
1

On-line Self-Checking of Microprogram Control Units1

Ilya Levin* and Mark Karpovsky**

1 This research was supported in part by NSF under grant No. MIP9630096.

*Tel Aviv University

School of Education,

Ramat-Aviv 69978, Israel

Center for Technological Education

E-mail: ilia1@post.tau.ac.il

**Boston University

Department of Electrical,

Computer and System Engineering

College of Engineering, Boston, MA 02215

E-mail: MR@enga.bu.edu

Abstract

The paper introduces a new approach for designing of self-checking Microprogram Control Units

(MCU). Using a Finite State Machine (FSM) as a form of MCU representation leads to its PLA-

implementation having a system of product terms which are orthogonal and complete. An additional

important property of MCU is related to a limited total number of possible code-words. These features can

be used for construction of self-checking PLAs with relatively small overheads.

Keywords: Self-checking, on-line checking, microprogram control unit.

1. Output vectors of fault-free devices are

always code-words of a specific code, and error

detection is implemented by checking whether the

present output belongs to the code.

Major difficulties in design of self-checking

devices are related to complexity of decoding

(which is verification that a given output is a code-

word).

An objective of the paper is to derive a new

method of synthesis of self-checking MCUs, which

is highly technological and provides essential

reduction of overheads.

Comparison of the proposed method with

known two approaches, (i.e. the concurrent error

detection by series of checkers [3], and the

concurrent testable PLA using modified Berger

code [2, 4]) shows that the proposed approach

provides less expensive and more technological

mailto:ilia1@post.tau.ac.il

2

checking circuitry. It becomes possible because of

the following properties of MCU: completeness,

orthogonality and the fact that a number of code-

words in an arbitrary control unit is significantly

smaller than a total number of its product terms.

These properties enable to design the checker

by implemen

form of output functions of the MCU. Each

product term in this form corresponds to a certain

output code vector. Generally, this approach was

considered unacceptable, because a total number of

code-words of an arbitrary device may be very

large. However, in the case of MCUs this approach

is very perspective because usually, a number of

-words is significantly smaller then a

number of its product terms. Based on this

important assumption we propose an architecture

of a self-checking MCU.

A self-checking MCU consists of its own

circuit to be checked and a checker, which checks

its outputs to see if an error has occurred. The

checker has an ability to expose its own faults as

well.

Concurrent checking of PLA is only

possible when one product term (i.e. only one row

in the AND array of the PLA) is activated at a time

by any input vector. Obviously, not every logical

system, which is implemented within PLA,

satisfies such a condition. However, there is a large

class of systems, which do satisfy this condition. It

is the class of MCUs [1].

2. The main idea of on-line self-checking is to

detect non-code outputs. To prevent possible fault

masking while taking into account unidirectional

nature of faults, we will code code-words (OR-

array code vectors) by the well-known modified

Berger code [2].

The main idea of our approach is to

implement a self-checking checker as a sum of

products of Boolean function z(y1 N) of code-

word variables y1 N, which function z is equal

1 if the code-word is code and equal 0, if the code-

word is not.

The method will be described with the

reference to Fig. 1 and Fig. 2, where Fig. 1 is a

direct checking scheme and Fig. 2 is a scheme

based on compressing of micro-instructions.

2.1 Fig.1 shows a suggested checking scheme

of a self-checking MCU implemented as a PLA.

The PLA to be checked consists of two arrays:

AND array (M1) and OR array (M2). The OR-

array M2 consists of two parts. The first part

comprises columns generating output functions

y1 N and the second part comprises columns

generating the next state functions.

Input lines to this PLA scheme are

x1 L, output lines are y1 N. Next state

lines D1 R connect the OR-array to the

memory. Present state lines t1 R connect the

memory to the AND-array.

�����

����� ���

�����

	 �

	

. . .

0� 0�

[� [/

\ � \1

'� '5

K�

K-

&

] �

�

�����

�����

�
�

& 	

] �

�

PHPRU\

W � W 5

4� 4*
4� 4*\ � \1��� � ��� �

. . .

Figure 1. Architecture of Self-Checking

MCU

We suggest to introduce additional circuitry

which is composed of the following two portions.

Firstly, there is an additional PLA marked

C, which will be a checker for output functions of

3

the original PLA. The AND array of the checker C

is programmed to have non-repeating codes of the

OR array of the original PLA. These non-repeating

codes form the list of Berger coded code-words of

the MCU to be implemented. Thus, the number of

rows in AND array of the checker C is equal to the

number of possible code-words (T). OR array of

the checker consists of only two vertical output

lines z1 and z2. Each of the lines is connected to

half of product lines of the AND array of the

checker.

Secondly, there are several additional

(coding) columns in the AND array M1 in the PLA

to be checked. Correspondingly, there are

additional output lines, which represent redundant

bits for Berger code with dual-rail outputs.

