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Abstract

The paper deals with functional testing of Boolean systems in cases when the func-
tionality of the system is unknown. Constructions of optimal linear-checks for testing such
systems that have an acceptable representation as low order polynomials are presented. The
linear checks determine a set of binary test vectors that form a relatively small subgroup
of C

n

2 (Cn

2 consists of all the n-bit binary vectors with addition modulo two). The paper
shows that for Walsh-transform-based implementations it is possible to define a subgroup
in C

n

2 which does not depend on the actual functionality of the system. Moreover, the check
set can be defined even without knowing neither the number of input variables nor their
precision.

1 Introduction

Two alternative types of system testing are known: on-line and off-line testing. The on-line test-
ing (usually called concurrent checking) requires introducing an additional circuitry for detecting
faults during the normal operation of the system. This kind of testing protects the system from
both permanent and transient faults that may occur during its operation. In contrast, the off-
line testing is a procedure allowing to check the system before use. This kind of test protects
the system from two types of faults: fabrication faults and fault that occurred before the test
has been applied. The off-line testing is based on applying a predefined set of test vectors. Two
types of off-line testing are used: a) testing by using external equipment, and b) self testing
running on a built-in circuit. The present paper belongs to the area of built-in-self test.

There are two conceptual levels for testing which in turn define different testing methods:
gate level and functional level testing. In gate level testing, the test vectors suit a specific
implementation, while on the functional level, the testing is independent from the specific im-
plementation and tests the correctness of the operation. Up to now, design of functional testing
has been carried out only if the functionality of the system was known to the test designer. In
our paper, we study the case when the test designer does not know the functionality. We address
the following question: is it possible to design functional testing for a system whose functionality
is unknown?

In our paper we apply the spectral approach to solve the above problem. The spectral
approach to testing was studied in [4, 13], and in the papers collected in the compendium
“Spectral Techniques and Fault Detection” [7]. Testing by verification of Walsh coefficients can
be viewed as data compression of test responses. Although this approach eliminates the problem
of check set (also called test vectors) generation and storage, it requires exhaustive application
of all 2n possible input patterns. An efficient approach to spectral testing, that does not require
exhaustive application of all 2n possible n-bit input patterns and at the same time eliminates
the problem of check set generation, is the testing by linear-checks [6, 7, 8, 9]. Linear-checks
are used in the context of detecting permanent stack-at faults. Linear-checks allow to define
the check set analytically. For functions whose Walsh spectra contains sufficiently many zeros
the check set forms a relatively small subgroup, and thus the implementation cost of the testing
mechanism becomes negligible in respect to the cost of the overall system. Polynomials of low
order belong to this class of functions.



Figure 1: The architecture of a WbAH system
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of m integer variables xm, . . . ,x1 with known precision nm, . . . , n1. Methods for constructing
linear (equality) checks for a given polynomial in Knm,...,n1

sm,...,s1
[xm, . . . ,x1] satisfying st < nt where

st is the maximal degree of t’th variable, are presented in [6, 8]. In this paper, we address
the problem of construction of linear-checks for cases where no information is provided on the
system except the fact that it has an acceptable representation as a polynomial of order M . In
particular, we provide linear-checks for Walsh-based Adaptive Hardware (WbAHs).

A WbAH is based on representing the system in the Walsh frequency domain (see Fig. 1)
[10]. An (n,M) WbAH is an n-input bit circuit that can acquire the spectral coefficients of
any polynomial of order M (and hence acquire the functionality of the system). As reported in
[10], a WbAH provides better performance than conventional Multiply and Accumulate (MAC)
based architectures in terms of its acquisition time and the average residual error (which reflects
the difference between the target functionality of the system and the functionality that the
hardware has converged to). However, its main advantage over a MAC-based architecture is
that it acquires the functionality of the system even if neither

• the number of real (or complex) variables, nor

• the maximal degree of each variable, nor

• the precision of each variable, nor

• the order of the variables,

are known to the system designer.
In this paper, we present linear-checks for spectral testing of WbAH. As shown in the paper,

the proposed check set is optimal - it is the smallest set that allows testing the WbAH without
identifying the polynomial the system has converged to. The efficiency of the suggested approach
in terms of implementation cost and in comparison to structural testing is demonstrated in [2].

The paper is organized as follows: mathematical background is given in Section 2. Section
3 introduces the concept of linear-checks for a given polynomial and reviews results presented
in [8]. Section 4 introduces the main results of this paper, it defines linear-checks for arbitrary
polynomial and shows that the check set is the best possible. Section 5 concludes the paper.

