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4. ALGORITHM FOR LINEARIZATION OF ORTHOGONAL TERMS

The proposed algorithm constructs a set of linearly independent vectors of the space GF (2n).
The logic function F defined by the set of orthogonal terms provides the algorithm with initial
information. The algorithm determines the matrix σ of linear transformation and a set of trans-
formed orthogonal terms corresponding to this transformation. If the logic function is defined by
an arbitrary set of terms, then this set may be orthogonalized using one of the existing algorithms
realized, for example, in the ESPRESSO program. For simplicity, the details of the algorithm are
omitted here and left for the next section.

Algorithm 1. Linearization of the logic function defined by orthogonal terms. We state that
σ = I(n×n) and i = 1.

(a) Using the method described in Section 5, calculate the autocorrelation function Rf (τ) for
all τ ∈ (2n), ‖τ‖ ≤ w and τ ≥ 2i−1.

(b) Determine τ for which Rf (τ) is the smallest one. If there is more than one such τ , then
select it arbitrarily.

(c) Construct the linear transformation matrix σi using the method of Section 4.

(d) Carry out the linear transformation on the set of terms F = σiF . The corresponding
procedure is described in Section 7.

(e) Correct the current value of σ; σ = σiσ.

(f) Take i = i+1 and repeat the procedure until i = n of Rf (τ) = 0 for all calculated values of τ .

We notice that the linearization procedure may consist of less than n iterations if the system is
described using less than n basic vectors. The procedure can be extended successfully to incom-
pletely defined functions at the expense, true enough, of an increased complexity [1].

In the following sections we describe in detail the linearization procedure and begin with cal-
culation of the autocorrelation function in the space of orthogonal terms. Next, we give a simple
method to determine the matrix σi directly from τi without linear transformation of the terms.

5. CALCULATION OF THE AUTOCORRELATION FUNCTION
FOR ORTHOGONAL TERMS

Let Nu be the number of terms {Pi}Nu
i=1 related with the characteristic set Fu,

∑

u∈GF (2k)
Nu = N .

Since F is defined by a set of orthogonal terms, Fu is expressed in the same way, and therefore,
1 The first part was published in no. 3, 2011.
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LINEARIZATION OF LOGICAL FUNCTIONS 819

fu(x) =
Nu⋃
i=1

Pi(x) =
Nu∑
i=1

Pi(x), where
⋃

is the logic OR (disjunction) and
∑

is the arithmetic sum.

The autocorrelation function of fu is as follows:

Ru(τ) =
Nu∑

i=0

Nu∑

j=0

∑

x∈GF (2n)

Pi(x)Pj(x+ τ) =
Nu∑

i=0

Nu∑

j=0

R(u)
i,j (τ).

We omit u for simplicity, if this is implied in the context, and use the autocorrelation function
Ri,j which may be calculated using its definition but without enumerating all x’s. Moreover, as is
shown below, it is calculated for the set of terms τ and not for a single τ .

Let Pi =
(
p(i)n−1, . . . , p

(i)
1 , p(i)0

)
∈ %n be a term, and let nφ be the number of “free” variables in this

term. It is common knowledge (see, for example, [1]) that the autocorrelation Ri,i(τ) of Pi(x) is

equal to 2n for any τ having the form (tn−1, . . . , t1, t0), where tk =

{
φ, p(i)k = φ

0, p(i)k &= φ
(k = 0, . . . , n−1).

For the rest of τ , Ri,i(τ) = 0.

For the two terms Pi and Pj ∈ %n, we denote by p(i)k and p(j)k the kth symbol in Pi and Pj ,

respectively. Since p(i)k and p(j)k belong to the set %, there are nine possible types of pairs
(
p(i)k , p(j)k

)

denoted by Tl, l = 1, . . . , 9:

(
p(i)k , p(j)k

)
∈






T1 = (0, 0), T2 = (0, 1), T3 = (0,φ),

T4 = (1, 0), T5 = (1, 1), T6 = (1,φ),

T7 = (φ, 0), T8(φ, 1), T9 = (φ,φ).

