
Linearization of Functions Represented as a Set of Disjoint

Cubes at the Autocorrelation Domain

Osnat Keren
Bar Ilan University, Israel

kereno@macs.biu.ac.il

Ilya Levin,
Tel-Aviv University, Israel

ilia1@post.tau.ac.il

Radomir S. Stankovic
University of Nis, Serbia

rstankovic@bankerinter.net

Abstract

The implementation cost of a multi-output Boolean function, in terms of the number
of two-input AND-OR gates, can be reduced by using a linear decomposition. The linearly
decomposed Boolean function consists of a linear function followed by the corresponding
linearly transformed function. A complexity of the linearized function and therefore, its
implementation cost, depends on the linear transform chosen. In this paper we suggest a
spectral technique of the linear transformation of functions defined by disjoint cubes.

The proposed linearization procedure is defined over the autocorrelation domain where
the autocorrelation function is represented as an arithmetic sum of products. The com-
putation complexity of the suggested method is polynomial in both the number of input
variables and the number of cubes of the original function. Hence the suggested method is
applicable to functions of a large number of input variables.

Experimental results over standard benchmarks show reduction in the implementation
complexity in comparison with the implementation of the initially given non linearized
functions. The efficiency in terms of the computation time is demonstrated on randomly
generated functions of large number of inputs.

1 Introduction

The problem of linear decomposition of Boolean functions of a large number of input variables is
a known and complicated problem. The implementation cost of a function is estimated through
the complexity measure for Boolean functions, µ(f), defined as the number of input pairs at the
Hamming distance 1, where the function has identical values. Therefore, the implementation
cost ranges from 0 to n2n, where n is the number of variables. Large values of µ(f) correspond
to a simple AND-OR realization while smaller values of µ(f) correspond to complex realization.
The boundary value of µ(f) = 0 is attained by linear Boolean functions.

The linear decomposition proved to be an efficient method for reducing the implementation
cost of Boolean functions in terms of the number of two-input gates. The linearly decomposed
system consists of a linear function σ followed by a linearized function fσ, as shown in Figure 1.
The linear function σ is implemented by XOR gates, its complexity is polynomial in the number
of inputs. The function σ is chosen such that the complexity of implementation of the linearized
function fσ is significantly reduced.

Figure 1: Realization of a function f , (a) direct realization, (b) realization by linear decomposi-
tion f(x) = fσ(σx)

In 1975 Karpovsky [4] showed a relation between the implementation cost, the measure µ
which is the number of adjacent minterms carrying the same output, and the autocorrelation
function R(τ). He showed that the implementation cost is correlated with the sum of the auto-
correlation values of the input variables. Hence, by choosing σ that transforms the original input
variables to another set of linearly independent variables that carry higher correlation value, the
implementation cost of the linearized function can be reduced.

The linear decomposition approach is also used for reducing the size of decision diagrams
[3]. In general, there are two methods for deriving the σ and the linearized function fσ(x):
the dynamic linearization and the static linearization. The dynamic linearization involves an
heuristic search algorithm , e.g. sifting [6]. In some cases, the dynamic approach may fail to
find the best set of variables within a given time limitation. The static linearization approach
is analytical; a new set of variables is determined by their autocorrelation values. Due to the
complexity of finding the optimal solution, greedy algorithms are often used. Nevertheless,
the resulting linear function fσ is on average of a lower implementation cost than the original
function.

There are three basic operations involved in the static linearization procedure of a Boolean
function f : GF (2n) → GF (2k) of n input variables and k outputs :

• Calculation of the autocorrelation function Rf (τ).

• Construction of the linear transform matrix σ, i.e. defining a set of n independent variables
(base) having the maximal autocorrelation values.

• Applying a linear transform to the original function.

The autocorrelation function can be calculated in two different ways: a) by definition, and b)
by using the Wiener-Khinchin theorem. The efficiency of methods for computing the autocor-
relation function depends on the way the function f is specified. In this paper we are interested
in functions of a large number of inputs, which are often represented as a set of cubes. Since
any set of cubes can be expanded to a set of disjoint cubes, we assume that the function to be
linearized is already given as a set of disjoint cubes.