2 Preliminaries

Consider a system that has m real (or complex) inputs, and let the functionality of the system
be represented by the function f(xm, . . .x1). Without loss of generality, assume that the domain
and the range of the function are [−1, 1)m and [−1, 1), respectively. The inputs and the output
of the system are quantized; each variable xw, w = 1, . . . ,m, is represented by a binary vector
of nw bits, and the value of the function is represented by a binary vector of length k. The
mapping between the binary vectors and the numbers in interval [−1, 1) may be according to
the 2’s complement representation or any other weighted number system (refer to [11]).

To simplify the presentation we use bold letters for real variables, and Italic letters for Boolean

variables. For example, the real variable xw is represented by a binary vector (x(w)
nw−1, x

(w)
1 , . . . , x

(w)
0 ).



Similarly, a vector x = (xm, . . . ,x1) of m real variables, where each variable xw is represented
by nw bits, can be referred to as a binary vector x = (xn−1, . . . , x0) of length n =

∑m
w=1 nw.

Definition 1 (Order of polynomial) Let x = (xm, . . . ,x1) ∈ Cm and D = (dm, . . . d1), di ∈
{0} ∪ Z+, and denote by xD the monomial (product)

∏m
i=1 xdi

i . Let f(x) =
∑

j ajxDj be a
polynomial of m variables, ai ∈ C. The order M of the polynomial is M = maxjL1(Dj) where
L1 is the 1-norm, L1(D) =

∑m
i=1 di.

The class of polynomials f(x) of order ≤ M is denoted by KM . The class of polynomials
f(x) = f(xm, . . . ,x1) of order ≤ M in m ≤ n quantized real variables is denoted by Kn

M . Indeed,

Kn
M ⊂

⋃

m≤n,
∑

nt≤n, st≤M

Knm,...,n1

sm,...,s1
[xm, . . . ,x1]. (1)

A polynomial f ∈ Kn
M can be referred to as a set of k switching functions of n binary variables

{xi}
n−1
i=0 , or equivalently as a single multi-output function f(x) = f(xn−1, . . . , x0). The prop-

erties of a single multi-output function (or a set of switching functions) can be analyzed via the
Walsh spectrum.

Definition 2 (Walsh functions) Let x = (xn−1, . . . , x0) and i = (in−1, . . . , i0) be two
binary vectors of length n. The Walsh function Wi(x) is defined as Wi(x) = (−1)<x,i> =
exp(jπ

∑n−1
m=0 xmim).

Denote by Cn
2 the group of all binary n-vectors with respect to the operation ⊕ of component-

wise addition mod 2.

Definition 3 (Walsh spectrum) The coefficients vector of the Walsh spectrum is S = (s2n−1, . . . , s0),
where, si =

∑

x∈Cn
2

Wi(x)f(x), and f(x) = 2−n
∑

i∈Cn
2

Wi(x)si.

The Walsh spectrum of f ∈ Kn
M has the following property:

Theorem 1 [10] Let f ∈ Kn
M be a switching function in n binary variables that corresponds to

a polynomial of order M < n. Then, the spectral coefficient si (i = 0, . . . , 2n − 1) equals zero if
the Hamming weight of i is greater than M.

The correctness of the theorem follows from the linearity of the Walsh transform and from
the fact that the polynomial can be represented as a sum of products of up to M Boolean
variables.

Theorem 1 provides an upper bound on the number of non-zero spectral coefficients of any
polynomial in Kn

M . The bound does not depend on the number of real (or complex) inputs nor
on their precision. In this sense, a WbAH based on this bound is more robust than a conven-
tional MAC implementation of a system that has an acceptable representation as a low order
polynomial, since it acquires its target functionality even in cases where almost no information
about the system is available.

3 Spectral testing of a given polynomial by linear-checks

Linear-checks is a method for off-line self testing that avoids the exhaustive application of all
input patterns [8]. The method is based on the fact that for any given multi-valued function f in
n Boolean variables there exists a subgroup T of Cn

2 and a constant d such that
∑

τ∈T f(x⊕τ ) =
d. Construction of optimal linear-checks for a given f involves finding a minimal check set (the
subgroup T ) and computation of d.

