New Architecture for Sequential Machines with Self-error Detection'

Mark Karpovsky

Boston University
Department of Electrical,
Computer and System
Engineering

Boston, MA 02215

Ilya Levin

! This research was supported by BSF under grant No.
9800154.

Abstract

The present paper investigates a new technique
for on-line checking of FPGA-based sequential
devices defined by their finite state machines
(FSMs). This technique is based on architecture
comprising two portions: a self-checking FSM
and a separate totally self-checking (TSC)
checker. Each of these portions is implemented as
a combination of an Evolution block and an
Execution block. Comparison of code vectors
transferred between these blocks provides for the
totally self-checking property. The proposed
technique does not require any encoding of output
words and uses a one-rail design, thereby
drastically decreasing the required overhead. The
paper presents overhead estimations and results
for benchmarks for the proposed architecture. The
Markovian analysis is used for investigation of
fault latencies.

1. INTRODUCTION

Techniques for concurrent error detection in
finite state machine (FSM) controllers have
received a wide attention since control part of a
digital system is usually the most critical part from
the testability point of view. Irregularity and
complexity of the control structure on one hand,
and its central role in functioning of the whole
digital system to be controlled on the other hand,
puts the problem of synthesis of self-checking
FSM controllers onto the theoretical and practical
agenda. Most of the faults that occur in VLSI
circuits and systems are transient/intermittent in
nature. The self-checking property allows both the
transient/intermittent and permanent faults to be
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detected, thus preventing data contamination.

Existing general approaches to designing of self-
checking FSMs are based on either duplication
thereof or application of a specific error detecting
codes (Berger code, constant weight code, etc.). In
most cases these approaches require a hardware
overhead of more than 100 percent.

According to [1], in the synthesis of totally self-
checking (TSC) controllers, some basic properties
of FSMs being a formal model of the controllers
can be utilized for minimizing of overheads.
Particularly, a totally self-checking (TSC) checker
for a FSM can be implemented as a Sum-of-
Minterms (SOM) of Boolean function z(yy,...,yn)
of the FSM output variables yy,...,yn. Function z is
equal 1 if the FSM output word is a codeword
(microinstruction), and equal 0 if the FSM output
word is not a codeword. Each of minterms of
z(y1,..., yn) corresponds to a specific codeword of
the FSM. Since the number of microinstructions
for most microcontrollers is not very large, this
approach for designing of TSC controllers for
FSMs may be rather efficient from the hardware
point of view.

In [1], a method for a PLA implementation of
FSMs based on this approach was proposed. This
implementation uses orthogonality of transition
functions for FSMs of microcontrollers. It results
in a drastic reduction of the required overheads.

Approach [2] for synthesis of self-checking
logical circuits by FPGA is based on dual-rail
implementations of the hardware to be checked.
According to this approach the FPGA-based self-
checking FSM can be implemented in a form of a
combination of the dual-rail FSM and the dual-rail
SOM-based checker (SOM-checker). In this case,
output words of the FSM have to be encoded by an
error-detecting code for detecting unidirectional



errors (such as the Berger code). Needless to say
that such an implementation is critical from the
point of view of resulting overhead due to both the
dual-rail design and the Berger encoding.

A new architecture that does not require any
encoding of codewords and allows a single-rail
design of the FSMs was suggested in [3]. In this
architecture, both the self-checking FSM and the
SOM checker can be considered as a combination
of two blocks: an “Evolution” block and an
“Execution” block. The main advantage of the
architecture [3], i.e., the minimized overhead, is
based on comparing outputs of Evolution blocks of
the FSM and it’s SOM-checker. These two vectors
must be equal and belong to the same 1-out-M
code.

The present work can be considered as a
continuation of [3]. Here we evaluate the
architecture, proposed in [3] from two points of
view: the required overhead and the fault latency.
Estimations of the overhead and the latency,
presented in this paper, provides for guidelines for
synthesis of FSMs with required parameters.

