

Reduction of Fault Latency in Sequential Circuits by using
Decomposition

Ilya Levin
i.levin@ieee.org

Benjamin Abramov
avramov@post.tau.ac.il

Vladimir Ostrovsky
vladio@post.tau.ac.il

Tel Aviv University, Israel

Abstract
The paper discusses a novel approach for reduction of fault detection latency in a self-

checking sequential circuit. The Authors propose decomposing the finite state machine
(FSM) which describes the sequential circuit of interest, thus obtaining a number of
component FSMs respectively describing the number of component circuits. Being
decomposed to the number of component circuits, the initial circuit becomes able to detect
faults much faster since, at each specific moment of time, one of the component circuits
(FSMs) is working and all the others are being tested. The paper deals with the following
aspects: a) the decomposition procedure; b) evaluation of the proposed approach based on
a fault injection simulation; c) estimation of trade-off between the reduction of latency and
the required hardware overhead. Results of the study are tested on a number of standard
benchmarks.

1. Introduction
Concurrent checking can be performed in circuits having ability to self-exam their

operational “health” during normal functioning, and allows indicating the circuit’s potential
failures. While such an indication is highly desirable, designing of self-checking circuits is
not trivial. Issues to be addressed in the design include the hardware cost, possible
performance degradation, fault coverage, as well fault latency known as a time period
between appearance of a fault and its manifestation.

In this paper we deal with sequential circuits that implement controllers. Specifically, we
study the mentioned trade-offs in order to formulate guidelines for synthesis of controller
circuits which should possess some required latency-overhead balance. The way we propose
to study is a method of decomposing an FSM describing the controller into a network of
interacting component FSMs in such way, that only one of the components is functioning at
each specific moment of time while all the rest of the components are being tested by their
self-testing means. Since the probability of fault detection in concurrently checking
component circuits is higher than that in the large initial circuit, it seems obvious that the
proposed network provides the desired reduction of the fault latency in comparison with the
latency of the initial FSM.

The paper addresses the following questions:
1. How to decompose the initial FSM to the equivalent decomposition network?
2. How to provide the proper functioning of the decomposition network?
3. What is an estimated value of the latency reduction for the proposed decomposition?
4. What is the “price” for the above latency reduction it terms of the hardware overhead?
The paper is built as follows. After reviewing the related works in Section 2, Section 3

presents the proposed method of constructing the decomposition network and ensuring its
functioning. Description of the proposed method of latency estimation for the decomposed
FSM is provided in Section 4. Section 5 gives specific benchmarks results of the latency
estimation. Conclusions are provided in Section 6.

22nd IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

1550-5774/07 $25.00 © 2007 IEEE
DOI 10.1109/DFT.2007.24

261

22nd IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

1550-5774/07 $25.00 © 2007 IEEE
DOI 10.1109/DFT.2007.24

261

2. Related works
A number of known approaches to concurrent errors detection, on-line testing and self-

checking may be classified by their position within the trade-off space between hardware
overhead and fault detection latency [1]. The majority of the approaches represent one of the
two ends of this space. The main difficulty at the low end of the space is the necessity to
apply all possible input combinations before obtaining any indication of the fault
manifestation, which leads to significant fault latency. At the high end of the trade-off space,
there are methods that check the circuit at every clock to guarantee the zero error detection
latency. However, such methods usually require the overhead cost greater than the
duplication cost. To the best of our knowledge, while there are a number of approaches in
between the two ends, methods for synthesis of sequential circuits that provide a desirable
balance between the overhead and the fault latency were never investigated.

FSM decomposition techniques were studied as a means for optimization [2, 3], low-
power design [4], and self-checking design [5]. In [3], a problem of minimizing
interconnections was firstly studied. The author introduced a supervisor FSM into the
decomposition network, which FSM coordinates functioning of the decomposition network
and allows encoding of interconnecting signals separately for each of component FSMs
(CFSMs) of the network. Partitioning of the FSM into a pair of interacting portions, for
reducing the fault latency, was reported in [6]. In [7], an analytical method for calculation of
the FSMs fault latency was presented. A design of concurrent error detection FSMs with
bounded latency was proposed in [8]. A statistical analysis of the FSM decomposition
network behavior was demonstrated in [9].

