
Issues in Informing Science and Information Technology Volume 8, 2011

Reinforcing and Enhancing Understanding of
Students in Learning Computer Architecture

Cecile Yehezkel
Bar Ilan University,
Ramat Gan, Israel

yehezkc@mail.biu.ac.il

Revital Leibovitch
ORT In the Name of Baron

Rothschild, Binyamina, Israel
rleibovi@ort.org.il

Ilya Levin
School of Education, Tel-Aviv University, Tel-Aviv, Israel

Ilia1@post.tau.ac.il

Abstract
The main goal of the research presented in the paper is to study the Electrical Engineering (EE)
and Computer Engineering (CE) curriculum in order to improve its coverage, with the goal of
better preparing graduates to pursue a wider range of professional careers. The research deals
with the differences in studying subjects related to computer architecture by two groups of stu-
dents having different prior knowledge: EE students and CE students. This research establishes
the implications of hands-on studies and considers the gap in knowledge, and whether these
studies reduce the gaps. This research was conducted for the same “Microprocessors practicum”
course. The first group (CE students) acquired a large body of knowledge in computer
architecture, while the second group (EE students) acquired knowledge mainly in “Introduction to
programming” prior to the practicum course, and this fact was reflected in a pretest conducted for
the two groups. The official test that was taken at the end of the semester, which examined the
knowledge that was acquired during the course’s lectures, revealed no difference between the two
groups. However, a posttest, specifically arranged for the purpose of this study, strongly indicated
that the Computer Engineering students have an advantage over the Electrical Engineering stu-
dents. Regarding the objective that the lab should provide students with an understanding of
computing processes, it seems that lack of prior knowledge hinders it. The lab is meaningful
provided that the students are exposed to prior studies, in which case, the lab serves to reinforce
the subject matter. At the university in which the research took place, suitable changes in the cur-
riculum have already been made.
Keywords: Computer and Electrical engineering education, Computer Architecture, Microproc-

essor, Research and Development.
Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Introduction
Computer Engineering studies combine
two different fields of knowledge:
hardware and software. Computer Engi-
neering deals mainly with computer ar-
chitecture and begins with the hardware-
software hierarchy level of abstraction
from digital logic, whereas Electrical

mailto:cecile.yehezkel@weizmann.ac.il
mailto:rleibovi@ort.org.il
mailto:Ilia1@post.tau.ac.il
mailto:Publisher@InformingScience.org

Learning Computer Architecture

Engineering deals with hardware below this level of abstraction – from silicon layers, to transis-
tors, logic gate implementation, and digital logic. The border between the two is rarely dealt with.
In the integrative concept, one wishes to strengthen the synergism between these two worlds, and
to emphasize the importance of studying Computer Architecture to Programming studies, and
especially Assembly Language. Curriculum development requires that the developers engage in
analysis and decision-making concerning the required number of software and hardware courses
studied and concerning the dependency between the two. This is essential in order to define the
proper order in acquiring knowledge. As the ACM - Association for Computer Machinery (2004)
declared in ACM/IEEE Joint Task Force on Computing Curricula, “Students need to understand com-
puter architecture in order to structure a program so that it runs more efficiently on a real ma-
chine. In selecting a system to use, they should be able to understand the trade off among various
components, such as CPU clock speed vs. memory size”. The aim of the research presented here
was to review the curriculum in order to improve its coverage, with the goal of better preparing
graduates to pursue a wider range of professional careers, as recommended by McGettrick et al.
(2003).

The paper in organized as follows: the rest of this section presents the program of a newly
founded Engineering program and focuses on the characteristics of computer architecture topics
and teaching approaches. The next section describes the goal of the research and the experimental
framework and the third section details the methodology. The results are presented in the fourth
section. The final section summarizes the conclusions and examines the perspectives.

Computer Engineering Undergraduate Studies
In this section, the authors present the concept of a new Computer Engineering (CE) program that
was implemented in the newly founded School of Engineering at Bar-Ilan University in Israel.
The concept includes a description of the basic ideas concerning the structure of the CE Depart-
ment, its organization, the CE curriculum, issues concerning teaching and research, the infrastruc-
ture of the laboratories, ideas of assessment, and organization of the final project.

Establishing a new Engineering Department has always been considered as a challenge. In par-
ticular, regarding a Computer Engineering (CE) Department, this challenge is even greater for a
number of reasons: (a) the high prestige of computer-related professions in today's society; (b)
rapid development of new information technologies and the appearance of corresponding innova-
tive teaching strategies and new learning environments including laboratory infrastructures; (c)
the great influence of the modern high-tech industry on the content of the engineering curriculum.
At the same time, the challenge is also motivated by the need to distinguish the CE studies from
the Computer Science studies, which are widely known and have been intensively developed dur-
ing the last decades.