2. ARCHITECTURE OF A SELF-CHECKING FSM

For the FSM to be implemented we denote a set
of binary inputs as X={xi, ..., x.} and a set of
binary outputs (microoperations) as Y={yi, ...,
yn}. An output codeword of the FSM (a
microinstruction) is an N-component vector
formed by N outputs. Each “1” in the vector
reflects its corresponding microoperation; each “0”
means that
the corresponding microoperation is absent in
the microinstruction. A set of possible output
codewords of the FSM constitutes a set of
microinstructions. The number of these
microinstructions will be denoted M. The
example of a transition table is presented in
Table 1.

In Table 1:

an - present state,

a; - next state,

X(am, as) — a transition function, i.e. a Boolean
function, which is equal to 1 when FSM makes the
transition from state a,, to state a,.

Table 1. Transition table of a FSM
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Y(ay, as) — a list of microoperations, which are
equal 1 on the transition of the FSM from a,, to a;,

h — a serial number of the FSM transition.

We will use the following notations:

L — number of input variables; L=4 for our

example;

N — number of output variables; N=6 for our

example;

H — number of transition functions; H=11 for

our example;

M — number of microinstructions; M=7 for our €;

R — number of internal states; R=5 for our

example.

A schematic diagram of the architecture of a
totally self-checking FSM (TSC FSM) is shown in
Fig. 1. The TSC FSM comprises two portions: the
self-checking FSM and the SOM-checker. In turn,
each of these portions consists of two blocks: the
Evolution block and the Execution block.

For this architecture outputs of the Evolution
block of the FSM (EVFSM) and the Evolution
block of the SOM checker (EVC) are to be
compared for error detection. The output vector of
EVFSM is formed by M binary one-rail outputs.
Output vectors of EVC comprise M dual-rail-
coded outputs.

For comparing, the EVFSM and the EVC
output vectors are subjected to a match detection
operation to produce a resulting vector, which is
then fed to the Execution block of the SOM-
checker. If the two vectors are equal, the resulting
vector is equal to the EVC output vector. If they
are not, the EXC will receive a predetermined



faulty dual-rail vector. An example of the match
detection function can be found in Table 1 of

paper [3].

2.1. Self-checking FSM

FSM and output memory signals T = (t;....t,).
Outputs of the EVFSM correspond to signals of
microinstructions. At each clock, one and only
one microinstruction is equal to 1, which means
that EVFSM outputs are codewords of the 1-out-
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Figure. 1. A schematic diagram of the architecture of a totally selfchecking FSM
The EVFSM is implemented as a tree, wherein ~ product terms and “fork” nodes actually
each of the nodes is either a pre-designed implemented by regular fan-outs. The EXC

Configurable Logic Block (CLB), or a fan-out.
Each CLB is designed for implementation of either
a sum of two product terms of g variables, or an
AND-function of 2g variables. We use the Xilinx-
4000 series architecture [4] for implementation of
the proposed self-checking scheme. In this case the
number of inputs of the CLB is equal to 8, which
means g = 4. The Execution block of the FSM
(EXFSM) comprises OR-assembling of EVFSM
outputs. Outputs of EXFSM are output signals Y
of the FSM and input memory signals D =
(dy....d;). The memory signals are coded by a
“constant weight code” [1].

2.2. SOM-based TSC checker

The SOM checker comprises the Evolution
(EVC) and the Execution (EXC) blocks. The
EVC implements all minterms of the SOM, while
the EXC assembles these minterms to implement
the checker’s function. A schematic diagram of
the SOM checker with the Evolution and the
Execution blocks are shown in Fig. 2.

The EVC is built as a self-checking tree with
“AND” nodes for implementation of “long”

comprises either “l-out-of-2g”, or “(2g-1)-out-of-
2g” cells (CLBs) combining all minterms, coming
from the EVC.

It is proposed to use the following pre-designed
A-Cells and O-cells for implementation of the
above-mentioned nodes of the checker.

e A-Cell implements nodes of the “AND”
type. It has two cascade inputs, four
functional inputs for implementation of
minterms of the SOM, and two cascade
outputs.

e (O-Cell implements nodes of either “g-out-
of-2g” or “(2g-1)-out-of-2g” types. These
cells have 8 inputs and 1 output.

