On-line Self-Checking of Microprogram Control Units'

llya Levin* and Mark Karpovsky**

*Tel Aviv University
School of Education,
Ramat-Aviv 69978, |srael

Center for Technological Education

E-mail: ilial@post.tau.ac.il

Abstract

**Boston University

Department of Electrical,

Computer and System Engineering

College of Engineering, Boston, MA 02215
E-mail: MR@enga.bu.edu

The paper introduces a new approach for designing of self-checking Microprogram Control Units
(MCU). Using a Finite State Machine (FSM) as a form of MCU representation leads to its PLA-

implementation having a system of product terms which are orthogonal and complete. An additional

important property of MCU isrelated to alimited total number of possible code-words. These features can
be used for construction of self-checking PLAs with relatively small overheads.

Keywords. Self-checking, on-line checking, microprogram control unit.

1 Output vectors of fault-free devices are
always code-words of a specific code, and error
detection is implemented by checking whether the
present output belongs to the code.

Major difficulties in design of self-checking
devices are related to complexity of decoding
(which is verification that a given output is a code-

word).

An objective of the paper is to derive a new
method of synthesis of self-checking MCUs, which
is highly technological and provides essential
reduction of overheads.

Comparison of the proposed method with
known two approaches, (i.e. the concurrent error
detection by series of checkers [3], and the
concurrent testable PLA using modified Berger
code [2, 4]) shows that the proposed approach
provides less expensive and more technological

! This research was supported in part by NSF under grant No. M1P9630096.

mailto:ilia1@post.tau.ac.il

checking circuitry. It becomes possible because of
the following properties of MCU: completeness,
orthogonality and the fact that a number of code-
words in an arbitrary control unit is significantly
smaller than atotal number of its product terms.
These properties enable to design the checker
by implemen
form of output functions of the MCU. Each
product term in this form corresponds to a certain
output code vector. Generaly, this approach was
considered unacceptable, because a total number of
code-words of an arbitrary device may be very
large. However, in the case of MCUSs this approach
is very perspective because usually, a number of
-words is significantly smaller then a
number of its product terms. Based on this
important assumption we propose an architecture
of aself-checking MCU.

A self-checking MCU consists of its own
circuit to be checked and a checker, which checks
its outputs to see if an error has occurred. The
checker has an ability to expose its own faults as
well.

Concurrent checking of PLA is only
possible when one product term (i.e. only one row
in the AND array of the PLA) is activated at atime
by any input vector. Obviously, not every logical
system, which is implemented within PLA,
satisfies such a condition. However, thereisalarge
class of systems, which do satisfy this condition. It
isthe class of MCUs[1].

2. The main idea of on-line self-checking isto
detect non-code outputs. To prevent possible fault
masking while taking into account unidirectional
nature of faults, we will code code-words (OR-
array code vectors) by the well-known modified
Berger code [2].

The main idea of our approach is to

implement a self-checking checker as a sum of

products of Boolean function z(y4q N) of code-

word varigblesyq |, which function z is equal

1 if the code-word is code and equal O, if the code-
word is not.

The method will be described with the
reference to Fig. 1 and Fig. 2, where Fig. 1 is a
direct checking scheme and Fig. 2 is a scheme

based on compressing of micro-instructions.

21 Fig.1 shows a suggested checking scheme
of a self-checking MCU implemented as a PLA.
The PLA to be checked consists of two arrays:
AND array (M1) and OR array (M2). The OR-
array M2 consists of two parts. The first part
comprises columns generating output functions

Y1 N and the second part comprises columns

generating the next state functions.
Input lines to this PLA scheme are

X1 L, output lines are yq . Next state
lines D1 R connect the OR-array to the
memory. Present state linesty R connect the

memory to the AND-array.

x1 XL
P .. ty tg

h;
M, & RS 1

memory

by

!

7175 Y1 ¥x

| oo

&)

0

& e
o
Vol
o

Figure 1. Architecture of Self-Checking
MCU

We suggest to introduce additional circuitry
which is composed of the following two portions.