More specifically, two main dilemmas have to be resolved when developing a new Computer En-
gineering Curriculum.

1) The “Theory vs. Practice dilemma” that deals with a compromise between fundamental
studies, which are oriented toward basic academic subjects based on classical science and
engineering university studies, and industry oriented studies based on rapidly changing
computing and information innovations.

2) The “Programming vs. Designing dilemma" that deals with the compromises between
programming as the main computing skill and designing as the more subject-oriented
professional skill.

Most high-tech companies have R&D programs, manufacture hardware and software, and solve
industrial problems by means of technology. Their activities might indeed provide a useful cur-

158

 Yehezkel, Leibovitch, & Levin

riculum roadmap. However, to enable students to enjoy productive and meaningful careers, it is
necessary to radically change the content of the curriculum of the technology majors (Stephen &
Roberts, 2008).

Several curriculum changes and guidelines have been proposed that attempt to address the
changes in technology and to design optimal pedagogical approaches in response to these changes
(Director et al., 1995; McGettrick et al., 2003, 2008; Meier et al., 2007). In the early 21st century,
the Joint Task Force for Computing Curricula identified five main areas of computing degrees:
computer engineering, computer science, information systems, information technology, and soft-
ware engineering (Joint Task Force on Computer Engineering Curricula, 2004).

These areas represent the academic programs that the Joint Task Force believes represent the state
of the field and the educational outcomes that students should pursue. They have identified a suite
of “computing” and “non-computing” areas that students in each of the five areas should under-
stand. The list of knowledge and skills areas identified by the Joint Task Force that defined the
components of the five areas was derived from academic programs and curricula that have
evolved over a long period of time between theory and practice, especially since it has an enor-
mous impact on their students’ employment prospects. Regardless of how the academic majors
and degrees are termed, it is the content of each degree’s curriculum that will determine our stu-
dents’ ability to find gainful employment.

The CE program focuses less on alternative programming languages and more on architectures,
integration, and interoperability; less on algorithms and discrete structures and more on engineer-
ing practices. The CE curriculum was established, having in mind that the number of program-
ming jobs will decline, and will become more specialized and distributed across the globe.

The new CE curriculum is a 4-year program and comprises 178 credit points (200 hours). The
curriculum consists of three main parts: Fundamental studies (49 credit points), Computer Sci-
ence courses (26 credit points), Electrical Engineering courses (38 credit points), Computer Engi-
neering courses (57 credit points), and two elective courses. The curriculum includes 20 hours of
labs and a final project. The main features of the presented curriculum are as follows:

1) Fundamental studies, in comparison with the standard Electrical Engineering (EE) pro-
gram, comprising two additional courses in discrete mathematics.

2) Computer Science courses are distributed during the first three years of the program (one
CS course each semester).

3) Electrical Engineering classes are given to the CE students together with the EE students;
consequently, the requirements for the CE and EE students are the same.

4) All the CE courses comprise three main clusters:

a) Fundamental CE courses (Digital Design, Introduction to Computer Engineering,
Microprocessors and Assembly language, Computer Architecture, Simulation
and Simulation Languages),

b) Computer Design Courses (Advanced Logic Design, Design of Microcomputers,
Hardware Design Methods, Embedded Systems Design), and

c) Computer Communication courses (Introduction to Coding Theory, Codes for
Computer Systems, Introduction to Computer Communication, Topics of Com-
puter Communication, Computer Networking and Communication, and Speedy
Networks and Multimedia).

When constructing the curriculum, the authors had two fundamental concepts in mind:

 159

Learning Computer Architecture

1) Integration of theoretical and practical aspects of CE into the curriculum, while empha-
sizing the importance of the students having a strong mathematical background. The CE
theoretical courses are accompanied by proper labs, which are detailed in table 1.

2) Design orientation. The importance of design as the essence of engineering in general and
CE in particular was promoted. The students become familiar with the various facets of
designing a computer system. The experimental aspect is performed in the CE teaching
labs.

Table 1: CE courses accompanied by proper labs

Course Theoretical Lab

Microprocessors and Assembly language 2 2

Micro-Computer Lab 1 3

Micro-Computer Design 3 3

Simulation and Simulation Languages 3 1

Hardware Design of Digital Systems 2 2

Embedded Systems Design 2 2

Capstone graduate project 7

The Complexity of the Computer Architecture Topics
The computer architecture topics are connected to many contiguous domains: digital logic, mi-
croprocessors, embedded systems, operating systems, and compiler and programming languages.
Nisan and Schocken (2005) illustrated the related topics' hierarchy in the following way: “Of
course machine language is also an abstraction -- an agreed upon set of binary codes. In order to
make this abstract formalism concrete, it must be realized by some hardware architecture. And
this architecture, in turn, is implemented by a certain chip set -- registers, memory units, ALU,
and so on". This interweaving of the related topics reflects the complexity of the computer model
that has to be presented at different levels of abstraction. Each level hides the artifacts and mecha-
nisms of the previous lower level. It can be described by a top-down as well as a bottom-up ap-
proach (Yehezkel et al., 2007). To encompass the whole domain and deal with its growing com-
plexity, Knuth (2003), in his keynotes, recommended using a bottom-up education approach.