The scheme works as follows. Suppose a

fault in the AND-array or in the first part of the

OR-array leads to generation of a non-code output

vector. This fact will be indicated by z1=0, z2=0

which means the presence of a fault. (For the case

when the output vector is equal to a code vector of

the AND array of the checker, causing output

z1=1, z2=0 or z1=0, z2=1).

Checking of the second (next state part) of

the OR-array will be discussed below.

Let us describe a synthesis procedure for

designing the above scheme.

The AND array (M1) has the same program

as the AND array of the initial MCU. OR-array

includes additional output columns corresponding

to redundant bits of Berger code for code-words.

Each row of the OR array is appended by vector

in vector of the corresponding output row.

-

repeating rows of the OR array of the PLA to be

two columns z1 and z2 for indication of a presence

of a fault.

The designed checker C is a totally self-

checking checker. It is explained by the fact that

single errors occurring within the checker C do not

lead to its malfunctioning, namely:

x cross-

urn

both z1 and z2 to 0;

x stack-at-1 and stack-at-0 of input lines

and product terms will be detected in the same

manner;

x cross-

functioning;

x stack-at-product faults and stack-at

faults of output lines will be detected by z1=z2.

2.2. The OR array of the PLA to be

checked is a sparse matrix, since the number of

outputs written in each row of the table of MCU is

much smaller than a number of possible subsets of

the set Y={y1 N} of the MCU. For

minimization of the area of the OR array, we will

encode each micro-instruction by a binary code.

The scheme of a self-checking MCU with

micro-instructions compressing is shown in Fig. 2.

3/$�
[/

	

[�

K�

	

�
�	

	 �

K4

�
�

�����

=�

T� T'
%�

%0

�����

�����
����� �����

PHPRU\

'� '5

W� W5

�
�����

���
�

\�
\1

=�

�
�

=�

=�

�����

PLA2

PLA3

4

Figure 2. Micro-instruction compressing

scheme for self-checking MCU

For the proposed scheme comprises:

1. The OR array of the upper PLA (PLA1)

implements encoding of micro-

instructions.

2. PLA2 performs decoding of the set of

micro-

the modified Berger code.

3. PLA3 is a checker for the OR-array of

PLA2.

The OR array of PLA2 produces two fault

detection signals z1 and z2 since AND array of the

PLA2 is a checker for PLA1. Fault signals z1 and

z2 detect all faults of the scheme except for cross-

points and stack-at-product errors in OR-array of

PLA2. To detect these faults we will use PLA3

(Checker).

The presence of two couples (z1, z2) and (z3,

z4) of fault indicating signals renders the scheme

more reliable. Particularly, it can indicate not just

the fact, but also the location of faults. It also

enables to detect some multiple faults.

2.3. In the above-suggested schemes the

proposed checkers checks just output functions.

Therefore, these checker are unable to detect

faults, which occur in the next state portion of the

OR array.

We suggest a new approach to solve this

problem with minimum redundancy by using the

same approach for checking which was introduced

above, but without any additional checker. That

becomes possible owing to the fact that state

variables are transferred to the AND array of the

original PLA which includes all product terms

corresponding to output vectors of the next state

variables. If MCU states are encoded by any code

detecting unidirectional errors, a fault occurring in

the next state portion of the OR array will lead to a

non-code vector of the state variables.

Consequently, this output non-code vector will not

activate any product term of the AND array of the

original PLA, which provides for fault detection.

In other words, the AND array will play a part of a

checker for the next state part of the OR array of

the PLA.

We note, that an error may be detected a bit

later then it is necessary: i.e. at the next clock after

the fault appearance. But this disadvantage is

compensated by the minimal overhead. Actually,

the additional circuitry comprises few columns to

be introduced according to a special state

can be used for the state assignment.

3. Let us make a cost estimation for

implementing our design using the following

notations.

L number of input lines,

N number of output lines,

Q number of product terms,

R number of states of FSM,

T number of code-words.

W(R)

for the set of FSM states,

B(Q)

set of product terms.

The estimated cost So of the area of an original

PLA can be calculated as follows:

So = 2LQ + 2(intlog2R)Q + NQ + (intlog2R)Q

= Q(2L + 3(intlog2R) + N).

The estimated cost S1 of the first proposed self-

checking structure (Fig. 1) can be calculated as

follows:

S1 = Q(2L + 3W(R) + N + B(Q)) + 2T(N +

B(Q) + 1).

Cost S2 of the second proposed self-checking

scheme (Fig. 2) can be estimated as follows:

SM = 2QL + Q*(W(T) + W(R))+ 2T*W(T) +

T(N + B(T)) + 2T(N+B(T))

5

The percentage of area overheads for each of the

proposed schemes is computed as shown below:

:1=(S1-So)/So;

:2=(S2-So)/So.

Overhead values, calculated for 47 different

FSM benchmarks in accordance with the above

two equations, are presented in Table 1.

Table 1. Results for FSM Benchmarks

Average overhead :1 of the first scheme (|40%)

can be estimated as a good result in light of the two

main advantages of the proposed structure, i.e. its

technological simplicity and total self-checking

ability. Furthermore, the proposed structure allows

checking of both the logical portion of MCU and

its next state portion, which feature is not provided

in any known scheme.