An extensive work has been done in calculations of various discrete spectral transforms, in-
cluding the Walsh transform of switching functions defined by disjoint cubes, see, for instance,
[1, 2] and references therein. However, employing this approach for calculation of the auto-
correlation functions Rf by using the Wiener-Khinchin theorem may be inefficient, since the
complexity of the method depends on the number of disjoint cubes and the number of different
values the Walsh coefficients may take is often large.

Calculation of the autocorrelation of multi-output functions of large number of inputs can
be simplified by performing the calculation over the disjoint cubes domain simultaneously on
cubes of τ ’s (see Section 2). In this case the autocorrelation function R(τ) has a compact
representation as an arithmetic sum of products. and the computational complexity of the
autocorrelation function is polynomial in the number of inputs and the number of cubes.

A linearization algorithm for efficient minimization of logic functions on the disjoint cubes has
been suggested by Varma and Trachtenberg [7] in 1989. The authors reduced the computational
complexity by: a) using heuristic algorithm to define a candidate base vector, and b) calculating
the autocorrelation function R of the candidate vectors over cubes directly by the definition for
the chosen candidate. The main drawback of this method is that the final set of τ ’s depends on
the order of processing the cubes and on the subspace defined by the previously produced base
vectors.

Karpovsky, Stankovic and Astola suggested in [3] a linearization algorithm for the reduc-
tion of the size of Binary Decision Diagrams (BDD). The corresponding procedure, called the
K-procedure, reduces the size of a BDD by performing a linear transformation σ of input vari-
ables. The linear transformation is determined as the superposition of linear transformations
minimizing the number of nodes per levels, starting from the bottom of the BDD. At each level,
the linearization is performed by determining the basis of the inertia group for the function
represented by the nodes at the upper levels, and the BDD is folded after each step. The folding
of the BDD is an essential step of the K-procedure, it guaranties that the chosen τ is linearly in-
dependent from previous τ ’s. However, the complexity of folding is exponential with the number

of inputs, and therefore the K-procedure may not be applicable to functions of a large number
of inputs.

A technique for linearization of multi-output functions of large number of inputs was in-
troduced in [5]. In this method, the complexity of calculation was reduced by performing the
calculation entirely over the disjoint cubes. The construction of a linearly independent set of n
base vectors is significantly simplified by defining the transform matrix σ as a product of ma-
trices determined by performing a series of instantaneous linear transforms on the set of cubes.
The computational complexity of the linearization procedure in [5] is polynomial in the number
of inputs n, and the number of cubes, (O(n4N2

max)), where Nmax is the maximal number of
products processed per iteration.

Note that a linear transformation of cubes may break a cube into a number of smaller cubes.
Since the algorithm in [5] requires to repeat calculation of the autocorrelation per iteration, the
complexity of computation may increase from step to step.

In this paper, we suggest an improvement over the algorithm presented in [5]. The suggested
technique is a linearization procedure that constructs the transform matrix σ by performing a
series of linear transforms directly on the autocorrelation function. This way it is sufficient to
calculate the autocorrelation function only once on the initial set of disjoint cubes. As a result,
it always derives a linearized function of a lower complexity measure (µ(f)) than the original
function.

The paper is organized as follows. In next section 2, we discuss the optimization criterion and
the linear decomposition problem. The suggested linearization procedure is presented in Section
3. Section 4 includes simulation results using standard benchmarks and randomly generated
Boolean functions. The conclusions summarizing the results are presented in Section 5.

2 Preliminaries

Let f : GF (2)n → GF (2k) be a system of k logic functions of n variables or multi-output Logic
Function. Let G = {0, 1,φ}, where φ stands for don’t-care. The representation of f at the cubes
domain is a set of N pairs

F = {(Pi, Yi)}
N
i=1

where Pi ∈ Gn, is a product and Yi ∈ GF (2k) is the corresponding output.
Two cubes (products) are called disjoint if they do not have any minterm in common. If for a
function f, any pair of cubes is disjoint, the function is represented by a disjoint cubes. Clearly,
any set of non-disjoint cubes can be expanded into a set of disjoint cubes, and therefore without
loss of generality, we assume that a given multi-output Boolean function is specified by a set of
N disjoint (orthogonal) cubes (products).
The set of products of a multi-output Boolean function can be partitioned into sets having
identical output patterns, called characteristic sets. The characteristic set, Fu, (u ∈ GF (2k),) is
the set

Fu = {(Pi, Yi)|(Pi, Yi) ∈ F, Yi = u} (1)

The Boolean function defined by the characteristic set Fu is the characteristic function fu(x).