In this hierarchy, the assembly language is the lower programming language and each of its in-
structions is the translation of one unique machine instruction. One machine instruction is the mi-
crocode of hardware activation. Hyde, in his book "the Art of the Assembly Language", wrote
that although assembly language has "a pretty bad reputation", it is required to understand the
backstage operation of computer processors (Hyde, 2003). It is a means of making the interaction
of the hardware (CPU, memory, I/O) and software (the program) comprehensible (Yehezkel.
2003). The importance of learning computer architecture and the difficulties encountered by
teachers and students have been well documented (IEEE Micro, 2000; Cassel et al., 2000). Kumar
and Cassel (2002) found that many faculty members who teach this subject are teaching outside
their areas of specialization and are not entirely comfortable with the task. To improve the learn-
ing of computer architecture, instructors have searched for better pedagogical methods and tools
(Bem, 2003). Moreover, at the curriculum level (as shown in the previous section), great efforts
have to be invested to integrate the theoretical and practical aspects of computer architecture top-
ics. In the present article, the concern was to review the curriculum's courses related to micro-
computer architecture topics and to reinforce microcomputer architecture understanding.

160

 Yehezkel, Leibovitch, & Levin

Research Goals
Revising a curriculum requires implementing research in order to detect the inadequacies in the
coverage of the current program (deficiencies and redundancies). Such a revision has to be based
on research findings in order to perform the required curriculum modifications relating to prereq-
uisite courses and course links to deepen and strengthen the coverage in the required core topics.

As shown in the previous section, designing a curriculum is a very difficult task involving hard
decision making in an era of an exponentially increasing body of knowledge. This rapid evolution
of computer engineering requires, as recommended by Computing Curricula (2001), an ongoing
review of the corresponding curriculum.

Furthermore, CE curriculum designers struggle to preserve the department's identity as Computer
Engineering (CE); the program is often perceived as a blending of courses from the Electrical
Engineering (EE) and Computer Science (CS) fields (Dunne et al., 2007). This issue is even more
crucial when designing the curriculum of the computer engineering track during the process of
establishing a new school of engineering compounded by the two departments of EE and CE. The
courses that can be offered by the two different departments are limited by the sets of faculty,
budget restrictions and the low number of freshman applicants. These difficulties only add to the
complexity of an inter-department faculty that is responsible for curriculum planning. Moreover,
the expertise of the faculty lies on different targets in contiguous domains along the departmental
"borders". This situation causes meaningful differences in the requirements of prerequisites, ex-
pectations and evaluation metrics between departments (Dunne et al., 2007).

This research was conducted while considering the special circumstances needed to establish an
experimental framework that can shed light on the implications of differences in curriculum de-
sign. When the research took place, the school of engineering was "young" and the curriculum
was established under the constraints of the founding process (core courses, faculty, and infra-
structure). In the dynamic process of establishing two tracks in the school of engineering, some-
thing unusual happened: third year EE and CE students learned the same course, "Microcom-
puter" with a different background in the relevant domain. Being involved in the curriculum de-
sign, this situation provided us with the possibilities to investigate the implications of the differ-
ent background on students' course content assimilation, understanding, and programming skills
acquisition.

Being aware of the difficulties encountered by students when learning microprocessor topics, the
concern was to define the impact of differences between CE and EE students' prior knowledge on
their comprehension of microcomputer mechanisms and to investigate if hands-on studies would
reduce the knowledge and comprehension gap.

For this purpose the research methodology was to:

a) Determine the prior knowledge of the CE and EE groups of students.

b) Evaluate the level of knowledge that CE and EE groups of students acquire on mi-
crocomputer functions during the microcomputer laboratory.

c) Analyze the level of depth in the CE/EE students' understanding of microcomputer
mechanisms.

 161

Learning Computer Architecture

Methodology

The Target Population
The target population consists of two groups of students in their third year at the University. One
group studies Computer Engineering (CE), and the second group studies Electrical Engineering
(EE). In each group 30-35 students study the same “Microprocessors lab” course consisting of a
1-hour lecture and 3 hours of practice.