Firstly, there is an additional PLA marked
C, which will be a checker for output functions of

the original PLA. The AND array of the checker C
is programmed to have non-repeating codes of the
OR array of the original PLA. These non-repeating
codes form the list of Berger coded code-words of
the MCU to be implemented. Thus, the number of
rows in AND array of the checker C isequal to the
number of possible code-words (T). OR array of
the checker consists of only two vertical output
lines zq and zy. Each of the lines is connected to
half of product lines of the AND array of the
checker.
Secondly,
(coding) columnsin the AND array M1 inthe PLA

there are several additional
to be checked. Correspondingly, there are
additional output lines, which represent redundant
bits for Berger code with dual-rail outputs.

The scheme works as follows. Suppose a
fault in the AND-array or in the first part of the
OR-array leads to generation of a non-code output
vector. This fact will be indicated by z1=0, z5=0

which means the presence of a fault. (For the case
when the output vector is equal to a code vector of
the AND array of the checker, causing output
z1=1, z5=0 or 21=0, z5=1).

Checking of the second (next state part) of
the OR-array will be discussed below.

Let us describe a synthesis procedure for
designing the above scheme.

The AND array (M1) has the same program
as the AND array of the initial MCU. OR-array
includes additional output columns corresponding
to redundant bits of Berger code for code-words.

Each row of the OR array is appended by vector

in vector of the corresponding output row.

repeating rows of the OR array of the PLA to be

two columns zq and z5 for indication of a presence

of afault.

The designed checker C is a totally self-
checking checker. It is explained by the fact that
single errors occurring within the checker C do not
lead to its malfunctioning, namely:

s Cross

urn
both z1 and z2 to O;
e stack-at-1 and stack-at-O of input lines

and product terms will be detected in the same

manner;
e Cross
functioning;

e stack-at-product faults and stack-at
faults of output lines will be detected by z1=2z5.

22. The OR array of the PLA to be
checked is a sparse matrix, since the number of
outputs written in each row of the table of MCU is
much smaller than a number of possible subsets of
the set Y={y, ny of the MCU. For
minimization of the area of the OR array, we will
encode each micro-instruction by a binary code.

The scheme of a self-checking MCU with

micro-instructions compressing is shown in Fig. 2.
PLA1
X1

X
l---l¢..¢ |
hy
& 1 ..
. [memory|
K
h
Q
qq . .lqo¢ ¢
B D, Dg
1,
PLA2 & - 1
By L\jt%;
i Y1
PLA3 vy V¥ Yn
\ IE2AR
& -

Figure 2. Micro-instruction compressing
scheme for self-checking MCU

For the proposed scheme comprises:

1. TheOR array of the upper PLA (PLA1L)
implements encoding of micro-
instructions.

2. PLA2 performs decoding of the set of
micro-
the modified Berger code.

3. PLA3 is a checker for the OR-array of
PLA2.

The OR array of PLA2 produces two fault
detection signals z; and z, since AND array of the
PLAZ2 is a checker for PLA1. Fault signals z; and
Z, detect all faults of the scheme except for cross-
points and stack-at-product errors in OR-array of
PLA2. To detect these faults we will use PLA3
(Checker).

The presence of two couples (z;, z,) and (zs,
z,) of fault indicating signals renders the scheme
more reliable. Particularly, it can indicate not just
the fact, but also the location of faults. It also

enables to detect some multiple faults.

23. In the above-suggested schemes the
proposed checkers checks just output functions.
Therefore, these checker are unable to detect
faults, which occur in the next state portion of the
OR array.

We suggest a new approach to solve this
problem with minimum redundancy by using the
same approach for checking which was introduced
above, but without any additional checker. That
becomes possible owing to the fact that state
variables are transferred to the AND array of the
original PLA which includes all product terms
corresponding to output vectors of the next state
variables. If MCU states are encoded by any code
detecting unidirectional errors, a fault occurring in
the next state portion of the OR array will lead to a

non-code vector of the sate variables.