Let nl denote the number of pairs of the type Tl,

ni =
∣∣∣
{
k
∣∣∣
(
p(i)k , p(i)k

)
= Tl, 0 ≤ k < n

}∣∣∣ , l = 1, . . . , 9.

For example, if Pi = (0φ11φφ) and Pj = (00φ1φφ), then n1 denotes the number of occurrences
of the pair (0, 0) and is equal to one. The value of n2 is zero because there is no position where

p(i)k = 0 and p(j)k = 1. Similarly, n3 = 0; n4 = 0; n5 = 1; n6 = 1; n7 = 1; n8 = 0; n9 = 2.

The following theorem establishes that the function of mutual correlation Ri,j is calculable
directly by comparing the terms. Additionally, the mutual correlation function is calculable through
the terms in τ and not from τ themselves. This allows one to represent the mutual correlation by
an arithmetic sum and not a vector of length 2n.

Theorem 1. Let Pi =
(
p(i)n−1, . . . , p

(i)
1 , p(i)0

)
∈ %n and Pj =

(
p(j)n−1, . . . , p

(j)
1 , p(j)0

)
∈ %n. Let n9 de-

notes the number of pairs
(
p(i)k , p(j)k

)
of the type T9. We denote by A the set of vectors like

(tn−1, . . . , t1, t0), where

tk =






0,
(
p(i)k , p(j)k

)
∈ {T1, T5}

1,
(
p(i)k , p(j)k

)
∈ {T2, T4}

φ,
(
p(i)k , p(j)k

)
∈ {T3, T6, T7, T8, T9}

(k = 1, . . . , n − 1).

Then, the mutual correlation Ri,j(τ) of Pi(x) and Pj(x) is Ri,j(τ) =

{
2n9 , τ ∈ A
0, τ &∈ A.

Proof. Let an be a vector composed of the elements a∈% of length n. For example, 15=(11111).
We consider two terms Pi and Pj and assume without loss of generality that they are as follows:

Pi : (0n10n20n31n41n51n6φn7φn8φn9),

Pj : (0n11n2φn30n41n5φn60n71n8φn9),
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Table 1

Ai,j , Ri,j 1 2 3 4

1 (0, 0,φ,φ), 4
2 (0, 1,φ,φ), 2 (0, 0, 0,φ), 2
3 (1, 0,φ,φ), 2 (1, 1,φ,φ), 1 (0, 0,φ, 0), 2
4 (1, 1,φ,φ), 1 (1, 0, 0,φ), 1 (0, 1,φ, 1), 1 (0, 0, 0, 0), 1

where
∑9

i=1 ni = n. Let Si be the set x ∈ GF (2n) corresponding to the term Pi(x) and consisting
of x such that for them Pi(x) &= 0. Any x ∈ Si has the form

x = (0n10n20n31n41n51n6xn789−1 . . . , x1, x0), where n789 = n7 + n8 + n9.

We notice that the set A is definable as follows:

(0n11n2φn31n40n5φn6+n789).

Then, for any τ ∈ A and x ∈ Si:

x+ τ ∈ (0n11n2φn30n41n5φn6+n789).

Obviously, x+ τ ∈ Sj if the bit n7 in x is equal to the bit n7 in τ and the bit n8 in x and τ have

opposite values, that is, xk =

{
1 + tk, k = n9, . . . , n9 + n8 − 1
tk, k = n9 + n8, . . . , n9 + n8 + n7 − 1.

Stated differently, for the given τ ∈ A the cardinality of the intersection of the sets Si+ τ and Si

is equal to 2n9 and, therefore, Ri,j =

{
2n9 , τ ∈ A
0, τ /∈ A,

which is what we set out to prove.

Example 3. Let the logic function of four variables be given by the following set of the orthogonal
terms:

P1 = (0, 0,φ,φ), P2 = (0, 1, 1,φ), P3 = (1, 0,φ, 0), P4 = (1, 1, 1, 1).