2.1 Optimization criterion and the autocorrelation function

As shown in [4], the complexity measure µ(f) can be written in terms of the autocorrelation
function values at τ ’s of the Hamming weight one; Denote by Rg(τ) the autocorrelation function
of a binary function g, i.e., Rg(τ) =

∑

x∈GF (2n) g(x)g(x + τ). Then

µ(fu) =
n−1
∑

i=0

Ru(δi)

where δi stands for the representation of 2i as a binary vector of the length n in base 2, and

µ(f) =
∑

u∈GF (2k)

µ(fu).

At the disjoint cubes domain the calculation of Ru is performed as follows; Let Nu be the
number of products {Pi}

Nu

i=1 associated with the characteristic set Fu as defined by (1), i.e.,
∑

u∈GF (2k) Nu = N. Since F is an orthogonal set of products, so does Fu and thus,

fu(x) =
Nu
⋃

i=1

Pi(x) =
Nu
∑

i=1

Pi(x)

where
⋃

stands for OR and
∑

is the arithmetic summation. Therefore,

Ru(τ) =
Nu
∑

i=0

Nu
∑

j=0

∑

x∈GF (2n)

Pi(x)Pj(x + τ) =
Nu
∑

i=0

Nu
∑

j=0

R
(u)
i,j (τ).

To simplify the notations, when it is clear from the context, we omit u, i.e., instead of R
(u)
i,j we

write Ri,j .
As shown in [5], Ri,j can be calculated by determining the coset(cube) of τ ’s, Ci,j ∈ Gn,

for which the product Pi(x) and the shifted product Pj(x + τ) are not disjoint. Namely, let

Pi = (p(i)
n−1, . . . , p

(i)
1 p

(i)
0) and Pj = (p(j)

n−1, . . . , p
(j)
1 p

(j)
0) ∈ Gn, and denote by nφ the size of the set

{k|0 ≤ k < n, p
(i)
k = p

(j)
k = φ},

the coset determined by the intersection of the product i and the shifted product j is Ci,j =
(cn−1, . . . , c1, c0), where

ck =

0 (p(i)
k , p

(j)
k) ∈ {(0, 0), (1, 1)}

1 (p(i)
k , p

(j)
k) ∈ {(0, 1), (1, 0)}

φ otherwise

for 0 ≤ k < n. The coset is attributed by Vi,j = 2nφ , the number of elements the product Pi(x)
and the shifted product Pj(x) have in common. For example, let P1 = (01φφ1) and P2 = (00φ11)
then

C1,1 = (00φφ0) V1,1 = 22

C2,2 = (00φ00) V2,2 = 21

C1,2 = (01φφ0) V1,2 = 21.

The autocorrelation function can be represented in PLA-like format or equivalently arith-
metic sum of cubes format. In other words, R can be represented by cubes as a set of M ≤ N2

pairs,
R = {(Ci, Vi)}

M
i=1 ,

where Ci ∈ Gn is a product and Vi the corresponding integer 1 ≤ Vi ≤ 2n.
The value of the autocorrelation function R(τ) is

R(τ) =
M
∑

i=1

Ci(τ)Vi

For example, consider the following 4-input 3-output Boolean function and its total autocor-
relation function R, represented as a set of eight cubes

F =

(0100) , 0
(0011) , 0
(1φ00) , 1
(0φ10) , 1
(0101) , 2
(000φ) , 2
(1φ1φ) , 2
(1φ01) , 3
(0111) , 4

, R =

(0000) , 4
(0111) , 2
(0φ00) , 6
(1φ10) , 4
(000φ) , 2
(0φ0φ) , 4
(010φ) , 2
(1φ1φ) , 6

(2)

The value of the autocorrelation function R(τ) for τ = δ3 = (0100) is

R(τ) =
8

∑

i=1

Ci(τ)Vi = 0 · 4 + 0 · 2 + 1 · 6 + 0 · 4 + 0 · 2 + 1 · 4 + 1 · 2 + 0 · 6 = 12.