The present paper describes a decomposition method for reduction of fault latency in a
sequential circuit. We decompose the circuit's FSM into three components. We organize
interconnections between the components by introducing the mentioned supervisor FSM. In
order to provide interaction between the CFSMs of the network, additional hardware should
comprise the supervisor FSM and some recourse required for performing extra transitions
within the components. Using this type of decomposition, we study trade-off between the
two main parameters – the latency and the overhead for decomposed sequential circuits.

3. Decomposition network
In this section, we introduce some basic notations and describe the general idea of the

proposed decomposition. We use the FSM notation taken from [2] for description both the
initial sequential circuit and the decomposition network of component sequential circuits.

Let an FSM describing a certain sequential circuit is defined by its transition table shown
in Tables 1 and 2. In the tables: am - a present state, as - a next state, X am ,as() – a
transition function, i.e. a Boolean function, which is equal to 1 when FSM moves from state

ma to state sa , Y am ,as() – a list of output functions, which are equal to 1 on the transition
of the FSM from ma to sa , h – a serial number of the FSM transition.

Let { }1 2 3 4 5 6 7 8 9; ;a a a a a a a a aπ = be a predetermined partition on the set of the FSM
states. We put the desirable decomposition network into a correspondence with the
initial FSM and the partitionπ . Each of the future component FSMs of the
decomposition network corresponds to a specific block of the partition π . The
decomposition network consists of U component FSMs Su u=1,...,U() and one
specific supervisor FSM (SFSM). Each of the component FSMs produces an output
vector in response to an input vector, and receives/produces connecting signals,
providing by this interaction between component FSMs of the decomposition
network. Actually, the component FSM (CFSM) transforms output connection
signals of the component FSMs into input connecting signals of the component
FSMs.

262262

Table 1. Transition table of the initial FSM
am as X(am ,as) Y (am ,as) h

a1 a1 x3x4 x5 − 1

a5 x3x4 x5 y1, y2 2

a7 x3 x4 y1, y3 3

a9 x3 y2 4

a2 a1 x5 x6 x7 y2 , y3, y4 5

a7 x5 x6 x7 y3 6

a6 x5 x6 y2 , y3 7

a6 x5 y2 8

a3 a6 x5 x6 y2 , y3 9

a7 x5 x6 y3, y4 10

a8 x5 x6 y2 11

a2 x5 x6 y3, y4 12

a4 a3 x6 x7 y2 13

a5 x6 x7 y2 , y3 14

a7 x6 x7 y3 15

a8 x6 x7 y3, y4 16

Table 2. Transition table of the initial FSM
(contd)

am as X(am ,as) Y (am ,as) h

a5 a2 x1x2 y3, y4 17

a3 x1 x2 y4 , y5 18

a4 x1 y3, y5 19

a6 a2 x4x5 y1, y3 20

a5 x4 x5 y2 21

a7 x4 y1, y3 22

a7 a4 x3x2 y2 23

a5 x3 x2 y1, y3 24

a6 x3 y3, y4 25

a8 a5 x3x4 y2 26

a6 x3 x4 y1, y3 27

a7 x3x5 y1, y3 28

a8 x3 x5 − 29

a9 a3 x1x3 y3 30

a4 x1 x3 y3, y5 31

a5 x1 y3, y4 32

The decomposition network works as follows. At any clock, one and only one component

FSM is functioning in a work mode. We call this component FSM as working FSM. All the
rest of components FSMs of the network are functioning in the test mode. We call all such
FSMs as tested FSMs. While applying a current input vector to the working FSM leads to
performing corresponding transition and output functions, applying the input vectors to the
tested FSMs performs their testing.

A schematic diagram of the decomposition network is presented in Figure 1.