We consider P3 and P4. Their corresponding types of pairs are (T5, T2, T8, T2). Various τ
for which the mutual correlation R3,4(τ) is other than zero are the elements of the term A3,4 =
(0, 1,φ, 1). On these τ , R3,4(τ) has value 2n9 = 20 = 1. Similarly, the terms P2 and P3 have
pair types (T2, T4, T6, T7) and, consequently, R2,3(τ) = 1 for τ ∈ A3,4 = (1, 1,φ,φ); otherwise,
R2,3(τ) = 0.

The elements of the set Ai,j for the function of Example 3 are compiled in Table 1 which
contains τ for which the corresponding values of autocorrelation are other than zero.

For example, the value of R(2) = R(0010) is calculated as follows. The pairs of terms with
nonzero correlation for τ = 0010 are (i, j) = {(1, 1), (3, 3)} and, consequently, R(2) = R1,1+R3,3 =
4 + 2 = 6. Another example is given by the autocorrelation function R(7) = R(0111) = 2R1,2 +
2R3,4 = 2× 2 + 2× 1 = 6 to which the expression

R(x3, x2, x1, x0) = 4x3x2 + 4x3x2 + 2x3x2x1 + 4x3x2 + 2x3x2

+2x3x2x0 + 2x3x2 + 2x3x2x1 + 2x3x2x0 + x3x2x1x0

corresponds. Therefore, the autocorrelation function of the logic function described by the set N
of the orthogonal terms is representable in a compact form consisting at most only of N(N + 1)/2

terms. Each term corresponds to the value of vi,j defined as follows: vi,j =

{
Ri,j, i = j

2Ei,j , i &= j.

The value of the autocorrelation function is calculated like the value of the Boolean function
represented as a set of orthogonal terms. At that, the logic OR is replaced by an arithmetic sum.
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6. GENERATION OF σ FROM τ

Linearization results in a nonsingular matrix of the linear transformation σ = T−1 which is the
product of n′ matrices (n′ ≤ n), σ = σn′ . . . σ2σ1. Each of the matrices σi = T−1

i is calculated
in i steps, i = 1, . . . , n′, with the use of τ . The matrices Ti and σi are representable as the product
of two nonsingular matrices Πi and Li: Ti = ΠiLi and σi = LiΠi, where Πi is the permutation
matrix (Πi = ΠT

i = Π−1
i ), Li possesses the unit value on its diagonal, and each column has a

Hamming weight greater than one. It is clear that Li satisfies L
−1
i = Li. We present an example.

Example 4. Consider a linear transformation obeying the matrix

σ2 =





0 0 1 0
1 1 0 0
1 0 0 0
0 0 0 1



 =





1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



 .

For the element b = (bn−1, . . . , b1, b0) ∈ GF (2n) and the superscript k, we denote by χ = χ(b, k)
the index of bit which is equal to 1 and satisfies χ ≥ k. We assume without loss of generality that
χ = χ(b, k) = )log2(b)* and define b̃(k) as the binary assembly

b̃(k) =

{
(bn−1, . . . , b1, b0), bk = 1
(bn−1, . . . , bχ+1, bχ, bχ−1, . . . , bk+1, bk, bk−1, . . . , b1, b0), bk = 0,

where bi stands for the inverted bit bi. We notice that the (k + 1)st bit is always 1. For example,

b = (001001), χ = 3 ⇒ b̃(0) = (001001),

b = (001010), χ = 3 ⇒ b̃(2) = (000110).

The corresponding matrices Πi and Li are defined as follows.

At the ith step, the binary vector τ = (tn−1, . . . , 1, 0) has a decimal value greater than or equal
to 2i−1. Therefore, χ ≥ i− 1. The structure of the permutation matrix Πi depends at the ith step
on ti−1. If ti−1 = 1, then Πi is an identity matrix; otherwise, Πi is the permutation matrix
interchanging the ith and χth bits of the vector.

The matrix Li is defined as follows:

Li =




I(n−i)×(n−i) 0∣∣∣τ̃ (i−1)

∣∣∣
0 I(i−1)×(i−1)



 , (5)

where I(k×k) is the (k × k) identity matrix.

Example 4 has the parameters n = 4 and i = 2, and τ is equal to 12, which is greater than 2(i−1).
The binary representation of τ is (1100); therefore, χ = 3. The second bit is 0. Consequently,
τ̃ (1) = (0110).