Consequently, this output non-code vector will not
activate any product term of the AND array of the
origina PLA, which provides for fault detection.
In other words, the AND array will play a part of a
checker for the next state part of the OR array of
the PLA.

We note, that an error may be detected a bit
later then it is necessary: i.e. at the next clock after
the fault appearance. But this disadvantage is
compensated by the minimal overhead. Actually,
the additional circuitry comprises few columns to

be introduced according to a specia sate

can be used for the state assignment.

3. Let us make a cost estimation for
implementing our design using the following
notations.

L number of input lines,
number of output lines,
number of product terms,
number of states of FSM,

- 0 O Z2

number of code-words.

W(R)
for the set of FSM states,

B(Q)
set of product terms.

The estimated cost So of the area of an original
PLA can be calculated as follows:

So =2LQ + 2(intlog,R)Q + NQ + (intlog,R)Q
=Q(2L + 3(intlog,R) + N).

The estimated cost S; of the first proposed self-
checking structure (Fig. 1) can be calculated as
follows:

S, = QL + 3W(R) + N + B(Q)) + 2T(N +
B(Q) +1).

Cost S, of the second proposed self-checking
scheme (Fig. 2) can be estimated as follows:

Sv = 2QL + Q*(W(T) + W(R))+ 2T*W(T) +
T(N + B(T)) + 2T(N+B(T))

The percentage of area overheads for each of the
proposed schemes is computed as shown below:
O=(S-S)/Ss;
Q=(5-S)/Ss.
Overhead values, calculated for 47 different
FSM benchmarks in accordance with the above

two equations, are presented in Table 1.

Name LIN|R|] Q T So S1 01 S2 2

acdl 16 | 271221 214] 23 | 151941 20518 0.35] 12282 | -0.19

amtz 23 | 521 85] 261] 103} 30276 | 47705] 0.58] 43182] 0.426

araf 251 651441 193] 61 | 25090 | 38506] 0.53] 31048]0.237

ass1-3 5 1 25119] 60 | 19| 2820] 5040] 0.79] 3910]0.387

basecamp | 18 | 39 1 14] 75 | 31] 6300 | 10665] 0.69] 9304 0477

bech 18] 39]14f 75 | 31] 6300 | 10665 0.69] 9304 |0.477

berg 21 | 51 135] 173] 52] 18684 | 28245] 0.51] 22739 10.217

big 18] 28 117 185 17 | 14060] 18512 0.32] 11664 | -0.17
bs 191 131 17] 185] 17] 11655] 15008 0.29] 11014 | -0.05
bull 44 1 13]124] 281 | 24 | 31753 36784 0.16] 30630] -0.04
cat 11] 221 15) 45] 17| 2385 | 4248 1 0.78] 3626 | 0.52