Average overhead :2 (|10%) of the second

structure looks even more promising.

Summary

We have proposed an approach in the area

of synthesis of self-checking Microprogram

Control Units (MCU). In spite of tremendous

strides made in the theory of self-checking design,

an efficient synthesis procedure for design of self-

checking MCUs has not been developed. We have

tried to fill this vacuum by proposing a structure of

self-checking MCU. Owing to use of several

intrinsic features of MCU, the proposed structure

allows to reach good solutions from the point of

resulting overhead.

REFERENCES

1. S. Baranov. Logic Synthesis for Control

Automata. Kluwer Academic Publisher.

Dordrecht/Boston/London. 1994.

2. H. Dong. Modified Berger Codes for

Detection of Errors. Digest of Papers 12th Annual

Symp. on Fault-Tolerant Concurrent Computing.,

pp. 317-320, June, 1982

3. J. Khakabaz, E. J. McCluskey.

Concurrent Error Detection and Testing for Large

vol. Ed-29, no. 4, April 1982, pp. 756-764.

4. G. P. Mak, J.A. Abraham and E. S.

Davidson. The Design of PLAs with concurrent

Error Detection. Digest 12th Int. Symp. Fault-

Tolerant Computing, 1982, pp. 303-310.

1DPH / 1 5 4 7 6R 6� :�:� 6� :�:�
DFGO �� �� �� ��� �� ����� ����� ���� ����� �����
DPW] �� �� �� ��� ��� ����� ����� ���� ����� �����
DUDI �� �� �� ��� �� ����� ����� ���� ����� �����
DVV��� � �� �� �� �� ���� ���� ���� ���� �����

EDVHFDPS �� �� �� �� �� ���� ����� ���� ���� �����
EHFK �� �� �� �� �� ���� ����� ���� ���� �����
EHUJ �� �� �� ��� �� ����� ����� ���� ����� �����
ELJ �� �� �� ��� �� ����� ����� ���� ����� �����
EV �� �� �� ��� �� ����� ����� ���� ����� �����
EXOO �� �� �� ��� �� ����� ����� ���� ����� �����
FDW �� �� �� �� �� ���� ���� ���� ���� ����
FRZ �� �� �� ��� �� ����� ����� ���� ����� �����
FSX �� �� �� �� �� ���� ���� ���� ���� ����
F\U �� �� �� ��� �� ����� ����� ���� ����� �����

H[DP��� �� �� �� �� �� ���� ���� ���� ���� �����
H[DPS� �� �� �� ��� �� ���� ����� ���� ���� �����
H[DPS�� �� �� �� �� �� ���� ���� ���� ���� �����
H[DPS�� �� �� �� ��� �� ���� ����� ���� ���� �����
H[DPS�� �� �� �� ��� �� ���� ����� ���� ���� �����
H[DPS�� � �� �� �� �� ���� ���� ���� ���� �����
H[DPS�� �� �� �� �� �� ���� ���� ���� ���� �����
H[DPS� �� �� �� ��� �� ����� ����� ���� ����� �����
H[DPS� �� �� �� ��� �� ����� ����� ���� ����� ����
H[DPS� �� �� �� �� �� ���� ���� ���� ���� �����
H[DPS� �� �� �� ��� �� ���� ���� ���� ���� �

JRO �� �� �� ��� �� ����� ����� ���� ����� �����
NQRW� � � � �� �� ���� ���� ���� ���� �����
NRE] �� �� �� ��� �� ����� ����� ���� ����� �����
OFX �� �� �� ��� �� ���� ����� ���� ���� �����
OLIW �� �� �� �� �� ���� ���� ���� ���� �����
OLIW� �� �� �� �� �� ���� ���� ���� ���� �����
PD[�� �� �� ��� �� ����� ����� ���� ����� �����
PG �� �� �� ��� �� ����� ����� ���� ����� �����
RUW �� �� �� ��� �� ����� ����� ���� ����� �����
RVKU �� �� �� ��� �� ����� ����� ��� ����� �����
SU �� �� �� ��� �� ����� ����� ��� ����� �����
UDIL �� �� �� ��� �� ����� ����� ��� ����� �����
UDWP �� �� �� ��� �� ����� ����� ���� ����� ����
UD] �� �� �� ��� �� ����� ����� ���� ����� �����
UP �� �� �� �� �� ���� ���� ���� ���� �����
URL] �� �� �� ��� �� ����� ����� ���� ����� �����
VDUD �� �� �� ��� �� ����� ����� ���� ����� �����
VDVL �� �� �� ��� �� ����� ����� ���� ����� �����
YOB�� �� �� �� ��� �� ����� ����� ���� ����� �����
Y�B� �� �� �� ��� �� ���� ����� ���� ���� ����
Y�B�� �� �� �� ��� �� ����� ����� ���� ����� �����

6

	Summary
	REFERENCES