7. LINEAR TRANSFORMATION OF THE ORTHOGONAL TERMS

The matrix of linear transformation σ and a new set of the transformed orthogonal terms
F̂ = (P̂i, Yi), i = 0, 1, . . . , N̂ , result from the linearization procedure. The original term P is
representable as a sum of minterms P (x) =

∑
mk(x), the transformed term, as the sum P̂ =∑

m̂k(x). At that, the relation P (x) = P̂ (σx) is retained or mk(x) = m̂k(σx) = mj(σx). Therefore,
j = σk. Stated differently, the new set of terms results from the action of the operator σ on the
original set of terms. We notice that N̂ may be other than N . It is desirable that N̂ < N .
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The transformed set F̂ = σF is calculated at the first steps of the linearization procedure. Let
F0 = F and Fn′ = F̂ . Then, at the ith step of the procedure Fi = σiFi−1. It follows from Eq. (2)
that the autocorrelation function Ri(τ) of the set Fi satisfies the equality

Ri(τ) = Ri−1(σ
−1
i τ) = Ri−1(Tiτ). (6)

Since Ti in the lower right side is an identity matrix, the following lemma is valid.

Lemma 1. For τ = 2k, 0 ≤ k < i− 1,

Ri(2
k) = Ri−1(Ti2

k) = Ri−1(2
k),

Ri(2
k) = Ri−1(2

k) = Ri−2(2
k) = . . . = Rk(2

k), (7)

Ri(2
k) ≥ Rk−1(2

k).

At the ith step, the value of the complexity function µi of the set Fi is equal to µi = R̂i(I) =
R̂i−1(Ti), Ti replacing one of the previous basic vectors by a vector with greater value of the
autocorrelation function. Therefore, the following theorem is valid.

Theorem 2. If not constraints are imposed on the values of the Hamming weight for τ , then
Ri(2k) ≤ Ri(2k−1) and µi ≥ µi−1 is valid for k = 0, 1, . . . , i− 1.

We describe now a simplified procedure of linear transformation of terms. The operator Πi

only reorders the variables. The operator Li on the set F = {(Pj , Yj)}Nj=1 is defined as LiF =
{((

LiP T
j

)T
, Yj

)}N

j=1
.

In some cases, a pair of terms results from the multiplication of a single term P by Li. For

example, if σ1 = L1 =




1 0 1
0 1 0
0 0 1



 and P = (1,φ, 0) = {(1, 0, 0), (1, 1, 0)}, then the transformed

term is equal to σ1P T = P T . However, for P = (1, 1,φ) we get σ1P T = {(1, 1, 0), (0, 1, 1)}.
Obviously, this function is not representable as a single term.

The following lemma guarantees that as the result of linearization the term either may remain
single or divide into two individual terms.

Lemma 2. Let given be the term P = (pn−1, . . . , p1, p0) ∈ %n, and let Li be the matrix of linear
transformation defined as (5), Li &= I. If pi−1 = φ, then after the transformation LiP the original
term turns into a pair of orthogonal terms. At that, the “distance” between these terms is equal to
or greater than 2. Otherwise, the original term turns into a single term.

Proof. Any term having a free variable at the ith position can be decomposed into two terms
P (0) and P (1) of smaller dimensions. These terms have, respectively, 0 and 1 at the ith position.

Let P̂ = (p̂n−1, . . . , p̂1, p̂0) be the term where p̂i−1 ∈ GF (2) and p̂j ∈ % for all j &= i − 1. The
term P̂ corresponds to the subset of {0, 1}n. Let Li be the matrix of linear transformation (5),
that is, Li = In×n+(0n×n−i, τ̃ (i−1)− δi−1, 0n×i−1), where 0a×b is a zero (a× b) matrix. In this case,
the transformed term LiP̃ corresponds to the subset P̂ + (τ̃ (i−1) − δi−1)p̂i−1.