The complexity measure of this function is

µ = R(0001) + R(0010) + R(0100) + R(1000) = 6 + 0 + 12 + 0 = 18.

Next we show how by linear decomposition it is possible to increase µ and hence decrease the
implementation cost.

2.2 Linear decomposition

The linear decomposition of a function, presented in [4], allows implementation of f as a super-
position of a linear transform function σ implemented by XOR gates followed by a non-linear
part, fσ,

f(x) = fσ(σx),

of minimal implementation cost as sum of products (see figure 1).
The optimization problem is to find for a given function f, a nonsingular (n×n) linearization

matrix σ, such that µ(fσ) is maximal.
The autocorrelation functions of f(x) and fσ(x) have the same values but at different po-

sitions in the truth-vector, i.e., Rσ(τ) = R(σ−1τ). Therefore, the minimization problem is to
determine a nonsingular matrix σ = T−1, T = (τn−1, . . . τ1, τ0), such that µ(fσ) =

∑

i R(τi) is
maximal. The columns of T are referred as base vectors that span GF (2n). Construction of a
nonsingular matrix σ, and hence nonsingular T, is equivalent to the problem of construction a
set of n base vectors.

In the previous example, the set τ0 = (0100), τ1 = (1010), τ2 = (0001) and τ3 = (0111) defines
a non singular matrix T = σ−1 for which the complexity measure of the linearized function fσ

is maximal, i.e.
µ(fσ) = R(T) = 12 + 10 + 6 + 2 = 30.

Therefore, the linearized function has lower complexity than the original function. See for
example the Karnaugh map of the original and the linearized function given in Table 1.

Table 1: Karnaugh map of f and fσ

f(x3x2x1x0) fσ(x3x2x1x0)
x3x2 00 01 11 10
x1x0

00 2 0 1 1
01 2 2 3 3
11 0 4 2 2
10 1 1 2 2

x3x2 00 01 11 10
x1x0

00 2 2 1 4
01 0 2 1 0
11 2 2 1 3
10 2 2 1 3

3 Linearization Algorithm

The complexity of linearization algorithms comes from the calculation of the autocorrelation
function and the construction of the set {τi}

n−1
i=0 . The algorithm presented in [5] performs the

linearization over disjoint cubes by an instantaneous linear transformation of the set of cubes.
The procedure suggested in this paper performs linearization by instantaneous linear transfor-
mation of the autocorrelation function. Both algorithms produce the linear transform matrix σ
and a set of linearized disjoint cubes representing fσ.

The complexity of each iteration of the algorithm in [5] is polynomial in the number of inputs
and number of cubes, (O(nwN2

i)), where Ni is the number of products at the step i and w is the
maximal Hamming weight of τ. However, a linear transformation of cubes may break a cube into
a number of cubes of smaller order, therefore the number of products at step i may be larger
than N. For this reason, the complexity of the whole linearization procedure of is O(nw+1N2

max)
where the Nmax is the maximal number of cubes over the steps.

The algorithm suggested in this paper evades from this problem by performing the linear
transform on the autocorrelation function, i.e. it exploits the property that the autocorrelation
function of the transformed set after applying the instantaneous σi is

Ri(τ) =
∑

x∈GF (2n)

fσi
(x)fσi

(x + τ) =
∑

x∈GF (2n)

fσi
(σix)fσi

(σi(x + Tiτ)) = Ri−1(Tiτ) (3)

Therefore the autocorrelation of the initial function, denoted by R0, can be calculated once for
∑w

j=1

(

n
j

)

values of τ, and the succeeding autocorrelation functions can be obtained by reordering
the elements of R0 by applying the instantaneous transforms.

Note that calculating the autocorrelation for a restricted set of τ ’s is equivalent to calculation
of the complete R and nullifying the values of R which correspond to τ ’s of the predefined set.
Therefore the autocorrelation function of the transformed set may differ from the transformed
partial autocorrelation function.

Linearization procedure by instantaneous linear transforms of R
Set i = 0

For all τ ∈ GF (2n) , ||τ || ≤ w calculate R(τ). Set σ = I

While i ≤ n − 1

1) If R(τ) = 0 for all calculated τ ’s then break.