The two groups of students studied “Introduction to Computing”, a course that includes pro-
gramming in “High-Level Language”, writing algorithms, as well as acquaintance with variables
and working environments. The CE group also studied three theoretical courses dealing specifi-
cally with computer architecture and firmware. The CE group studied the computer model “Bot-
tom-up”, from the basics to the upper level. The EE group had a limited exposure to logic, as
shown in the following table:

Table 2: Prerequisite in EE and CE stream for "Microprocessor lab" course

 CE EE

Introduction to Computing
 The C programming Language Semester

1 Introduction to Computer
Engineering

A course from the
EE curriculum*

Year

1

Semester

2
Digital & logic Systems

Microcomputer & Assem-
bly language

A course from the
EE curriculum*

Advanced Logic Design A course from the
EE curriculum*

Year

2

Semester

2

Data structure A course from the
EE curriculum*

Year

3

Semester

1

Microprocessors lab

- ADUC841 processor -

* An EE course disconnected from CE or CS curriculum

162

 Yehezkel, Leibovitch, & Levin

Laboratory Assignments
The “Microprocessors lab” course consists of a one-hour lecture, given to the two groups by the
same lecturer (the lesson), followed by three hours of “hands-on” practice (the lab). As prepara-
tion for the next lesson and lab, the students have home assignments. The preparation for the lab
is individual and requires each student to submit his own report. At the lab they work in pairs.
During the lecture, on lab day, the lecturer goes over all subjects necessary for successfully com-
pleting the lab assignment. The students are given a second briefing at the beginning of each lab
as well. During the “Microprocessors lab” course, the two groups of students learn how to oper-
ate an 8051 family Micro-controller, called ADUC841. During lab work, the students wrote pro-
grams according to the lecturer’s requirements. The programs are intended to operate the control-
ler and the peripheral components on the ADUC841 card. All students have completed all as-
signments (the course requirements), as detailed. All pairs of students successfully completed all
lab assignments.

Each assignment deals with a different aspect of programming the controller and operating its
peripherals. The student needs to run a program that is given in order to understand what it does
and how (prior to the lab). In class the students are required to make the necessary changes in the
program, which will address the new demands. Each new program derives from the previous one
and is the basis for the following program. There is a manual that accompanies the laboratory,
which contains all the theoretical background and explanations needed to understand and cor-
rectly operate the controller and its peripherals. At the end of each chapter, the students are re-
quired to answer some questions that refer to the assignment and to submit a full and detailed re-
port.

The laboratory manual (Engelberg, 2008) contains a comprehensive set of scaffolding assign-
ments that enable the student to learn the microprocessor and its peripherals. The assignments
cover the main topics: Programming a delay to blink a LED, using an External Interrupt, timing
interrupts with a timer, acquaintance with the programming environment IDE (compilation, de-
bugging, and download), Stack, serial communication with HyperTerminal using UART, Parallel
Ports, counters, digital to analog and analog to digital conversion.

The first ten assignments deal with the controller's abilities and its internal parts. The other as-
signments deal with the peripherals as well, thus allowing for more programming options and
uses of the controller. The assignments are detailed and perfectly exemplify how the controller
works as well as its limitations. As previously mentioned at the end of each lab, thought-
provoking questions are given, with the aim of checking students' understanding and ability to
analyze the assignment. Some of these questions are dealt with directly and indirectly in the pre-
test and the posttest.

Description of the Pretest and Posttest
The pretest was conducted before the course began, with the aim of determining the prior knowl-
edge of each group. The posttest was conducted at the end of course with the intention of deter-
mining the level of comprehension. The pretest and the posttest are presented in the Appendix.
More details on the research can be found in (Leibovitch, 2007).

 163

Learning Computer Architecture

Presentation of the Results

Pretest Results
In the pretest, questions 1 to 4 dealt with personal information that shows that the two groups of
students (CE and EE) were homogeneous (each student within each group has studied the same
courses).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc

en
ta

ge
 o

f C
or

re
ct

an

sw
er

s

Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Questions

EE

CE

Figure 1. Distribution of correct answers in the pretest

The remaining eight pretest questions are shown in Figure 1 and were divided into 3 groups:

Group I (Questions 5, 11, 12): This group of questions refers to students’ Mental Models and the
way they grasp the architecture and hierarchy of the computer units. Of the 80% of CE students
that drew a correct (schematic) model, 97% (of correct answers) provided a correct literal expla-
nation. Despite the fact that 63% of the EE students drew a correct (schematic) model, only 30%
of them provided a correct literal explanation.
Group II (Questions 6, 7, 8): This group of questions determines whether the students know the
Memories’ functions and distinguishes between the different kinds. The use of memory is an in-
tegral part of programming in Assembly, addressing memory, data saving, retrieval, and usage.