It is clear that if L is an identity matrix or if pi−1 = 0, then the transformed term LiP̂ is equal to
the original term P . If pi−1 = 1, then the transformed term is at least at the Hamming distance 1
from it (d(LiP,P ) ≥ 1). Additionally, if Li &= I, then d(LiP (0), LiP (1)) = ‖(τ̃ (i−1)−σi−1)‖+1 ≥ 2,
where ‖a‖ is the Hamming weight. Therefore, the term P where the ith position corresponds to
the “free” variable is decomposed into two terms. And since these two term are at distance two
from each other, they cannot make up a single term, which is what we set out to prove.
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According to Lemma 2, to calculate LiP , it suffices to determine the sum of the binary vector
V = (vn−1, . . . , v1, v0) and the term P = (pn−1, . . . , p1, p0) ∈ %n, at that pi−1 &= φ. Let a ∈ GF (2),
b ∈ %, and let ♦ denotes the noncommutative operation

a♦b =
{

a⊕ b, b &= φ
φ, b = φ.

(8)

Then, V + P = W = (wn−1, . . . , w1, w0), where wj = vj♦pj.

Example 5. Let the system of three logical functions of four input variables be defined by the
following set of the orthogonal terms:

F =






(0, 0, 0, 1), (1, 1, 1)

(1, 1, j, 0), (1, 1, 1)

(0, j, 1, j), (1, 0, 0)





.

Let i = 2 and

σ = L2Π2 =





1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



 .

After the transformation σ, the transformed set F̂ is constructed as follows. First, the variables
are permuted:

Π2F =






(0, 0, 0, 1), (1, 1, 1)

(φ, 1, 1, 0), (1, 1, 1)

(1,φ, 0,φ), (1, 0, 0)






and then multiplication by L2 is performed: F̂ = L2(Π2F ) =






(0, 0, 0, 1), (1, 1, 1)
(φ, 0, 1, 0), (1, 1, 1)
(1,φ, 0,φ), (1, 0, 0)





. We notice

that this example was aimed just to illustrate the method of linearization which here did not reduce
the number of terms.

The terms of the transformed set feature orthogonality. This fact enables recursive linearization.
Indeed, if Li = I, then after linearization the number of transformed terms remains the same. If
Li &= I, then, as is shown by the following example, after transformation the number of terms may
reduce owing to “gluing.”

Example 6. Let the function of five variables F be represented as a set of orthogonal terms. It
takes on a unit value at the vertices of the Boolean cube corresponding to the numbers 0, 6, 9, 11,
12, 16, 18, 24, and 30. The autocorrelation function of this Boolean function has the greatest value
for τ = 30 = (11110), which defines at the first step the matrix of linear transformation σ1:

σ1 =





1 0 0 0 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1









0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
1 0 0 0 0




.

AUTOMATION AND REMOTE CONTROL Vol. 72 No. 4 2011



824 KEREN et al.

After this linear transformation, the new set of terms σ1F is defined as follows:

L1Π1F =






(0, 0, 0, 0, 0), (1)

(0, 0, 0, 0, 1), (1)

(0, 0, 1, 1, 0), (1)

(0, 0, 1, 1, 1), (1)

(0, 1, 1, 0, 0), (1)

(0, 1, 1,φ, 1), (1)

(1, 1, 0,φ, 0), (1)






=






(0, 0, 0, 0,φ), (1)

(0, 0, 1, 1,φ), (1)

(0, 1, 1, 0, 0), (1)

(0, 1, 1,φ, 1), (1)

(1, 1, 0,φ, 0), (1)






.

As can be seen from the example, the number of terms reduced already after the first step of the
linearization procedure.

8. EXPERIMENTAL RESULTS

This section represents the results of experiments with the standard example from the MCNC
assembly. Different algorithms were compared in terms of the complexity function and the number
of vertices in the corresponding decision diagrams.

Table 2 shows the values of the complexity function before and after linearization. In this
table, µorig is the value of the original function before linearization and µk, after the K-procedure
without any constraint on the Hamming weight τ , µdc is the complexity of the linearized system
after executing the proposed procedure over the space of orthogonal terms. The maximal Hamming
weight τ is w = 3, µupb is the upper bound of the weight function µ defined as the sum of n maximal
values of the autocorrelation function R. We notice, however, that the corresponding T may be
single and, therefore, the upper bound is not always attainable.

