and reduces a number 

of check bits for the same number of groups.  Alternatively, the proposed method allows 

decreasing the number of groups for the same number of check bits. 

There is one additional important difference of the proposed method over the methods 

developed in [10-12]. These methods use modification of circuits preliminary synthesized by 

using commercial CAD systems. Such modified schemes should be further verified and 

examined, which has to be considered as a disadvantage of the above methods. In view of this, 

methods which use only the standard CADs and do not require modification of the schemes, 

are preferable. One of such methods is in the focus of the present paper.  

3. Error Detecting Partitions and their Properties 

Let, in a general case, ( )mn − check variables are added to the functional 

variables myy ,,1 . Let the common set of the variables (including those under checking and 

the additional ones) is denoted { }nzzZ ,,1= .  Let the set Z is partitioned into k blocks 

kZZ ,,1  so, that the variables of every block are implemented by independent circuits.  In 

this partition, two circuits are considered independent if they do not comprise common logical 

elements. However, it should be emphasized that a single fault may occur only in one of the 

independent sub-circuits and, consequently, only the variables belonging to one of the blocks 

can be simultaneously erroneous.  

By compatible the elements ii Bb ∈ , and jj Bb ∈ { }kji ,,1, ∈  if corresponding values 

are used in at least one of the codewords. In a specific case, the compatibility relation can be a 

function. If ii Bb ∈  is a function of jj Bb ∈ , it means that values of the variables of the set 

iZ  , in all the codewords, are uniquely defined by the variables belonging to the set jZ . If 

such a relation exists, we will write ( )
ji ZFZ = .

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



4

Theorem 1. Partition { }kZZP ,,1=  represents the detecting partition, if and only if for 

each block ZZi ∈ the following condition (2) is correct:  

( )ii ZZFZ \=   (2) 

Proof: Let the condition (2) is fulfilled, and let (due to a fault in the circuit) an erroneous 

vector ib̂ is formed instead of the correct vector ii Bb ∈ . Then, either ii Bb ∉ˆ , or (as a result of 

(2)) ( ) ( ) ø=ii bAbA ˆ where ( )ibA  and ( )ibA ˆ  are sets of codewords, the i-th field of which 

has values of ib  and ib̂  respectively. In both cases the condition (1) is satisfied and, 

consequently, any erroneous word differs from a codeword. 

To prove that the condition (2) is necessary, let us suppose that a block iZ  exists, for which 

the condition (2) is not fulfilled. It means that one can find at least one vector, belonging to 

iZZ \ and being compatible with at least two different vectors iii Bbb ∈ˆ, . Since ( )ii bb ψ∈ˆ ,

(1) is not satisfied and such an error cannot be detected. The theorem is proven. 

Let us formulate some consequences of the theorem, which are useful when constructing 

and analyzing partitioning detecting errors.  

Let us define a difference ( )ji aa ,δ  between two words ia and ja to be a set of variables 

that have different values in these two words.  

Consequence 1. For providing to the partitioning { }kZZP ,,1=  ability to detect any 

error in the words from the set { }MaaA ,,1= , it is necessary and sufficient that for each 

two words ia and ja from A the following conditions be met: 

( ) { } { }klMjiZaa lji ,,1,,,1,,, ∈∈⊄δ  (3). 

In other words, the difference between any two codewords cannot belong to only one block 

of those obtained by the partition. 

The proof is not presented here in view of its simplicity. 

It should be noted that if the difference between two codewords comprises exactly two 

variables, in any detecting partitioning these two variables must belong to different blocks 

(according to condition (3)). If A comprises at least one pair of words differing one from 

another by the value of only one binary variable, no detecting partition exists for this set A. In 

this case, before constructing the detecting partition, at least one coding variable should be 

added to the set, in order to obtain the minimal distance between the words no less than two. 

This conclusion is well supported by the known results of the coding theory. However, in a 

general case, partitioning of a circuit into separately implemented sub-circuits opens new 

ways for detecting errors and thus changes the coding requirements. For example, for 

detecting errors in not more then t bits the requirement of the minimal distance 1+t  between 

the words becomes non obligatory. 

Notice that each block ( )kiZi ≤≤1  of the partition { }kZZP ,,1=  defines a partition 

iπ  of the set A  of codewords. A certain block of iπ comprises all the codewords having the 

same values of variables from the set iZ .analogy with codes, let us call a partition as

detecting partition i.e., partitions detecting the errors defined by the functionψ , if and only if 

the set ( )Aψ  of erroneous words meets the condition (1) while implementing the variables of 

each block by a separate independent circuit.   