2) Determine τ, τ ≥ 2i−1 that maximizes R(τ). In case that there are more than one τ choose one

randomly.

3) Construct the instantaneous linear transform matrix σi

4) Perform an instantaneous linear transform on R

5) Perform an instantaneous linear transform on the set of products

6) Update σ, σ = σiσ

7) Increment i

Remark 1:
For a function represented as a sum of disjoint cubes, it is more efficient to calculate Fσ in steps
where at each step a single base vector is replaced, instead calculating it directly as Fσ = σF.
In other words, the computation complexity is smaller when the linear transform matrix is
represented as a product of instantaneous matrices σi, namely, denote by F0 the original set of
cubes, and define

Fi+1 = σiFi for i = 0, 1, . . . n − 1

then Fσ = Fn. Note that when a single base vector is replaced, then the instantaneous matrix
Ti, Ti = σ−1

i , is of a special form, i.e., it has n− 1 columns of Hamming weight one and a single
column of the weight greater or equal to one. The corresponding σi may transform a cube of
the order w to a single cube of the same order or it may break the cube into two cubes of order
w − 1.

Remark 2:
The K-procedure presented in [3] requires a non-singular matrix instantaneous linear transform
matrix σi for which

στ = δ0,

or,
τ = T δ0.

Namely, the K-procedure restricts only the right most column of T, the other columns can be
chosen arbitrarily. Hence, the overall cost function µ after the i’th iteration may be smaller
than the original µ. The suggested approach allows to replace a single base vector in each
iteration. Since τ carries the maximal autocorrelation value, the vector to be replaced by τ
has autocorrelation value smaller than R(τ). Therefore, the µ cannot decrease from iteration to
iteration.

Table 3 shows the values of the transformed autocorrelation of the exemplary function and
the chosen τ per iteration. Note that at each step the chosen τ is greater or equal to 2i. It is easy
to see that the autocorrelation value of previously determined base vectors, i.e., R(δk), k < i
is decreasing with k. Moreover, the cost function µ is increasing when the chosen τ is a linear
combination of current base vectors, i.e., when the Hamming weight of τ is one. For example,
at the step 1 after replacing the base vector δ1 = (0010) by τ = (1010) the cost function of the
transformed set µ2 (= 28) is greater than the cost function of the current set µ1 that equals 18.
Note however that when the chosen τ is one of the current base vectors, i.e., it is of Hamming
weight one, the µ remains unchanged (e.g., µ2 = µ3 = 28).

Table 2: The autocorrelation function and the optimal τ per iteration. Calculation is made
without a restriction on the Hamming weight of τ.

i Ri(0, 1, . . . 15) τi µi

0-original [16, 6, 0, 0, 12, 6, 0, 2, 0, 0, 10, 6, 0, 0, 10, 6] 4 18
1 [16, 12, 0, 0, 6, 6, 0, 2, 0, 0, 10, 10, 0, 0, 6, 6] 10 18
2 [16, 12, 10, 10, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 2] 4 28
3 [16, 12, 10, 10, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 2] 15 28

final [16, 12, 10, 10, 6, 6, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0] - 30

4 Experimental Results

In this section we provide simulation results on several benchmarks. The performance of the
suggested linearization algorithm is examined in terms of the cost function and the execution
time. The performance is compared to the original function and to the linearized function after
applying K-procedure at the truth-table domain.

Table 3 shows the cost functions for standard benchmarks. The value of the complexity mea-
sure µ(f) for the original function is shown in column denoted by µ. The value µupb is an upper
bound on cost function, it is defined as the sum of the n maximal values of the autocorrelation
values. This bound is not always achievable. The µk−proc stands for the complexity measure
obtained by the K-procedure. The values µALG−I and µALG−II stand for the algorithm pre-
sented in [5] and the newly suggested linearization procedure, both obtained with a restriction
on the Hamming weight of τ to w = 3.