The EVC is a self-checking two-rail tree
comprising a number of A-Cells. This tree is
constructed in such a way that in the case of
proper functioning of both the FSM and the
checker one and only one dual-rail output (S;V))
will have value (1,0). All the remaining outputs
will have value (0,1). Outputs of the EVC tree are
inputs of the EXC of the SOM-checker. Each of
the two-rail outputs of the EVC corresponds to a
certain microinstruction of the original FSM.



The EXC comprises two components
consisting of O-Cells. All S-outputs of the EVC
serve as inputs of the first component of the EXC.
This component is implemented as a converging
“I-out- of-M” multilevel tree. All V-outputs of the
EVC are inputs to the second component of the
EXC, which is implemented as a converging “(1-
M)-out-of-M” multilevel tree (see Fig. 2).

When, at a certain clock, the FSM generates a
microinstruction, the EVC produces the
corresponding dual-rail 1-out-of-M output vector.
Each dual-rail output vector of the EVC is
compared with a corresponding single-rail output
vector of the EVFSM using the above-mentioned
match detection function. The totally self-checking
property of the discussed architecture was proven
in [3].

3. ESTIMATIONS FOR THE REQUIRED
HARDWARE OVERHEADS

Overheads for the proposed architecture can be
estimated by comparing numbers of CLBs,
required for FSM implementations without self-
error detection ability and for the self-checking
versions of the same FSMs. It should be noted that
the proposed architecture does not require any
redundancy for the FSM itself. Therefore, the
difference between the two above-mentioned FSM
implementations equals to a complexity (number
of CLBs ) of the SOM-checker.

FSM

Yo | 0T YN

O Execution
block of the
SOM-checker

T (EXC)

rar

Evolution block of the SOM-
checker (EVC)

Figure 2. Schematic diagram of the SOM-checker

The goal of this chapter is to estimate the
checker’s expected complexity as a function of
two parameters: number M of microinstructions
and length N of microinstructions. Obviously, we
cannot give the exact formula of the overhead,
since the checker’s complexity depends on the

SOM function. But approximate formulae
presented below allow estimation the required
overhead even before performing the synthesis of
the FSM.

The complexity of the SOM-checker will be
estimated as a sum of complexities of its two
components: EVC and EXC.

3.1. Estimations of the EVC complexity

The EVC tree implements a system of M logical
functions of N wvariables. Each of these M
functions is defined by a unique minterm. The
EVC tree comprises CLBs having g dual-rail
inputs (g=4) [4] and one dual-rail output.

The upper bound of the complexity (number of
CLBs) S(EVC) of the Evolution block of the
SOM-checker is:

S, (EVC) = {l} M. (D
g-1

(here g is decreased by 1 in denominator since
one dual-rail input is used for the cascade
connection between CLBs; [a] denotes an integer
part of a.

This bound corresponds to the case of a disjoint
implementation of the minterms.

For the lower bound on complexity we assume
that:

e the number of CLBs at the first level of the

EVC tree is equal to M: A, =M.

e cach level of the EVC tree should
comprise CLBs implementing the maximal
number of different (g-1)-minterms. Then
the lower bound on a number of CLBs at
level i of the EVC tree can be computed as
follows:

4
AM{ ’1}1 2)

28
and we have:
N
[;}‘
Sum(EVC)= Y A4, (3).
i=1

3.2. Estimations of the EXC complexity

As have been mentioned above, EXC consists
of two equal converging multilevel trees. One of
these trees implements a “l-out-of-2g” function,
while the second implements a function ”(2g-1)-
out-of-2g”.
The complexity of the EXC can be computed as:

S(EXC)=2(B, +...+B,...+By), 4



where By is the number of CLBs at each k-level of
the multilevel tree and K = [log,,M]+ 1 and

By can be computed using the following recursive
expression:

B, = M . By = B, +(M-2gB, ) ’
2g 2g

k=2,....K. &)
The sequence B, ..., Bk, which defines the EXC
complexity, converges rapidly to 1. All members

log,M
g—1
and stay equal to 1, for all i >j. This fact allows

assessing an effectiveness of the proposed
estimations. It is obvious, that for any N and M,

{ N } 2 FngM] In the case of equality the
g-1 g-1

gap between lower and upper bounds is minimal,
which means that the accuracy of the proposed
estimations is maximal. In this situation the real
EXC complexity can be estimated by it’s upper
bound. The accuracy of the estimations decreases
as the difference between the two sides of the
inequality increases.