In examining the graph in figure 1, we can see that CE students answered these questions more
accurately than EE students. This can be related to non-formal (incorrect) knowledge and an indi-
vidual interpretation.

Group III (Questions 9, 10): This group of questions shows that each group of EE and CE stu-
dents understand information represented in the computer memory: how data, numbers, and in-
structions are saved in memory; however, 20% of the EE students do not understand the essence
of memory, and cannot differentiate between number and instruction representation in computer
memory.

The mean score for CE group (M=85.8, SD=13.3, N= 29) was higher than the mean score for
group EE (M=55.9, SD= 26.2, N= 40). The pretest and posttest were voluntary but the final test
was compulsory causing slight differences in the number of students in target groups in pretest,
final test and posttest.

164

 Yehezkel, Leibovitch, & Levin

Posttest Results
The final test that CE and EE students took at the end of the course was essentially targeted to
evaluate the level of knowledge that CE/EE students acquire about microcomputer functions dur-
ing the microcomputer laboratory. There are no meaningful differences between the two groups
(M=79.3, SD=12.1, N= 26 for CE group; M=82.3, SD=10.3, N= 42 for EE group). The histo-
gram of grades is presented in Figure 2.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

Fr
eq

ue
nc

ie
s

0-50 51-60 61-70 71-80 81-90 91-100

Grades

CE

EE

Figure 2. Frequencies of final test scores

The posttest was targeted to evaluate CE/EE students' deep understanding of the microcomputer
mechanisms. The distribution of correct answers in the posttest is shown in figure 3. We can see
that for each questions in the posttest the percentage of correct answers among CE students is
higher than the percentage of correct answers among EE students. The mean score for CE group
(M=65.4, SD=22.9, N= 15) is higher than the mean score for group EE (M=48.6, SD= 26.6, N=
35).

Questions 5, 6, and 7 of the posttest refer to specific processes that were dealt with during the
course, and relate to formal knowledge learned in class. It can be seen that the “Hands-on labora-
tory” achieves the same impact in each group independent of prior knowledge except for question
7. In the case of question 7 the knowledge required to question 7 may had created conflicts with
the previous knowledge of CE students. Since CE students scored higher, this may imply that
having prior knowledge has an advantage.

 165

Learning Computer Architecture

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc

en
ta

ge
 o

f C
or

re
ct

an

sw
er

s

Q 1 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10A Q 10B

Questions

EE

CE

Figure 3. Distribution of correct answers in the posttest

Conclusions and Perspectives
This paper dealt with the research conducted with undergraduate students from two different en-
gineering programs: Electrical Engineering (EE) & Computer Engineering (CE). The aim of the
study was to analyze the coverage of computer architecture topics in the Computer Engineering
program in comparison with the Electrical Engineering program. The study was conducted using
the microcomputer practicum course studied by the two groups: the EE students and the CE stu-
dents.

The main conclusions of the research can be summarized as follows:

a) Although the students in both the EE and CE streams exhibited similar performances in
the final course examination, meaningful differences in the deepness of their understand-
ing of the course material were detected.

b) The narrow theoretical background that was provided to the EE students during a one-
hour lecture in the microprocessor course was sufficient to accomplish laboratory tasks
and to perform well in the final examination,

c) This narrow theoretical background failed to provide the EE students with an in-depth
understanding of the sophisticated microprocessor mechanisms related to computer archi-
tecture.

The practicum course was much more fruitful for students owning CE background. In this case it
reinforces the subject matter. It provides them with understanding the principles of computer ar-
chitecture and allows them to apply this body of knowledge to real-world problems and situations
(ACM/IEEE Join Task Force on computing curricula). These results led to a revision of the EE
curriculum, resulting in an additional course of Computer Architecture as a prerequisite to the
Microprocessor practicum course. The necessity of theoretical studies as a background of practi-
cal one is proved is our study. The authors plan to further analyze the effects of the change and to
pursue formative research on the curriculum toward achieving further improvements.

166

 Yehezkel, Leibovitch, & Levin

Acknowledgment
The authors would like to thank Prof. Engelberg who developed the course and the course materi-
als. His support enabled the authors to conduct the research.

References
ACM/IEEE Joint Task Force on Computing Curricula, Overview Report, June 2004.

Bem, E. Z., A case for teaching computer architecture. In Proceedings of the Fifth Australasian Conference
on Computing Education - Volume 20 (Adelaide, Australia). T. Greening and R. Lister, Eds. Confer-
ences in Research and Practice in Information Technology Series, vol. 140. Australian Computer Soci-
ety, Darlinghurst, 2003, Australia, pp. 1-7.