We note that both theK-procedure and the algorithms of linearization of the separated terms are
the so-called “greedy” and, therefore, nonoptimal algorithms. However, in all examples µdc ≥ µk,
though there is no constraint on τ in the K-procedure, whereas µdc are constrained by w = 3. An
improvement in the complexity function is reached owing to the fact that the proposed method
considers more τ .

Table 3 shows the values of the complexity function and the greatest values of Hamming weight τi
for w = 1, 2, 3, 5, 7. As was expected, in the case of w = 1 the algorithm replaces the basic vectors
and orders them according to the value of the autocorrelation function. Therefore, for w = 1
the complexity function is equal to the original (prior to linearization) µ. It follows from the

Table 2. Complexity function of the original and linearized function
for the assembly of standard examples

Example n k µorig µk µdc µup

z4 7 4 320 412 476 588
sqn 7 3 292 310 348 504
rd73 7 3 308 476 568 644
5xp1 7 10 512 520 578 670
inc 7 9 304 304 324 560
misex1 8 7 1472 1536 1664 2048
radd 8 5 824 1112 1304 1556
root 8 5 868 870 942 1712
f51m 8 8 884 1076 1244 1536
adr4 8 5 1040 1212 1340 1492
dc2 8 7 820 820 888 1310
clip 9 5 2170 2562 2792 3164
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Table 3. Comparative complexity of realization of the original and
linearized functions for different w

n k µorig w = 1 w = 2 w = 3 w = 5 w = 7

misex1 8 7 1472 1472 1664 1664 1664 1664
dist 8 5 638 638 680 700 700 700
f51m 8 8 884 884 1172 1244 1264 1268
adr4 8 5 1040 1040 1284 1340 1340 1340

Table 4. Number of vertices in the decision diagrams of the original
and linearized functions

Example n k vorig vk vdc

sqn 7 3 81 57 54
rd73 7 3 24 31 29
5xp1 7 10 59 47 50
inc 7 9 39 37 37
misex1 8 7 8 7 5
radd 8 5 63 42 31
root 8 5 70 69 71
f51m 8 8 81 78 83
adr4 8 5 68 43 36
dc2 8 7 73 111 114
clip 9 5 135 100 89

Table 5. Parameters of the decision diagrams in the original and linearized functions

n, k N , Ndc µorig, µdc vorig, vdc Porig, Pdc APLorig, Apldc

dk27 9, 9 10, 41 2192, 2192 79, 44 86, 47 6.31, 4.91
sao2 10, 4 58, 142 8244, 8258 95, 75 237, 92 7.10, 2.90
dk17 10, 11 18, 128 5950, 6006 160, 91 377, 106 8.39, 5.71
apla 10, 12 26, 89 6818, 6836 128, 115 264, 161 7.19, 6.29

experimental results that for the most part it is possible to reduce the linearization complexity by
constraining the Hamming weight.

Table 4 shows the number of vertices in the decision diagrams before and after linearization. In
the table: vorig is the original number of vertices of the decision diagrams before linearization, vk is
the number of vertices after the K-procedure without constraints on the Hamming weight τ , vdc is
the number of vertices after linearization of the orthogonal terms under the constraint w = 3. We
notice that for example rd73 both linearization algorithms lead to an increased size of the decision
diagram. However, the complexity function µ was improved, which means that on the average
linearization enables one to obtain smaller decision diagrams and the complexity function does not
always ideally correspond to the minimal decision diagram.

There are areas of application of the linearization method where it is only natural to do rep-
resentation on orthogonal terms. For example, the sequential circuits described in terms of the
algorithm flowgraphs [3]. On the other hand, in the cases where the original representation of
a function consists of an assembly of nonorthogonal terms, the orthogonal representation can be
obtained with the use of standard programs such as ESPRESSO.