These bounds were used for estimation of
complexity of SOM checkers for a number of
benchmarks. Results of the computation are
presented in Table 2, Section 5 and enable
comparison of the estimated complexities with the
real ones.

of this sequence turn to 1 at step j = [

4. ESTIMATIONS OF FAULT LATENCIES

In this section, we present estimations of time
between the occurrence of a fault and its
manifestation (appearance of the error in a
microinstruction due to that fault). This time is
called the fault latency. We will describe now a
method for estimation of latencies for FSM-based
controllers. This method is applied to the proposed
architecture and is illustrated by the example of
FSM defined by Table 1.

Let inputs be independent random binary

variables with probabilities Pr(x, = 1) =p,,

Pr(x, :O):Pr(x_,:l): q, =1-p,l=1L.
Then the behavior of a fault free FSM can be
described by the Markov chain with R states,
(where R is the number of internal states of the

FSM) with transition probabilities matrix (p(l))

ms

[5], (where the upper index " shows that we deal

with the fault-free case). For our example we have:

P99 pp, 4 PP 0
0 0 O 1 0
(p(l)) _ PPy 0 qp q, 0 ©)
" q, 0O O 0 D,
1 0 o0 0 0

To investigate the behavior of the FSM with a
fault (faults), we will construct a second Markov
chain with the following properties:

(a) the number of the states in the new chain is
equal to R + 1. We define the additional (R + 1)-th
state as an absorbing state;

(b) the chain moves to (R + 1)-th state when the
fault is manifested by a distortion of the output
microinstruction.

(c)if faults are absent, the behavior of the
second chain within the first R states does not
differ from the behavior of the first chain.

Thus, if a fault has occurred, the number of steps
before entering the absorbing state is the latency
value for that fault.

Therefore, the first step of our task will be to

compute the transient probability matrix (p(z)) for

the second chain. If the stack-at-one fault for
variable x, occurs (x,/1), in Table 1 each literal

x, should be replaced by “1”. It will lead to the

loss of orthogonality of product terms. For our
example the following two matrices correspond to
input variable x, :

% » 0 ¢p 00
0 00 1 00
@2. ): n 00 g 00 o
"t % 0 0 pO0 [
0 0 00
0 0 0 01
0 00 0 01
0 00 00
. 0 0 0 0
(l}ng) :OJ: 4, Py ®)
% g 00 0 po
00 0 00
0 00 0 01

Then we have for the unconditional transition



probabilities matrix:

(r2)=p, (p,(,i)

(2) -
x11)+ q'(p"” x,=0) B

P19>9; PPy 0 P4,ps 0 g,
0 0 0 1 0 0
ppy 00 94 0 q,p, ©)
q, 0 0 0 p, 0 '
0 0 0 0 0
0 0 O 0 0 1

Denote the probability distribution for internal
states by the moment when the fault occurred as:

(p?)=(p,(0), ., p5(0), 0). (10)

Then, the probability that the chain has entered
the absorbing state by the k-th step, is:

Fli)= pea (6)= (05" )01 ) (0, . 0,1)
(11)Function F(k) is the distribution function for the latency
of the selected fault.

Fig. 3 presents latency curve 1-F1(k) for the
above example, where the function F1(k) is
computed for the particular fault (x; /1), and where

p,=q,=1/2 forall L.