Cassel, L., Kumar, D., Bolding, K., Davies, J., Holliday, M., Impagliazzo, J., "Distributed expertise for
teaching computer organization and architecture" (ITiCSE 2000 Working Group Report). ACM SIG-
CSE Bulletin, Vol. 33, No. 2, 2000, pp. 111 – 126.

Computing Curricula 2001: Report of the ACM/IEEE-Computer Science Joint Curriculum Task Force.
Available: http://computer.org/educate/cc2001/

Director, S.W., Khosla. P.K., Rohrer, R.A., and Rutenbar, R.A. "Re-engineering the curriculum: Design
and analysis of a new undergraduate electrical and computer engineering Degree at Carnegie Mellon
University". Proceedings of the IEEE, 83, 9, 1995, pp. 1246-1269.

Dunne, B.E. Blauch, A.J. Dulimarta, H. Ferguson, R. Sterian, A. Wolffe, G., Work In Progress – CE
Curriculum Development Based on IEEE-CS/ACM Body of Knowledge Recommendations. Frontiers
in education conference - global engineering: knowledge without borders, opportunities without pass-
ports, 2007. FIE '07. 37th annual, 2007, pp. F3H-1-F3H-2.

Engelberg, S., A Microprocessor Laboratory Using the ADuC841, 2008. Available:
http://cc.jct.ac.il/~shlomoe/Public/manual.pdf

Hyde, R. The Art of Assembly Language Programming. No Starch Press, San Francisco, CA, Sept. 2003,
ch. 6: Memory Architecture. Available:
http://webster.cs.ucr.edu/AoA/Windows/HTML/MemoryArchitecture.html.

IEEE Micro, Special Issue on Computer Architecture Education, Vol. 20, No. 30, 2000.

Joint Task Force on Computer Engineering Curricula: IEEE Computer Society/Association for Computing
Machinery, "Computer Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs
in Computer Engineering", pp. 30-31. Available: http://www.eng.auburn.edu/ece/CCCE/

Knuth, D. Bottom-up education, keynote in Proceedings of 8th annual conference on Innovation and tech-
nology in computer science education ITiCSE’03, Thessaloniki, Greece, ACM Press, 2003, pp. 2-2.
Available: http://iticse2003.uom.gr/Iticse_day3

Kumar, D. and Cassel, L., "A state of the course report: Computer organization and architecture". SIGCSE
Bulletin, Vol. 34, No.3, 2002, pp. 175 – 177.

Leibovitch, R., "Contribution of Computer Architecture and Microprogramming studies to understanding
Computer Processing and Process of Programs Executing ", Master Thesis, School of Education, Tel-
Aviv University, March 2007 (in Hebrew).

McGettrick, A., Theys, M. D., Soldan, D.L., and Srimani, P.K., “Computer Engineering Curriculum in the
New Millenium”, IEEE Transactions on Education, Vol. 46, No. 4, November 2003, pp. 456-462.

Meier, R., Barnicki, S.L., Barnekow, W., and Durant, E., "Work in progress — A balanced, freshman-first
computer engineering curriculum", Frontiers in education conference - global engineering: knowledge
without borders, opportunities without passports, 2007. FIE '07. 37th annual, October 2007, pp.F3H-
17-F3H-18.

 167

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(dunne%20%20b.%20e.%3cIN%3eau)&valnm=Dunne%2C+B.E.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20blauch%20%20a.%20j.%3cIN%3eau)&valnm=+Blauch%2C+A.J.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20dulimarta%20%20h.%3cIN%3eau)&valnm=+Dulimarta%2C+H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20ferguson%20%20r.%3cIN%3eau)&valnm=+Ferguson%2C+R.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20sterian%20%20a.%3cIN%3eau)&valnm=+Sterian%2C+A.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20wolffe%20%20g.%3cIN%3eau)&valnm=+Wolffe%2C+G.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4417794
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4417794
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4417794

Learning Computer Architecture

Nisan, N. and Schocken, S., The Elements of Computing Systems, Building A Modern Computer from the
First principles, MIT Press, 2005, Available: www.idc.ac.il/csd.

Stephen J. A. and Roberts, E., "Point/Counterpoint. Technology curriculum for the early 21st century",
Communications of the ACM, Vol. 51, Issue 7, July 2008, pp. 27-32.

Yehezkel, C., Ben-Ari, M. and Dreyfus, T. "The contribution of visualization to learning computer archi-
tecture", CSE on Special Issue on Teaching Hardware-software, Vol. 2, No. 17, 2007, pp. 117-127.

Yehezkel, C. (2003). "Making program execution comprehensible—one level above the machine lan-
guage". SIGCSE Bulletin, Vol. 35, No. 3, pp.124 – 128.