Let iB be a set of values which are taken by the variables from the block iZ , { }ki ,,1∈ in

the codewords. Variables of the block iZ form i-th field of the codeword. The codewords 

define a compatibility relation between elements of any two sets iB  and jB . We will call  

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



5

Consequence 2. Partition { }kZZP ,,1=  is the detecting partition if and only if for every 

{ }ki ,,1∈  the following condition (4) is satisfied: 

( )0111 πππππ =⋅⋅⋅⋅ +− kii , (4) 

where ( )0π  is a null-partition, including only blocks consisting of exactly one element.

Proof. The condition (2) is equivalent to 

ikii πππππ ≤⋅⋅⋅⋅ +− 111  (5) 

It is obvious that (5) follows from (4) i.e., condition (4) is sufficient. The necessity of this 

condition follows from:  

( )01 ππππ =⋅⋅⋅⋅ ki  (6) 

which is correct since all words of the set A are different. Let us replace iπ  in (6) with the 

product from the left portion of the expression (5). If one of its members is decreased, the 

product may decrease. This means (4), and therefore the consequence is proven. 

Summarizing the present section, it should be noted that partitioning of the functional 

circuit into separately implemented sub-circuits allows reducing the number of additional 

check bits. For example, various errors being consequences of a single fault can be detected, 

by using just one additional check bit. It is clear that the greater the number of additional 

check bits, the lesser the number of blocks required for constructing the detecting partitioning. 

In view of the discussed above, a task arises to optimally select between the number of 

check bits and the number of independent sub-circuits. Since these two criteria are 

contradictory and we do not have a common measure which would allow their mutual 

weighting, it is worthwhile considering two extreme cases. In each of them one of the 

numbers to be minimized is understood as a limitation, which takes the minimal possible 

value. In the first case (the minimum of check bits) the number of check bits does not exceed 

1 and the number of partition blocks is to be minimized. In the second case (the minimum of 

separate independent sub-circuits) the number of blocks is equal to two, and looks for the 

solution where the number of check bits is minimal. It should be noted that if the set of 

codewords is complete i.e., all the 
m2  binary vectors are used; any of the two extreme cases 

has a trivial solution. In the first case it is implementation of each variable by a separate 

independent circuit and checking by modulo 2. In the second case, the solution is duplication 

of all variables and checking by comparison. If a specific set of words is incomplete, the 

trivial solutions can be further simplified.  

In the present paper we concentrate only on a two-block solution with a minimal number of 

check bits. Below we deal with the algorithm for the solution of this problem. 

4. Algorithms for Partitioning a Circuit into two Independent Sub-

circuits

We solve a task of coding and simultaneously a task of creating a partition { }21, ZZP = , that 

satisfies a condition (4), i.e., such a partition for which the following statements are correct: 

( )01 ππ = and ( )02 π=π . We obviously prefer solutions in which the number of coding 

variables is minimal. Please keep in mind that: { }nzzZZZ ,,121 =∪= - is a set combining 

the controllable  ( )miyz ii ,,1, ==  and the coding ( )nm zz ,,1+ variables; 1π  and 2π  - 

are partitions of set A of code words which can be defined by blocks Z1  Z2, respectively. 

The following algorithm can be applied for solving the above task.  

1. By enumeration, build minimal sub-sets of functional variables  YY ⊆′  , which satisfy (4). 

Let us consider the sub-set to be minimal if none of the variables can be removed there-from 

without infringing the condition (4). The enumeration can be minimized by defining a so-

called “kernel” i.e., a sub-set of such variables which obligatory belong to any      Y ′ , which 

satisfies the above-mentioned conditions. The following criterion can be used for revealing 

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



6

the “kernel variables”: The variable belongs to the kernel if and only if two code words exist 

which differ one from another only by the value of that variable.  

2. Let YZ ′=1 and YYZ ′= \2 . If ( )02 π=π , then the partition is built and no additional 

coding is required. In the opposite case, we define a number l of coding variables: 

Ml ′= 2log , wherein M ′  - is the maximal number of variables in one block 2π .

3. By using enumeration, we defineY ′ , which corresponds to the minimal l. We include l 

additional coding variables in the block 2Z , and assign such values to these l variables, 

that ( )02 π=π . Uncertaincy that occurs in this step could be used for simplifying the checker 

or the scheme to be checked.  