Figure 1. Schematic diagram of the FSM Decomposition network

In this figure, each of the component FSMs is connected with SFSM by Qu output and
Pu input lines. Outputs Y u of each of the component FSMs are checked by a self-checking
checker and "enabled” by signals zu sent by the SFSM.

263263

4. Decomposition model

Let { }1, ...,= UA Aπ be a partition on the set of states of the initial FSM, U is a number of
partition blocks.

Each partition block corresponds to a certain CFSM of the network, defined as follows:
1) the set of states of the CFSM is the set of states of a corresponding partition block;
2) if the transition occurs between states of the same partition block, the transition and the

output functions of the CFSM respectively correspond to the transition and the output
functions of the initial FSM; if the initial state and the final state of the transition belong to
different partition blocks, then the CFSM containing the initial state moves to a predefined
state (one of the states of the CFSM), and the CFSM containing the final state of the transition
is caused, by a specific connection signal, to move from the special predefined state into the
final state of the transition;

3) each input vector of a CFSM comprises an external input vector and a connecting input
vector;

4) each output vector of a CFSM comprises an external output vector and a connecting
output vector.

The proposed decomposition allows independent encoding of input connecting signals. The
independent encoding minimizes the number of external lines required for transmitting
variables of the connecting vectors. It becomes possible by introducing into the FSM network
a SFSM, which converts output connecting signals to input connecting signals of the CFSMs.

The SFSM is constructed as follows:
1) states of the SFSM correspond to partition blocks of the initial FSM;
2) transitions of the SFSM correspond to transitions of the initial FSM between states of

different partition blocks;
3) transitions between states of the same partition block does not change the current state

of the SFSM;
4) the number of different input vectors of the input alphabet of the SFSM is equal to that

of the largest alphabet of output connecting signals of component FSMs;
5) each output set of SFSM comprises input connection signals of the corresponding

CFSMs.
 CFSMs of the decomposition network interact as follows. At each clock, a certain CFSM

is functioning (i.e. is in the work mode). Its output signals are “enabled”. All remaining
CFSMs are in their test mode. Some current input vector initiates the testing process. Output
signals of the CFSMs being tested are “disabled”. Nevertheless, these signals are checked by
the corresponding checkers. After moving into a first state from which it’s testing mode
starts, a specific CFSM sends a connecting vector signal uQ to inputs of the SFSM. At the
same clock, the SFSM produces an output vector uP signal that initiates functioning (work
mode) of another one of the component FSMs of the decomposition network. The SFSM then
moves to its state corresponding to the presently functioning component FSM.

Let us define the decomposition network formally.
Define a component FSM Su Bu ,Xu ,Y u ,δ u ,λu ,a1() as follows.

1. A set of states of CFSM Su :Bu =Au .

2. A set of input variables

Xu = X am()

am ∈Au

∪

Pu ,∪ where: X am() is a set of input

variables of the initial FSM sampled at transitions from ma ; Pu is a set of additional

connecting input variables arriving to the input of uS from the output of the SFSM. In our
example: X1= x1,. x2 , x3, x4 , x5, x6 , x7 , p1, p2 , p3{ }; { }2

2 3 4 5 4 5 6, , , , , , ;X x x x x p p p=

{ }3
1 3 5 6 7 7 8 9,. , , , , , ,X x x x x x p p p= .

264264

3. A set of output variables

Y u= Y am()

am ∈Au

∪

Qu ,∪ where Y am() – is a set of output

variables of the initial FSM, generated at transitions from ma ; uQ – is a set of additional

connecting output variables arriving from the output of uS to the input of the SFSM. In our
example:

{ } { } { }1 2 3
1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 2 3 4 5 1 2 3 4, , , , , , , , ; , , , , , , , ; , , , , , , , .= = =Y y y y y y q q q q Y y y y y q q q q Y y y y y q q q q

4. The transition function and the output functions of the component FSM are defined as
follows:

a) ()() ()() ()
() ()() () ()()

, & , & ,

, , & , , ;

u
m h j m h t m j

u u
m h m h j m h m h t

a X a a X Y a a A

a X a X a a X a X Y

δ = λ = ∈ ⇒

⇒ δ =δ = λ =λ =

b)
()() ()() () ()