Appendix
Pretest

1. Field of Studies: Electronic Engineering / Computer Engineering.

2. Mark √ next to the courses you’ve taken:
� Introduction to Computing
� Introduction to Computer Engineering
� Logical and Digital Systems
� Assembly and Microprocessors
� Advance Logic Design
� Data Structure
� Architecture and Data Structure

3. Have you studied any Microprocessor-related course? YES / NO, where?

4. Do you have any experience in the field of Microprocessors? YES / NO, if the answer is
yes, please elaborate:

5. In the following section, the basic units of the computer are presented.
o Illustrate, using arrows, the connection between the units.
o Describe the function next to each arrow.

168

 Yehezkel, Leibovitch, & Levin

Carefully read the following questions and choose the correct answer (there is only one
correct answer for each question).

6. What is the computer's internal memory used for (not the CPU cache memory)?
a) To store data.
b) To store data and instructions.
c) As an interface between the processor and the user.
d) To perform the program's instructions.

7. After the compiling process has been completed and when running, the program is saved
in the:

a) Internal Memory.
b) Hard Disc.
c) Cache Memory
d) Central Processing Unit.

8. The most significant distinction between RAM and ROM is:
a) RAM memory is larger than ROM memory.
b) RAM memory is volatile and ROM memory is not.
c) ROM memory can be written and RAM memory cannot.
d) There is no significant distinction between the two; both are slower than the

Hard Disc.

9. In what form is a number saved in memory?
a) As Decimal numbers.
b) As Binary numbers.
c) As ASCII codes.
d) As Decimal, Binary, or Hexadecimal numbers, in whatever form the user has

typed.

10. In what form are the program instructions saved in memory, when running?
a) In Assembly language.
b) As ASCII codes.
c) In the language it was written.
d) As Binary codes.

11. Choose the correct sentence:
a) The length of machine codes is constant.
b) The length of a machine code depends on the instruction.
c) The Program Pointer points to the instruction being executed.
d) The Program Pointer increases by one at the time of execution.
e) The length of the operation codes is architecture dependent.

12. What are the steps in executing a program?
a) Executing one instruction after the other as they are written in the program.
b) Fetching an instruction from memory, decoding the instruction, and execut-

ing it, repeated for all program instructions.
c) Fetching an instruction, followed by the CPU translating the instruction to

machine code and executing it, repeated for program all instructions.
d) Uploading the program from the ROM to the RAM

 169

Learning Computer Architecture

13. Write the most efficient algorithm (literal) or a block diagram to do multiplication,
without the Multiply Instruction.
Note:

Posttest
Field of Studies: Electronic Engineering / Computer Engineering.

Carefully read the following questions and choose the correct answer (there is only one correct
answer to each question).

1. Follow the program code, which adds two numbers. Machine code is provided.

Comments Assembler Machine Code

 cseg at 0h

; Move 1 to A mov a, #1h 74 01 0000

; Define x as a variable x: db 74h 74 0002

; ADD the variable to A add a, #x 24 02 0003

a) The program cannot be compiled.
b) The program can be compiled and it does what is needed.
c) The program can be compiled but it does not do what is needed.

2. If you have chosen (a) in question 1, provide an explanation. (What is the compilation
error?)

3. If you have chosen (b) in question 1, what is the added result?

4. If you have chosen (c) in question 1, what does the program actually do?

5. After compiling the program file (for example, sample.asm in µVision3), and download-
ing the file sample.exe to the ADUC841 card, with aim of RUNNING it, pressing RUN
will cause:
a) The computer processor executes the program instructions saved in the com-

puter memory and activate the ADUC841 card.
b) The computer processor executes the program instructions saved in the card

memory and activate the ADUC841 card.
c) The card processor executes the program instructions saved in the computer

memory and activates the ADUC841 card.
d) The card processor executes the program instructions saved in the card mem-

ory and activates the ADUC841 card.

170

 Yehezkel, Leibovitch, & Levin

6. When an Interrupt occurs, the processor stops executing the main program and deals
with the appropriate interrupt program. How does the processor "know" how to return to
the correct address?
a) The program counter PC does not change during the interrupt jump, which is

why at RETI the processor is in the correct address.
b) The processor saves the address to be returned to in the stack and provides it

to the processor when needed (RETI).
c) As an Interrupt occurs, the address to return is pushed into the stack, and at

the end of an Interrupt it pops out to return to the correct address.
d) When the Interrupt occurs the return address is saved in the Interrupt Regis-

ter; at the end of an Interrupt it is copied to the program counter PC.

7. What process is accomplished as RESET is pressed?
a) The processor immediately stops and jumps to END the instruction.
b) The processor finishes the present program and begins a new one.
c) The registers are restarted and the processor jumps to 0000 address.
d) The registers are restarted and the processor jumps to the beginning of the

program.