We demonstrate below the process of constructing two-block partitions on the set of words 

from the Example 1. 

Example 1. The system of the five functions of three variables 321 xxx , presented in Table 1. 

Table 1 

x 1 x 2 x 3

0 0 0 1 0 1 1 0

0 0 1 0 0 0 0 0

0 1 0 0 1 0 1 0

0 1 1 0 0 0 0 0

1 0 0 1 1 0 1 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 1 1

1y 2y 3y 4y
5y

1a

2a

3a

2a

4a

2a

2a

5a

Table 2 

Z1 Z2 Z3 Z4 Z5 Z6 Z7
1 0 1 1 0 1 1

0 0 0 0 0 0 0

0 1 0 1 0 0 0

1 1 0 1 0 1 1

0 0 0 1 1 0 1

1y 2y 3y 4y 5y

1a

2a

3a

4a

5a

The core is formed by a variable 1y  (from the adjacent sets 110104 =a and 010103 =a ).

The core corresponds to the partition { }532410 , aaaaa=π . Since the partition comprises a 

group of three elements, the block 1Y must comprise the variables of the core and at least two 

additional variables, for example, 2y  and 5y . In view of that, variables 3y  and 4y belong to 

the second block 2Y . These variables correspond to the partition{ },,, 54321 aaaaa , 3=′M

and, consequently, at least two check bits are required. We denote them 6z and 7z .

{ }
7643521 , zzyyyyyP = . One version of coding is presented in Table 2.  

In this example, only two redundant check bits are necessary for detecting arbitrary errors - 

instead of five variables that would be required in the duplication based solution. 

The initial circuit and the circuit corresponding to the two-block partition are presented in 

Figure 1 (a) and (b). 

1x

1x

1x

1x

2x

2x

2x

3x

3x

3x

3y

1y

2y

5y

4y

1x

1x

2x

2x

2x

3x

3x

3x

1y

5y
1x

1x

1x

2x

2x

2x

3x

3x

3x

1y

2y

5y

1x
2x

3y

4
y

3x
1x

2x

3x

2x

7z

6z

a) b)

3x

Figure 1. Initial circuit (a) and its Implementation by two independent portions (b).

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



7

It is clear from Figure 1, that complexity of the given circuit is “equal” to 7 gates (17 

inputs). The complexity of the circuit increases to 11 gates (25 inputs) after partitioning it into 

two independent circuits. As a result, in the above example, the proposed scheme detecting 

any fault requires little over 50% overhead. 

5. Synthesis of a checker and estimation of its complexity 

The problem of designing self-checking checkers, in the case when the set of possible 

codewords is limited, is known as difficult and sometimes even insolvable; particularly, the 

comparator usually utilized in the duplication solution, does not have the self-checking 

property. We assume that the checker is tested in a specific mode during the period of 

functioning or maintenance.  

We propose to design the checker in a form of (n,2)-circuit. Set of inputs of the circuit are 

variables to be checked: { } { }
n1mm1n1 z,,z,yyz,,z += , . Outputs of the circuit R1 and 

R2 take alternative values (0,1) on the set A of the codewords,  and equal values on the set of 

non-codewords. Let us partition the set of codewords into the two subsets { }
21 AAA ,=  and 

assume that 1=iR  only on the vectors from the set iA .i=1,2. The criterion of partitioning 

will be simplification of the scheme of checker (reduction of the overhead). Since the 

products corresponding to codewords do not adjacent pairwise, the simplification can be 

reached only by using a multi-level synthesis. Fig. 2 illustrates a multi-level scheme of the 

checker, for the case of two-block partition (Example 1, Fig. 1).  { } { }5322411 , aaaAaaA == .

2R
1y
3y
6z

2y

2y

2y

4y

4y

4y

5y

5y

5y

7z

7z

7z

1R

5

1y
4

6z

y

3y

y

2

y
y

2

y

3

7z

Figure 2. The SOM-checker for the two-block partition

As can be seen in Fig. 2, the scheme of checker comprises nine gates with the total number 

of inputs equal to 31. It should be noted that, according to the duplication solution, the 

checker would be more complex- it would comprise 24 gates, each having two inputs.   

In a general case, for estimating complexity of a SOM –checker, one may use the following 

known equation for the number of inputs S1:  S1=n(M+1). The general case means that the 

simplification due to the factorization is neglected. A similar estimation for a duplication 

based scheme of the checker can be estimated as: S2=12(m-1). Comparison of the expressions 

S1  S2 shows that the SOM-checker, is simpler from the point of inputs for schemes where 

the number of codewords is relatively small i.e., smaller than 12.  By checker’s minimization, 

this threshold can be slightly shifted towards a greater number of codewords.  