() ()() ()()
() ()() ()()

0

0

, & , & , &

, & & , , &

& , , & ,

u k
m h j m h t m j

u u u
m h m h t j jl

k k
l j m h j l j

a X a a X Y a A a A u k

a X P a a X Y Q Q Q

a P a X a a P Y

δ = λ = ∈ ∈ ≠ ⇒

⇒ δ = λ = ∈

δ =δ = λ =

∪

Where: a l() is a predefined initial testing state of the component FSM, where the FSM
begins the testing mode. This state is one of the states of a component FSM. Notice that not
every state may be chosen as a l() . The necessary condition is to save the reachability

property for a l() , which means that a l() has to be reachable from other states of the

component FSM. la is a certain state of the component FSM, which state the FSM leaves

when moves to the required transition state aj ,
1

1 … T
j TP p & & p

α α
= , where 1 Tα α… , is

a binary representation of j -th vector of connecting input variables of uS .
The initial state of the component FSM is defined as follows:

() () () ()()1 1 1 1 1;u u u u

l
a A a a a A a a∈ ⇒ = ∉ ⇒ = .

Transition tables of component FSMs S1,S2 and S3 are presented in Tables 3, 4 and 5,
respectively. The "-" symbol in the last column corresponds to the empty vector 0Q .

The supervisor FSM (SFSM) C , P , Q , δ C , λ C , C1() is defined as follows.
1. The set C of states of the SFSM corresponds to the partitionπ . In the example:

{ }1 2 3 4 5 6 7 8 9; ;= a a a a a a a a aπ , C = C1,C2 ,C3{ }.
2. Input variables of the SFSM are additional output variables of the component
FSMs

P = Pu

u=1,…,U
∪ . In the example: { }1 2 3 4 5 6 7 8 9, , , , , , , ,P p p p p p p p p p= .

3. Output variables of the SFSM are additional input variables of the component FSMs.
In the example: Q = q1,q2 ,q3{ }.
4. Functions of the SFSM are defined as follows:
a)

()() ()() () ()() ()()0 0 0, & , & , , & , .u C C
i h j i h t i j u u u ua X a a X Y a a A C Q C C Q P Zδ = λ = ∈ ⇒ δ = λ = ∪

Where uZ is 1-hot code having 1 value in the u-th position.

265265

b)
()() ()() ()

()() ()()
1 1

0

, & , & , ,

, & , .

u k
h j h t i j

C C
u j k u k

a X a a X Y a A a A u k

C Q C C Q P Z

δ λ

δ λ

= = ∈ ∈ ≠ ⇒

⇒ = = ∪

Where
1

1 … T
j TQ q & & q

α α
= , where 1 Tα α… , is a binary representation of j -th vector

of output connecting variables of uS .
5. The initial state of the SFSM is defined as follows: ai ∈Au() C1

u =Cu . In our

example: .11 CC u =
The transition table of the SFSM for our example is shown in Table 6.