8. Upon opening a HEX file (executing file), which was made by the µVision3 or ASM51
compiler, in the editor we will find:
a) Program instructions written in the ADUC841 Assembly language.
b) Gibberish (nonsense).
c) Combinations of 1 and 0, which are the machine codes.
d) Other: ____________________________________.

9. Follow the program code, and show the value of the PC (program counter) in each step
(one loop is enough). PC starts at 0000.

Comments ASM Machine
code

CSEG PC

MOV A ,#01h START: 74 01 0000 1

MOV R7, #08h 7F 08 0002 2 ; Move 8 to R7

; Move content of A to P1 MOV P1, A NEXT: F5 90 0004 3

; Call for A subroutine CALL NANA 12 10 00 0006 4

; Rotate left RL A 23 0009 5

; Decrease R7 and jump if no zero DJNZ R7, NEXT DF 04 00 000A 6

; Jump here JMP $ 80 0D 00 000D 7

; Move to R1 FFh MOV R1, #0FFH NANA: 79 FF 0010 8

; Move to R2 FFh MOV R2, #0FFH BABA: 7A FF 0012 9

; Decrease R2 and jump if no zero DJNZ R2, SHUV SHUV: DA 14 00 0014 10

; Decrease R1 and jump if no zero DJNZ R1, BABA D9 12 00 0017 11

; Return from sub routine RET 22 001A 12

 171

Learning Computer Architecture

10.
a) Given two program codes, doing the same function, what do these programs

do (in one sentence)? You can assume R0=2 & R1=100.
b) Which of the two programs is more efficient, why?

(Illustrate with calculations).

Program 1
STA: CJNE R0, #0, X ; compare R0 with zero, jump if not equal to x

JMP SOF ; jump
X: CJNE R1, # , X1 ; compare R1 with zero, jump if not equal to x

JMP SOF ; jump
X1: CLR A ; clear A
N: ADD A, R0 ; (A+R0) →A

DEC R1 ; (R1-1) →R1
CJNE R1, #0, N ; compare R1 with zero jump if not equal to x

SOF: NOP ; no operation.

Program 2
STA: CJNE R0, #0, X

JMP SOF
X: CJNE R1, #0, X1

JMP SOF
X1: CLR C ; 0 → C

MOV A, R0 ; R0 → A
SUBB A, R1 ; (A-R1 –CY) →A
JNB 0E7h, N1 ; jump if MSB in A is 0
MOV A, R0
XCH A, R1 ; A ↔ R1
MOV R0, A

N1: CLR A
N2: ADD A, R0

DEC R1
CJNE R1, #0, N2

SOF: NOP

172

 Yehezkel, Leibovitch, & Levin

 173

Biographies

Cecile Yehezkel holds a M.Sc. in Bio-Medical Engineering from Tel
Aviv University and received her Ph.D. degree in Science Teaching
from the Weizmann Institute of Science. She is currently the head of
instructional laboratories at the School of Engineering at Bar-Ilan Uni-
versity. She leads the Computer Science, Academia & Industry pro-
gram for talented high school students in the Davidson Institute of Sci-
ence Education in the Weizmann Institute of Science. She has devel-
oped a learning software environment to teach computer architecture.
Her research interests focus on simulation design and evaluation,
computer architecture and engineering education.

Revital Leibovitch received her M.A degree in Science Teaching from
the Tel Aviv University. She also holds a B.Ed.Tech from the Science
Teaching Academic College of ORT in Jerusalem. She is currently
teaching courses related to microcomputers and low level language and
electronics at the ORT Binyamina High School.

Ilya Levin received the M.S. degree in electrical engineering from the
Leningrad Transport Engineering Institute, Leningrad, Russia, in 1976,
and the Ph.D. degree in computer engineering from the Institute of
Electronics, Latvian Academy of Science, Latvia, in 1987.He is cur-
rently an Associate Professor with the School of Education, Tel Aviv
University, Tel Aviv, Israel, and is the Head of the Department of
Mathematics, Science and Technology Education. Prof. Levin is the
author more than 120 research papers both in Engineering and in
Technology Education. His current research interests include logic de-
sign, design automation and technology education.

	Reinforcing and Enhancing Understanding of Students in Learning Computer Architecture
	Abstract
	Introduction
	Computer Engineering Undergraduate Studies
	The Complexity of the Computer Architecture Topics

	Research Goals
	Methodology
	The Target Population
	* An EE course disconnected from CE or CS curriculum
	Laboratory Assignments
	Description of the Pretest and Posttest

	Presentation of the Results
	Pretest Results
	Posttest Results

	Conclusions and Perspectives
	Acknowledgment
	References
	AppendixPretest
	Carefully read the following questions and choose the correct answer (there is only one correct answer for each question).

	Posttest
	Program 1