Table 3: µ of the original and linearized benchmark functions and upper bound on µ
Benchmark n k µ µk−proc µALG−I µALG−II µup

z4 7 4 0 192 320 320 384
rd73 7 3 0 192 384 384 448
inc 7 9 304 304 324 316 464
misex1 8 7 1200 1232 1304 1304 1848
radd 8 5 0 512 704 704 768
dist 8 5 272 316 402 406 496
dc2 8 7 648 648 692 692 948
clip 9 5 384 1032 1448 1400 1736
9sym 9 1 3600 3712 3600 3600 3712
alu2 10 8 2712 2712 2948 2928 3508
dk17 10 11 5950 5950 6006 6006 8762

Figure 2 shows the execution time of the K-procedure at the truth-table domain, the lin-
earization algorithm of [5] and the proposed method with w = 3 versus the number of inputs.
The execution time was measured on Intel-Centrino, 1.2Ghz, 0.99GB RAM, for random PLA’s
of four outputs and 50 products. The variance of the measurements was less than 3%. It is
clear that linearization at the disjoint cubes domain outperforms linearization based on Wiener-
Khinchin theorem.

Table 4 shows the execution time of the linearization procedures with w = 3 for random PLAs
of 10 to 40 inputs, four outputs and 50 products. As expected, the complexity is polynomial
with the number of cubes (N2), and from the slope of the curves in Figure 2 it is clear that
the complexity increases as n4 with the number of inputs and not exponentially (n22n) as
the complexity of the calculating n times the autocorrelation function by the Wiener-Khinchin
theorem.

Table 4: Execution-time [sec]of ALG-I and ALG-II vs n for random PLA of 4 outputs and 50
products.

inputs 10 15 20 25 30 35 40
ALG-I 2.64 7.69 21.87 56.38 151.42 339.95 738.03
ALG-II 0.33 0.69 1.55 3.59 8.37 16.97 31.62

10 11 12 13 14 15 16 17 18

0

20

40

60

80

100

120

140

160

180

200

Number of input variables

R
u
n
!

ti
m

e
[s

e
c
]

Run time of K!proc,ALG!I and ALG!II vs number of inputs
for random PLAs of 4 outputs and 50 disjoint cubes

K!proc

ALG!I

ALG!II

Figure 2: Execution time versus number of inputs of K-procedure and Disjoint cubes linearization
algorithms. for random PLA of 4 outputs and 50 products.

5 Conclusion

Linear decomposition has been proven to be an effective tool for reduction of the realization cost
of Boolean functions. The present work may be considered as a continuation of the research
presented in [7] and [3] for functions having a large number of inputs and defined by disjoint
cubes. The main contribution of the paper can be summarized as follows:
1. A method for calculating the autocorrelation function for a logic function defined by its
disjoint sum of products is proposed.
2. A technique for simplifying the construction of the set of n independent vectors of high
correlation is described, the proposed method represents the transform matrix σ as a product
of matrices of a particular form.
The proposed technique is verified over standard benchmark functions and randomly generated
Boolean functions for different number of variables and products. The experimental results
clearly demonstrate efficiency of the proposed techniques.

References

[1] Falkowski, B.J., Kannurao, S., Circuits and Systems, ISCAS 2001. Volume 5, 6-9 May 2001,
61 - 64.

[2] Falkowski, B.J., Schafer, I., Perkowski, M.A., Calculation of the Rademacher-Walsh spec-
trum from a reduced representation of Boolean functions, Design Automation Conference,
1992. EURO-VHDL ’92, EURO-DAC ’92. 7-10 Sept. 1992, 181 - 186.

[3] M.G. Karpovsky, R.S. Stankovic, J.T. Astola, Reduction of sizes of decision diagrams by
autocorrelation functions, IEEE Trans. on Computers, Vol. 52, No. 5, 2003, 592-606.

[4] M.G. Karpovsky, Finite Orthogonal Series in the Design of Digital devices, New York, Wiley,
1976.

[5] O. Keren and I. Levin, Linearization of the Logic Functions Defined in SOP Form, UROMI-
CRO SEAA / DSD 2005 Porto (Portugal) , 2005 .

[6] D. M. Miller, R. Drechsler and M. A. Thornton, Spectral Techniques in VLSI CAD, Kluwer
Academic Pub, 2001.

[7] Varma, D. Trachtenberg, E.A., Design automation tools for efficient implementation of logic
functions by decomposition; IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Volume 8, Issue 8, Aug. 1989, 901 - 916 .