Denote by V (nt, st + 1) a maximal linear code [nt, kt, st + 1] in Cnt

2 of length nt, dimension
kt and Hamming distance st + 1. The dual code of V (nt, st + 1) is a linear subgroup,

V ⊥(nt, st + 1) = {τ t = (τt,nt−1, . . . , τt,0)|
nt−1
⊕

j=0

τt,jyt,j = 0,∀yt = (yt,nt−1, . . . , yt,0) ∈ V (nt, st + 1)}



of dimension nt − kt. Define by V ⊥ a linear code of length n that is the Cartesian product of m
codes,

V ⊥ =
m
∏

t=1

V ⊥(nt, st + 1) = {τ = (τm, . . . , τ 1)|τ t ∈ V ⊥(nt, st + 1)}. (2)

The following theorem presents linear equality checks for testing a given polynomial :

Theorem 2 ([8]) Let f ∈ Knm,...,n1

sm,...,s1
[xm, . . . ,x1] and st < nt for all 1 ≤ t ≤ m. Then, the code

V ⊥ is the check set for f, that is
∑

τ∈V ⊥

f(x ⊕ τ ) =
∑

τ=(τm,...,τ1)∈V ⊥

f(xm ⊕ τm, . . . ,x1 ⊕ τ 1) = d

where

d =
m
∏

t=1

|V (nt, st + 1)|−1
∑

x1,...,xm

f(xm, . . . ,x1) =
m
∏

t=1

|V (nt, st + 1)|−1s0.

Notice that for constructing V (nt, st + 1), t = 1, . . . ,m one has to know of the number of
variables (m) and their precision (nt). Furthermore, in Theorem 2, st must be smaller than nt,
so it is impossible to use this method to construct a check set other than the trivial check set
(Cnt

2 ) in cases where st ≥ nt. The following example illustrates the difficulty in using Th. 2 when
the number of variables and their precision are unknown.

Example 1 Consider three polynomials of order M = 3,

f1 ∈ K62
3 [x1], f2 ∈ K31,31

3,3 [x2,x1], f3 ∈ K1,...,1,15,15
1,...1,3,3 [x34, . . . ,x3,x2,x1].

According to Th. 2, the linear-checks for each polynomial can be constructed by defining a
specific code for each one of its variables. For the cases where st = 3 < nt the linear-checks can
be obtained by shortening the extended Hamming code [12]. The parameters of the shortened
code are [n = nt, k = nt − )log2(nt)* − 1, 4]. For st = nt the trivial test set which contains all
the binary vectors of length nt must be used. That is,

1. For the polynomial f1 we choose the code V1(62, 4). The code is of dimension 62− (6 + 1).
The dual code V ⊥ is a code of dimension 7. In other words, V ⊥ is a check set of size 27

for f1.

2. For the polynomial f2 we choose two identical codes V (31, 4). The codes are of dimension
31 − (5 + 1). The dual code V ⊥ is a Cartesian product of the two codes V ⊥(31, 4), it is a
code of length 62 and of dimension 2 · (5 + 1) = 12. Namely, the dual code V ⊥ is a check
set of size 212 for f2.

3. The polynomial f3 does not fulfill the requirements of Th. 2 since si = ni for i > 2.
Nevertheless, it is possible to construct linear-checks for f3 by using the trivial checks for
the variables x3,x4, . . . ,x34, and two identical codes V (15, 4) of length 15 and dimension
15 − (4 + 1) for the variables x1 and x2. The dual code V ⊥ is a Cartesian product of all
the 32 + 2 codes, it is a linear code of length 62 and dimension 32 + 2 · (4 + 1). The dual
code is a check set of size 242 for f3. The check set is defined by a generator matrix

G =





I32×32 0 0
0 G5×15 0
0 0 G5×15





where I is the identity matrix and G5×15 is the (5× 15) generator matrix of the dual code
V ⊥(15, 4). The structure of G depends on the order of the variable - if we change the order
of the variables to (x2,x1,x34, . . . ,x4,x3) then we must change G accordingly.

Notice that each one of the three polynomials is associated with a different check set. The
size of the check set and its structure depend on the number of variables, their precision and
their order. Moreover, the size of check set grows as the number of variables increases. Yet, all
the three polynomials can be represented as functions in 62 Boolean variables in K62

3 . As such,
a Walsh based adaptive hardware that has 62 inputs may converge to each of them. Indeed, the
worst case scenario (from the point of view of the test designer) happens, for example, when
there are 31 variables each represented by two bits. In this case the size of the test is 262.