Table 3. Component FSM S1
am as X(am,as) P(am,as) Y (am,as) Q(am,as) h

a1 a1 x3x4x5 P0 − − 1

a5 x3x4 x5 P0 y1y2 − 2

a(5) x3 x4 P0 y1y3 Q7 3

a(5) x3 P0 y2 Q9 4

a2 1 P2 − − 5

a5 1 P5 − − 6

a2 a1 x5x6x7 P0 y2y3y4 − 7

a(5) x5x6 x7 P0 y3 Q7 8

a(5) x5 x6 P0 y2y3 Q6 9

a(5) x5 P0 y2 Q3 10

a2 1 P2 − − 11

a5 1 P5 − − 12

a5 a2 x1x2 P0 y3y4 − 13

a(5) x1x2 P0 y4y5 Q3 14

a(5) x1 P0 y3y5 Q4 15

a2 1 P2 − − 16

a5 1 P5 − − 17

Table 4. Component FSM S2.
am as X(am,as) P(am,an) Y(am,an) Q(am,an) h

a6 a(8) x4x5 P0 y1y3 Q2 1

a(8) x4 x5 P0 y2 Q5 2

a7 x4 P0 y1y3 − 3

a6 1 P6 − − 4

a7 1 P7 − − 5

a8 1 P8 − − 6

a7 a(8) x3x2 P0 y2 Q4 7

a(8) x3 x2 P0 y1y3 Q5 8

a6 x3 P0 y3y4 − 9

a6 1 P6 − − 10

a7 1 P7 − − 11

a8 1 P8 − − 12

a8 a(8) x3x4 P0 y2 Q5 13

a6 x3x4 P0 y1y3 − 14

a7 x3x5 P0 y1y3 − 15

a8 x3 x5 P0 − − 16

a6 1 P6 − − 17

a7 1 P7 − − 18

a8 1 P8 − − 19

5. Experimental evaluation of the FSM decomposition
This section describes a fault injection simulation tool developed for experimental

evaluation of the proposed decomposition approach. The section further provides
experimental results and also comprises analysis of the results.

The fault injection is a known technique of digital systems validation that is defined in the
following way [10]:
Fault injection is the validation technique of the Dependability of Fault Tolerant Systems
which consists in the accomplishment of controlled experiments where the observation of the
system's behavior in presence of faults is induced explicitly by the writing introduction
(injection) of faults in the system.

We use a simulated fault injection technique, i.e., the technique where the system under
test is simulated in another computer system [11, 12, and 13]. The faults are manifested by
alerting some logical values during the simulation.

266266

Table 5. Component FSM S3
am as X(am ,as) P(am,as) Y(am,as) Q(am,as) h

a3 a(9) x5x6 P0 y2y3 Q6 1

a(9) x5 x6 P0 y3y4 Q7 2

a(9) x5 x6 P0 y2 Q8 3

a(9) x5x6 P0 y3y4 Q2 4

a9 1 P9 1 − 5

a3 1 P3 1 − 6

a4 1 P4 1 − 7

a4 a3 x6x7 P0 y2 − 8

a(9) x6 x7 P0 y2y3 Q5 9

a(9) x6x7 P0 y3 Q7 10

a(9) x6 x7 P0 y3y4 Q8 11

a9 1 P9 − − 12

a3 1 P3 − − 13

a4 1 P4 − − 14

a9 a3 x1x3 P0 y3 − 15

a4 x1x3 P0 y3y5 − 16

a(9) x1 P0 y3y4 Q5 17

a9 1 P9 − − 18

a3 1 P3 − − 19

a4 1 P4 − − 20

Table 6. Supervisor FSM (SFSM)

3003

2882

2772

2662

1551

12213

2002

3443

1551

12212

1001

3993

3443

3333

2772

26621

321

100
010
010
010
001
001
010
100
001
001
001
100
100
100
010
010

,,),(),(

ZPQC
ZPQC
ZPQC
ZPQC
ZPQC
ZPQCC
ZPQC
ZPQC
ZPQC
ZPQCC
ZPQC
ZPQC
ZPQC
ZPQC
ZPQC
ZPQCC
ZzzzCCPCCQCC smsmsm

5.1. Fault injection environment

A specific VHDL based fault injection environment was developed for evaluation of the
proposed decomposition technique and its efficiency from the point of view of the fault
latency reduction.

A three-input fault injection circuit (see Fig. 2) is proposed for injecting faults between any
two connected gates A, B of a combinational portion of the sequential circuit under test. The
fault injection circuit is able to control two signals

0K and
1K , and to assign a desired

logical value between the two gates A and B. The fault injection circuit and one point of its
embedding into a combinational circuit are shown in Figure 2.

Figure 2. Three-input circuit for simulation of the fault injection

In this figure: point T - is the embedding point.
0T and

CT correspond to points with the

original and faulty values correspondingly.
0K and

1K inputs allow simulating the s-a-0 and

s-a-1 faults. It is assumed that the default values of
0K and

1K are zeros and the initial circuit

is functioning properly. Assigning 0 or 1 to
0K or

1K initiates s-a-0 and s-a-1 faults on the
initial circuit poles. It simulates a fault from a specific predefined set.