1-FA(K)

1
I

0.8

0.6

0.4

0.2

0 T T T f k
0 5 10 15 2 25

Figure 3. Latency curve for the fault x/1.
The average latency duration of the fault can be
computed as in [6]:

k=0 -@2)' 0.0, a2

where I is unitary R R matrix, (q(z)) is the

ms

submatrix of the matrix (p(z)), obtained by

eliminating the extreme right column and the
lowest row.

Let { f }il be a set of faults with probabilities

Pr( f,): S;. Then the statistical characteristics of
the whole set can be obtained as follows:

0 — o _
F(k)=Ys,F k), k=) ski, (13)
i=1

i=1

where F (k) and Eiare the distribution

function and the average value of the latency for
the i-th fault.

Using the same method, a latency curve can be
obtained for each of the “stuck” faults. The
average latency curve for single stuck faults,
calculated by equation (13) for the above example,
is given in Fig. 4.

1-F(k)
1

0.8

0.6

0.4

0.2

0 T T T k
0 10 20 30 40

Figure 4. Average fault latency curve for the FSM
defined by Table 1.

Concerning the results, the following comments
can be made:

e The probability, that the fault will not be
detected during a considerable number of steps,
tends to 0. We therefore believe that the proposed
probabilistic analysis clearly identifies the TSC
property of the discussed FSM (at least with
respect to the considered faults) as illustrated in
Fig. 4;

e We note that a large difference can be observed
between the two curves shown in Figs 3 and 4.
This difference can be explained by the fact that
variable x, appears quite often in Table 1. So, the

corresponding stack fault can manifest itself rather
quickly. Faults related to variables that rarely
appear in the FSM transition table have larger
latency, since it is more difficult to provoke them.
The average fault latency values for several
FSM benchmarks computed by (7) and (8) are



presented in Table 2.

5. BENCHMARKS RESULTS

Seven FSM controllers were used as
benchmarks in our research. The FSMs were
developed by undergraduate Computer
Engineering students as their final projects. Each
FSM describes functioning of a special purpose
microprocessor. We use the Xilinx-4000 series
architecture [4] for calculation of overheads for
these benchmarks.

Results for benchmarks are presented in Tab. 2.
In this table:

L — number of input lines,

N — number of output lines,

H — number of product terms (transitions),

R — number of states of the FSM,

M — number of possible codewords
(microinstructions).

S™M and S° are complexities (numbers of CLBs)
of the FSM and the SOM-checker,
correspondingly.

St and S — minimal and maximal SOM-

checker’s complexity calculated using formulae
from Section 3.

Q =S¢/S™M*100%;

k,,— average fault latency.

Table 2. Results for FSM benchmarks implemented by Xilinx-4000 series architecture

Name L N R H M

SFSM SC

Sgin sgax Q Kaw

big 18 28 | 17 | 185 | 17 | 124 71 22 153 57% 747
bs 19 13 | 17 | 185 17 | 125 43 20 68 34% 247
acdl 16 27 | 22 | 214 | 23 158 89 28 207 56% 456
COwW 49 24 | 24 | 261 | 18 | 262 84 23 144 32% 366
vl 6 14 18 | 17 | 169 | 17 74 45 21 102 60% 237
vl 10 15 18 | 18 | 264 | 18 | 102 49 22 108 48% 300
vll 20 14 29 | 18 1367 | 17 | 110 71 22 153 65% 360




One can see from this table that the proposed
approach for design of totally self-checking
microcontrollers results in overheads which is not
exceed 65% and the small average latencies for
single stuck-at faults.

6. CONCLUSION

We have proposed herein a novel technique for
the synthesis of self-checking FPGA-based
microcontrollers. By utilizing several intrinsic
features of the corresponding FSMs, the proposed
architecture allows implementation of FSMs by a
single-rail scheme without any additional
encoding of output words. This results in
considerable reduction of the required overhead.
The Markovian analysis was wused for
investigation of fault latencies. The approach was
confirmed by number of FSM benchmarks.
Benchmarks results indicate that the proposed
approach for the design of self-checking
microcontrollers is efficient from the points of
view of required overheads and average fault
latencies.
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