From the point of the number of gates, the SOM checker is always a winner. At the same 

time, the number of inputs at specific gates may be enormously great. However, if the number 

of inputs is limited by any really implementable value (say, eight) and both n and M  50, the 

SOM checker has less or comparable number of gates then the duplication scheme checker.  

The above-presented estimations may suggest some limitations to applicability of the 

proposed method of checking of outputs. One should take into account, however, that the 

present paper does not set/solve the task of the checker simplification. At the stage of coding, 

quality of solutions is traditionally estimated by the number of check bits. Therefore, would 

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



8

selection of codes in our algorithms (which is now rather arbitrary) be used for simplifying 

the checker, the field of applicability of the algorithms could be broadened.       

Estimations of the number of check bits, and of the complexity of the schemes under control 

will be presented in the next section. 

6. Experimental Results 

The research was conducted with CAD System “Synthesis” [13]. Combinational circuits 

forming output signals of sequential circuits were used as benchmarks.  Such an approach can 

be explained by the fact that the set of codewords is strictly defined in the sequential circuits, 

and that in most cases this set essentially differs from the complete set ( )mM 2<< . Estimates 

of the number l of check bits that are required for detecting a arbitrary error in an output word 

are presented in Table 3. 

Table 3 

Benchmark M m n 1 n 2 l overhead 

%

ACDL 19 27 13 15 1 3.7

ASS13 15 25 13 12 0 0

BIG 15 28 15 13 0 0

DORON 56 110 95 20 5 4.5

CAT 15 22 16 9 3 13.6

CPU 19 29 19 12 2 6.9

EX6 13 8 5 6 3 37.5

E2 16 18 14 8 4 22.2

E7 17 20 15 8 3 15

E17 14 17 11 9 3 17.6

KOBZ 54 53 40 17 4 7.5

LIOR 27 31 27 9 5 16.1

PP 15 28 14 14 0 0

SASI 57 54 44 14 4 7.4

SOL 60 68 59 14 5 7.4

v16 12 18 12 8 2 11.1

v110 13 18 11 9 2 11.1

v1120 17 29 14 15 0 0

Average 25 34 24 12 3 10

Table 4 

g0 g1 g2
overhead 

%
s0 s1 s2

overhead 

%

ACDL 21 434 415 418 91.9 1225 1174 1176 92

ASS13 10 102 85 92 73.5 262 216 236 73

BIG 23 264 252 249 89.8 707 685 671 92

DORON 28 321 295 318 91 821 752 830 93

CAT 15 70 67 63 85.7 173 167 157 87

CPU 18 90 84 85 87.8 218 205 207 85

EX6 9 69 68 65 92.7 173 172 164 94

E2 48 200 166 186 76 558 467 522 77

E7 17 151 143 135 84.1 402 379 367 86

E17 12 63 54 58 77.8 157 133 143 76

KOBZ 24 238 226 221 87.8 588 566 575 94

LIOR 29 225 207 234 96 559 514 608 101

PP 25 188 169 164 77.1 518 475 452 79

SASI 25 233 219 218 87.5 613 565 599 90

SOL 30 449 385 446 85.1 1117 956 1133 87

v16 19 183 133 175 68.3 489 358 469 69

v110 20 263 183 253 65.8 677 489 658 69

v1120 19 311 280 298 85.8 793 722 764 87

Average 22 214 191 204 84 558.3 500 541 85

Benchmark t number of gates number of inputs

Columns in Table 3 are:  

M – the number of codewords, m – the number of variable being checked, n1, n2 – respective 

numbers of variables in the first and in the second blocks of partition,  n1+ n2  = m+ l.

Overhead is calculated in percents and reflects relative increase of the number of 

variables.  The table shows that the number of check bits is smaller approximately by 10% 

than the number of variables under checking. Some schemes exist, where detecting any errors 

in a word under check is possible without using additional (coding) variables.  The 

experimental results therefore confirmed that the proposed algorithms are efficient from the 

point of reduction of the number of check bits.  

Table 4 presents estimations of additional overhead caused by partitioning of the scheme 

being controlled into separate independent sub-schemes and by increasing the number of 

inputs.