267267

5.2. Fault injection experiments

The aim of our experiments was to study the response of the VHDL model of a sequential
circuit in presence of a permanent stack-at fault. The injection conditions we used were:

1. Number of faults: one fault at a time.
2. Fault type: The injected faults were transient and permanent s-a-1 and s-a-0 faults.
3. Injection place: Any inter-gate connection was provided with the fault injection circuit.

The place of fault injection was selected randomly; the selection was repeated 1000
times for each sequential circuit under test.

4. Sequential circuits under test: each comprises from 200 to 400 inter-gate connections
(all equipped with the fault injection circuits);

5. Fault duration: Three types of faults may be applied:
a. Transient fault with a duration generated randomly;
b. Transient fault with a fixed duration;
c. Permanent faults.

6. Analysis of results: From the sample data, the following parameters were obtained:
a. Latency of a fault both before and after the decomposition;
b. Percentage of the latency reduction

L B A(L / L) 100%Ω = ⋅ as a result of the
decomposition.

The developed tool provides random selection of a fault injection point. Detection of the
fault manifestation on the output of the sequential circuit is performed on the simulated
initially fault-free sequential circuit, upon injecting fault via the fault injection circuit. Outputs
of the fault injection circuit and of the sequential circuit are compared with one another.

The experiments were performed for the initial sequential circuit and for the decomposition
net of that circuit. The fault injection time is a controllable variable and may be changed. It
allows simulating different kinds of faults (permanent, transient, intermitted). Fault injection
points may be chosen both randomly and arbitrary.

Obviously, the latency reduction is achieved by the decomposition. However, the decomposition
requires an additional overhead in turn, which is the "price" of the latency reduction. To study the
trade-off between the latency and the overhead we insert the corresponding overhead data into Table
7, to summarize results of the experiments. The results were obtained for Altera Cyclone II
FPGA.

The first column of Table 7 contains the benchmark's title; the next three columns indicate
the hardware overhead (a number of logic elements (LE)) and the fault latency of an FSM
implementation of the corresponding benchmark before the decomposition. The next three
columns correspond to the same parameters after the proposed decomposition. The last three
columns of Table 7 indicate the percentage of the overhead increase and the latency reduction.
Table 7. Benchmark results of the decomposition

Before decomposition After decomposition After/Before (%)

LE Lat (s-a-1) Lat (s-a-0) LE Lat (s-a-1) Lat (s-a-0) Ov Lat (s-a-1) Lat (s-a-0)
bbtas 9 2.02 4.1 19 1 1.83 111 50 45
ex6 95 2.25 5.21 237 1.21 2.02 149 54 39

bbsse 37 2.11 3.98 86 1 1.44 132 47 36
beecount 27 2.33 4.75 51 1.07 1.77 89 46 37

dk512 18 1.89 3.97 32 1 1.41 78 53 36
tav 9 1.98 4.97 15 1 1.98 67 51 40

s510 72 1.88 4.05 151 1 1.81 110 53 45
pma 122 2.07 3.89 217 1 1.51 78 48 39
dk14 48 2.12 5.34 104 1.03 2.21 117 49 41
sse 42 2.34 4.4 93 1 1.6 121 43 36

Average 47.9 2.099 4.466 100.5 1.031 1.758 105 49 39

Benchmark

268268

The experiments show that the average latency reduction for the proposed method of
decomposition (in the case of three CFSMs) is of about 50% for permanent s-a-1 faults, and
of about 60% for permanent s-a-0 faults. At the same time, the overhead increase required for
such a reduction is of about 100%. The certain value of the latency reduction and the certain
value of the overhead increase will depend on the number of CFSMs in the decomposition
network and, most probably, will grow with the number of components.