COW 491 24 124] 261 | 25| 34974 41122 0.18] 32382] -0.07

cpu 141 291164 45] 23| 3105 | 5479 10.76] 5248 | 0.69

Cyr 20 | 751 42] 198] 59 | 25740 40168] 0.56] 31169]0.211

examlol | 16| 17 | 11] 50 | 14 | 2900 | 4416] 0.52] 3424]0.181

examp | 12] 13124 168] 24 | 8232 | 11568 0.41] 8352 |0.015

examplO | 10 | 13 J 19] 76 | 19] 3420 | 5206 | 0.52] 4142] 0211

exampl5 | 13 | 20 | 18] 129] 17 | 7482 | 10654 0.42] 7030 | -0.06

exampl6 | 13 | 18 | 18] 132] 17] 7392 | 105501 043] 7014 | -0.05

exampl7 8 | 17111 50 | 15| 2100] 3660 | 0.74] 2715]0.293

exampl8 | 10 | 12 J 15| 52] 15 2132 | 3548 1 0.66] 2811]0.318

examp2 | 43 | 18 | 18] 127] 18] 14732 17846] 0.21] 14536] -0.01

examp4 | 31 | 24 | 24| 137 25| 13426 173421 0.29] 13562 | 0.01

examp6 11] 20] 11f 56] 18] 2856 | 4764] 0.67] 3848]0.347

examp7 121201 17] 110] 18] 6160 | 9040] 0.47] 6160

gol 18] 64] 58] 228] 97 | 26220 | 45466 0.73] 41218] 0.572

knot2 719191 32114 1024 | 1868] 0.82] 1626]0.583

kobz 19] 53129 231] 57 | 23793] 35370 0.49] 26322 |0.106

lcu 151 241220 113] 23| 7458 | 10826 0.45] 7870 |0.055

lift 14] 30] 20§ 62 | 27 | 4340 | 7346] 0.69] 6654 |0.533

lift2 14] 16 1 13] 50 | 17] 2650 | 4264] 0.61] 3564]0.345

max 26| 41]126] 157] 46] 16485 24106 0.46] 19673]0.193

md 22| 53 159] 338] 84 | 37850 | 548060] 0.45] 42292 10.117

ort 61] 48] 56| 214] 94 | 39590 | 54236 0.37] 51956 | 0.312
oshr 191 72 1550 213] 69] 26625] 42639] 0.6 | 34698 |0.303
pr 24 | 17 1 18] 158] 17 | 12166 15758] 0.3 | 11462] -0.06
rafi 18] 70] 521 248] 78 | 30008 | 479721 0.6 | 38508 | 0.283

ratm 19] 571731 234] 60 | 26442] 38916 0.47] 29358 | 0.11

raz 23 1 72 140] 1481 70 | 19684 | 34296] 0.74] 32572]0.655

m 14] 15]115) 50 | 16| 2600 | 4108 | 0.58] 3540 |0.362

10iz 171 53 135] 251] 48] 25602 | 36537 0.43] 24753 | -0.03

sara 19] 44136 112] 45] 10864] 17716 0.63] 15745 |0.449

sasl 19] 54138 185] 65 197951 31480 0.59] 27130] 0.371

vl 10 15] 18] 18] 264] 18 | 158401 21420 0.35] 13452 | -0.15

vl 6 141 181 17] 169] 17 | 9802 | 13626 0.39] 8832 | -0.1

vl 20 14] 29] 18 367 | 18 | 253231 331531 0.31] 18042 | -0.29

Table 1. Results for FSM Benchmarks
Average overhead Q; of the first scheme (~40%)
can be estimated as a good result in light of the two

main advantages of the proposed structure, i.e. its
technological simplicity and total self-checking
ability. Furthermore, the proposed structure allows
checking of both the logical portion of MCU and
its next state portion, which feature is not provided
in any known scheme.

Average overhead Q, (=10%) of the second

structure looks even more promising.

Summary

We have proposed an approach in the area
of synthesis of self-checking Microprogram
Control Units (MCU). In spite of tremendous
strides made in the theory of self-checking design,
an efficient synthesis procedure for design of self-
checking MCUs has not been developed. We have
tried to fill this vacuum by proposing a structure of
self-checking MCU. Owing to use of severa
intrinsic features of MCU, the proposed structure
allows to reach good solutions from the point of

resulting overhead.

REFERENCES

1. S. Baranov. Logic Synthesisfor Control
Automata. Kluwer Academic Publisher.
Dordrecht/Boston/London. 1994.

2. H. Dong. Modified Berger Codes for
Detection of Errors. Digest of Papers 12th Annual
Symp. on Fault-Tolerant Concurrent Computing.,
pp. 317-320, June, 1982

3. J. Khakabaz, E. J. McCluskey.

Concurrent Error Detection and Testing for Large

vol. Ed-29, no. 4, April 1982, pp. 756-764.

4. G.P.Mak, JA. Abrahamand E. S.
Davidson. The Design of PLAswith concurrent
Error Detection. Digest 12th Int. Symp. Fault-
Tolerant Computing, 1982, pp. 303-310.

	Summary
	REFERENCES