4 Universal Linear-checks

Since no information about the polynomial (except the fact that it is in Kn
M ) is available, we

are interested in a check set that will be suitable for any polynomial in Kn
M . There are two

options: a) preparing in advance a check set for each polynomial in Kn
M and selecting the proper

one in real time, and b) preparing a fixed check set that allows applying the test set without
identifying the polynomial. The latter case is called blind testing. In blind testing, the check
set is universal, it is applicable to any polynomial in Kn

M .
First, notice that it is impossible for an nt-bit word to have Hamming weight of nt + 1 and

therefore,

Lemma 1 If st ≥ nt then |V ⊥(nt, st + 1)| = 2nt .

Consequently, the worst case scenario (in terms of test duration) happens when a WbAH system
has converged to a polynomial for which st ≥ nt for all t. For these polynomials , the size of the
check set is 2n.

The following lemma shows that the best case scenario happens when m = 1 (and thus
n1 = n).

Lemma 2 Denote by V ⊥
(w) the linear-checks for a polynomial of order M in w quantized variables

in Kn
M . Then for 1 ≤ m ≤ n we have |V ⊥

(1)| ≤ |V ⊥
(m)|.

From Lemmas 1 and 2, in the worst case scenario the linear-checks are spanned by n (linearly
independent) vectors, and in the best case scenario the linear-checks are spanned by log2(|V ⊥

(1)|)
vectors of length n. In all other cases the linear-checks are determined by a Cartesian product
of m codes of different lengths and dimensions. Indeed, it is impossible to aggregate the proper
codes and construct the linear-checks without knowing the function in advance. Since it is
impossible to extract information about the type of a polynomial from its spectral coefficients.
The question is then, how to construct a non-trivial check set that can diagnose the health of
the system without knowing the function it has converged to. The following theorem answers
this question,

Theorem 3 Let V be a subgroup of Cn
2 , and V ⊥ = {τ |τ ∈ Cn

2 ,
n−1
∑

s=0
τ sis = 0,∀i ∈ V }. Then for

any f(x) defined on Cn
2 :

∑

τ∈V ⊥ f(x ⊕ τ ) = 1
|V |

∑

i∈V Wi(x)si.

Notice that the set of test vectors, {x⊕τ}
τ∈V ⊥ , to be applied is not predefined - it depends on

the value of the inputs at the time the test is activated. This allows testing different propagation
paths in the hardware.

Corollary 1 Let f ∈ Kn
M and let V = V (n, δ) be a maximal linear code of length n and

minimum distance δ, and V ⊥ = V ⊥(n, δ) = {τ |τ ∈ Cn
2 ,

n−1
∑

s=0
τ sis = 0,∀i ∈ V }. Then,

∑

τ∈V ⊥

f(x ⊕ τ ) =
1

|V |



s0 +
∑

i∈V,δ≤wt(i)≤M

Wi(x)si



 . (3)

Note that if we choose δ = M + 1, we get the test set V ⊥
(1) (from Lemma 2). Recall that V ⊥

(1)
is considered as the best-case-scenario when applying Theorem 2 for constructing linear-checks
for a given polynomial. Yet, the check set V ⊥

(1) is optimal since it is the smallest set that covers

all the scenarios including the worst-case scenario (st ≥ nt for all t).
The complexity N(δ) of the linear-checks as derived from a code V of Hamming distance δ

can be measured as the number of additions required for the computation of the two sums in
Eq. 3. That is,

N(δ) = |V ⊥(n, δ)| +
M
∑

i=δ

(

n

i

)

.

The following theorem says that for even values of M the best solution (in terms of computation
time) is when δ = M + 1.



Theorem 4 (M even) Let M be an even integer. Define p = )log(n)* . Then N(M + 1) ≤
N(M) for M ≤ 2

p
2
−1.

Theorem 5 (M odd) Let M be an odd integer. Define p = )log(n)* . Then N(M +1) ≤ N(M)
for M ≤ 2

p
2
−2 and M > p

2 .

Remark: The fault detection capability of the linear-checks depends on the actual imple-
mentation of the circuit. In this paper we assume that implementation is based on the inverse
Walsh transform. Initial experimental results indicate that a plurality of stuck-at faults in the
combinatorial part of the system can be detected.

5 Conclusions

The paper deals with functional testing of Boolean systems whose functionality is unknown. The
functional testing is performed off-line and is based on applying linear-checks. The suggested
linear-checks are optimal for testing systems that have an acceptable representation as low
order polynomials. In contrast to existing methods which require some information about the
functionality of the system for constructing the tests, our method allows to construct a check
set, which does not depend on: a) the actual functionality of the system, and b) the number of
input variables and their precision.
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