6. Conclusions
We have proposed the idea to reduce fault latency in a sequential circuit described by an

FSM by decomposing the FSM into a number of interacting FSMs (a decomposition
network). While one of the CFSMs of the decomposition network is working all others are
testing themselves. We have described a method for decomposition of an arbitrary FSM into a
network comprising a number of CFSMs and a specific SFSM that organizes the proper
interaction between the CFSMs.

The two main research questions "how the decomposition reduces the latency?" and "what
is the price of the latency reduction?" were addressed. A specific VHDL based fault injection
tool has been developed for studying the above questions. Stack-at faults were injected
randomly in several points of the circuit.

Our experiments were conducted using a number of standard benchmarks and have
answered the research questions. For partitioning the initial FSM into three CFSMs, the
average fault latency reduction is of about 40-50%, which is slightly greater than the
corresponding increase of the hardware overhead required for performing the decomposition.

We have shown results of our study of the FSM decomposition just for the case of
permanent faults. As mentioned before, our tool allows injecting permanent/transient faults.

Based on the above, the following future research directions may be addressed:
• Study and development of a method of searching of a partition π on the set of FSM's

states optimizing the latency reduction.
• Study of the influence of the number of components in the decomposition on its

efficiency (latency reduction and required overhead).
• Study of behavior of the decomposed FSM upon a transient fault injection.
• Investigation of a recovering (self-healing) ability of the decomposed sequential circuits.

7. References
[1] Drineas, P., Makris, Y., "Non-intrusive design of concurrently self-testable FSMs", Proceedings of the 11th
Asian Test Symposium, 2002, 33- 38.
[2] S. Baranov. Logic Synthesis for Control Automata. Kluwer Academic Publisher. Dordrecht/Boston. 1994.
[3] Levin I. "Decompositional Design of Automata Based on PLA with Memory". Automatic Control and
Computer Sciences, Vol. 20, No. 2, 1986, 61-68.
[4] José C. Monteiro, Arlindo L. Oliveira, "Implicit FSM Decomposition Applied to Low-Power Design", IEEE
Transaction on Very Large Scale Integration (VLSI) System, Vol. 10, No. 5, October 2002, 560-565.
[5] Busaba F. Y. and Lala P. K. "On Interacting Finite State Machine Design with Self-Checking Capability".
Proceedings of SSST '93 24-th Southeastern Symposium on System Theory, 1993, 418-422.
[6] Karpovsky, M., Levin, I., Sinelnikov, V. "Decomposition Approach to Designing FPGA-Based Self-Checking
Control Units", 6th IEEE International On-Line Testing Workshop, 2000.
[7] Goot, R., Levin, I., Ostanin, S., "Fault Latencies of Concurrent Checking FSMs", Euromicro Symposium on
Digital System Design (DSD'02), 2002, p. 174.
[8] Almukhaizim, S. Drineas, P. Makris, Y. "On concurrent error detection with bounded latency in FSMs",
Proceedings of Design, Automation and Test in Europe Conference, 2004, Vol.1, 596- 601.
[9] Goot, R., Levin, I., Ostanin, S. (2003). "Statistical Analysis of Decomposition Automata", Automatic Control
and Computer Science. Vol. 37, No. 4, 6-13.
[10] Baraza, J. C., Gracia, J., Gil, D. and Gil P. J. "A prototype of a VHDL-based fault injection tool: description
and application", Journal of Systems Architecture, Vol. 47, Issue 10, 2002, 847-867.
[11] Choi, G. S., Iyer, R. K., Carreno, V. A. "Simulated fault injection: a methodology to evaluate fault tolerant
microprocessor architectures". IEEE Transactions on Reliability, Oct 1990, Volume: 39, (4) 486-491.
[12] Boue, J. Petillon, P. Crouzet, Y. "MEFISTO-L: a VHDL-based fault injection tool for the experimental
assessment of fault tolerance". 28th Annual International Symposium on Fault-Tolerant Computing, 1998, Digest
of Papers, 168-173.
[13] NA Kanawati, GA Kanawati, J Abraham. "Dependability evaluation using hybrid fault/error injection", IEEE
International Computer Performance and Dependability Symposium (IPDS'95), 1995, p. 0224.

269269