In Table 4, t is the number of inputs, gi and si - are the numbers of gates in the scheme and 

the numbers of their total inputs, respectively. Index 0 indicates characteristics of the initial 

scheme, while indexes 1 and 2 marks two separate sub-schemes into which the initial scheme 

is partitioned. Overhead reflects the relative increase of hardware in percents.  

In comparison with the duplication, overhead is decreased by about 15%. In some schemes, 

the overhead reduction reaches 30% and even more. 

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



9

7. Conclusions 

We have presented a new approach for designing a concurrent checking circuit for detecting 

arbitrary errors. The method is based on assumption that the functional circuit to be checked 

may produce a limited set of possible output codewords. This fact gives a specific opportunity 

to implement the circuit in a form of independently functioning sub-circuits. Each of these 

sub-circuits implements a specific subset of functional outputs. The independent 

implementation of the sub-circuits guarantees that a single fault, if occurs, affects outputs of 

only one of the sub-circuits.  

The paper formulates and solves the problem of optimal partitioning on the set of functional 

outputs. The main criterion for optimal partitioning is a number of check bits, which should 

be kept minimal.  Two-block partitions were investigated in more details.  

     Benchmark experiments show that the average number of check bits required for detecting 

arbitrary faults can be estimated as about 10% of the number of functional variables. The 

average overhead estimated for these cases is of about 85%.  

Regardless specific values which characterize results of applying the developed algorithm to a 

set of benchmarks, a conclusion can be made that one should consider error-detectable coding 

in the close connection with partitioning the scheme to be checked into independently 

implementable subcircuit. Such a partition allows reducing both the number of coding 

variables, and the hardware overhead.  

The method can be used for checking of sequential schemes, and may also simplify the 

schemes capable of detecting unidirectional faults. 

Acknowledgments

The Authors are very grateful to Prof. Samary Baranov and to Mr. Yuri Tsukerman for their 

help in conducting the benchmark tests.  

8. References 

[1] N.K. Jha and S.-J. Wang, Design and Synthesis of Self-Checking VLSI Circuits, IEEE Transaction CAD, Vol. 
12, No. 6, pp. 878–887, 1993.

[2] V.V. Saposhnikov, A. Morosov, Vl. V. Saposhnikov, M. Gössel., (1998) A New Design Method for Self-
Checking Unidirectional Combinational Circuits. Journal of Electronic Testing: Theory and Applications 12, 41-
53.

[3] Bose, B. and D. J. Lin, Systematic Unidirectional Error-Detecting Codes, IEEE Trans.  Comp., pp. 1026-1032, 
Nov. 1985. 

[4] Sedmak, R. M. and H. L. Liebergot, Fault-Tolerance of a General-Purpose Computer Implemented by Very 
Large Scale Integration, Proc. FTCS, pp. 137-143, 1978. 

[5] Kraft, G. D. and W. N. Toy, Microprogrammed Control and Reliable Design of Small Computers, 1981.

[6] Sellers, F., M-Y Hsiao and L. W. Bearnson, Error Detection Logic for Digital Computers, McGraw-Hill Book 
Company, 1968. 

[7] Lala, P., Self-checking and Fault-Tolerant Digital Design, Morgan Kaufmann Publishers, San-Francisco / San-
Diego / New-York/ Boston/ London/ Sydney/ Tokyo, 2000.

[8] Levin I., Karpovsky M. (1998). On-line Self-Checking of Microprogram Control Units. 4-th IEEE 
International On-line Testing Workshop, Capri, Compendium of papers, 153-159.

[9] Berger, J. M., A Note on Error Detection Codes for Asymmetric Channels, Information and Control, Vol. 4, pp. 
68-73, 1961. 

[10] Sogomonyan, E. S., Design of Built-in Self-Checking Monitoring Circuits for Combinational Devices, 
Automation and Remote Control, vol. 35, No. 2, 280-289, 1974. 

[11] V. V. Saposhnikov, A. Morosov, VL. V. Saposhnikov, M. Gössel. Design of Self-Checking Unidirectional 
Combinational Circuits with Low Area Overhead. Proc. 2nd Int. On-Line Testing Workshop, 1996.

[12] Kaushik De., Chitra Natarajan, Devi Nair, Prithviraj Banerjee, RSYN: A System for Automated Synthesis of 
Reliable Multilevel Circuits, IEEE Transaction on Very Large Integration (VLSI) Systems, Vol. 2, No. 2, June 
1994. 

[13] S. Baranov: CAD System for ASM and FSM Synthesis. FPL 1998, pp. 119-128.

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 