Table 5 presents data about the sizes of the original assembly of term, number of terms, as well
as the data about the impact of linearization on the complexity of the original function in terms
of the parameters of the corresponding binary decision diagrams. The first column corresponds to
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the name of the example function, the second, to the number of input (n) and output (k) variables.
Column 3 corresponds to the number of terms (N) in the original representation of the function
and to the number of terms (Ndc) in the representation of this function. Column µ corresponds to
the value of the complexity function of the original (orig) and linearized (dc) functions. The rest
of the columns correspond to the number of vertices (v), number of paths, and the mean length of
the path of the binary decision diagrams, respectively, in the original and linearized functions.

We notice that the permutation matrix was obtained as the result of linearization of function d27.
Therefore, the complexity function of the original function is equal to the complexity function of
the linearized function (µorig = µdc). Nevertheless, the new order of the basic vectors enabled one
to obtain a binary decision diagram with improved characteristics.

The proposed algorithm is applicable to the functions where representation by the orthogonal
terms has a small number of terms (see Section 9). However, the set of nonorthogonal terms can be
divided into several subsets of orthogonal terms, and to each of them the linearization algorithm
can be applied.

9. COMPLEXITY OF THE LINEARIZATION PROCEDURE

Linearization of functions defined in orthogonal terms is useful if the number of inputs or the
number of the considered characteristic functions is great. In these cases, linearization of functions
defined by the truth table is inefficient.

For linearization by the truth table, complexity of the linearization procedure (K-procedure)
is calculated as follows. The algorithm optimizes the number of vertices at the levels beginning
from the roots of the binary tree. There are at least n levels. At each level, the autocorrelation
function R is calculated, then the best τ is selected, and the function is convoluted. At the
ith level, the output is convoluted i times; therefore, the output has k2i bits. Let C(i) denote
the number of different characteristic functions at the ith level, C(i) ≤ 2k2

i
. Complexity of the

Walsh transformation of the function of z variables is z2z ; therefore, complexity of the K-procedure
based on calculating autocorrelation from the Wiener–Khinchin theorem at the ith level is equal
to maxiO

(
(n− 1)C(i)2n−1

)
.

The algorithm for linearization on the orthogonal terms calculates the autocorrelation function

for τ with the greatest Hamming weight w. The exact number W =
∑w

k=0

(
n
k

)

−
(

i
k

)

of the

candidates for calculation of Ru(τ) is known at the ith step. We denote by N (i) the number of
terms at the ith step, and let Ñ reflect the greatest number of terms in the course of the procedure,
that is, Ñ = maxi(N (i)).

Complexity of calculation of Ru(τ) has the order of WN2
u, where Nu is the maximal number

of terms having the characteristic u. It is clear that in distinction to [2], the greater the number
of characteristic functions, the smaller the calculation complexity R(τ) =

∑
uRu(τ). The total

complexity of the algorithm does not exceed O(nWÑ2).

We notice that for the systems with many logical functions the linearization of functions defined
by the orthogonal terms is more efficient than for those defined by the truth table because complex-
ity of the proposed procedure is independent of k. Moreover, even to one function, if N <

√
2n/n3,

then representation of the function by the set of orthogonal terms is preferable because for w = 3

Odc < O(n4N2) < O(n2n) < Ok,

where Odc is the complexity of the proposed linearization procedure in the space of orthogonal
terms and Ok is the complexity of the K-procedure.
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10. CONCLUSIONS

The linear transformation of variables proved to be efficient for reduction of complexity of
the logical functions. In the present paper, the linearization-based approach was extended so as to
work for the functions defined by the orthogonal terms and not only the truth tables or the decision
diagrams. The main results obtained are as follows.

(1) Proposed was a method for calculation and compact representation of the autocorrelation
function for the functions defined by a set of orthogonal terms.

(2) Proposed was a method to construct the corresponding linear transformation matrix.

(3) Proposed was a method of linear transformation of variables in the system of Boolean
functions with the use of the linear transformation matrix.

(4) It was demonstrated that complexity of calculation for the proposed method does not exceed
O(nWÑ2). As the result, the calculations based on the representation of functions by orthogonal
terms have the edge over the calculation based on the truth tables in the cases where these functions
are described by less than N <

√
2n/n3 orthogonal terms.

The experiments corroborate efficiency of the proposed methods. The present authors are sure
that the above results will extend applicability of the method of linearization owing to its efficiency.
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