
Use of Gray Decoding for Implementation of
Symmetric Functions

Osnat Keren, Ilya Levin, and Radomir S. Stankovic

Abstract— This paper discusses reduction of the number of
product terms in representation of totally symmetric Boolean
functions by Sum of Products (SOP) and Fixed Polarity Reed-
Muller (FPRM) expansions. The suggested method reduces the
number of product terms, correspondingly, the implementation
cost of symmetric functions based on these expressions by exploit-
ing Gray decoding of input variables. Although this decoding
is a particular example of all possible linear transformation
of Boolean variables, it is efficient in the case of symmetric
functions since it provides a significant simplification of SOPs and
FPRMs. Mathematical analysis as well as experimental results
demonstrate the efficiency of the proposed method.

Index Terms— Symmetric function, Gray code, linear trans-
formation, autocorrelation.

I. INTRODUCTION

Linearization of switching functions based on linear trans-
formation of variables is a classical method of optimization in
circuit synthesis originating already in 1958 [22]. It has been
recently efficiently exploited by several authors and discussed
for different aspects due to its :

1) Effectiveness. When properly performed, the method
provides considerable savings in complexity of the rep-
resentation of functions with respect to different opti-
mization criteria.

2) Simplicity of the implementation. The overhead com-
prises EXOR circuits required to perform the selected
linear combination of variables. The overhead is usually
quite negligible compared to the overall complexity of
the implementation [12].

The linearization can be performed over different data
structures used to represent functions. For example, it has been
performed over Sum-of-Product (SOP) expressions [10], [13],
[15], [28], AND-EXOR expressions [5], word-level expres-
sions [27] as well as decision diagrams [7], [14], [18].

In spectral techniques, this method is studied as a mean
to reduce the number of non-zero coefficients in spectral
expressions for discrete functions [8], [12]. In [12], [20],
and [21] the extensions to multiple-valued logic functions are
discussed.

The complexity of determining an optimal non-singular
binary matrix that defines the optimal linear transformation of
variables is NP-complete. For this reason different strategies
have been suggested in exploiting this method.

In searching for exact optimum, some restrictions should to
be made on the number of variables in functions processed.
For example, it has been reported in [7] that the complete

This work was supported by BSF under grant 2002259

search over all possible linear transformations is feasible for
functions up to seven variables within reasonable space and
time resources.

Another approach is to restrict considerations to particular
classes of functions. For instance, in [10], [27] a method has
been used for specific circuits, such as n-bit adders and an
optimal linear transform has been found.

Alternatively, nearly optimal solutions can be provided by
deterministic algorithms if analysis of additional information
about the functions can be provided. In this direction, research
has been reported by analyzing besides the functions their
Walsh coefficients and autocorrelation coefficients, see, for
instance, [8], [12] and [14] and references therein.

In this paper, we discuss a compromising approach. We
show that when the class of functions is the totally symmetric
Boolean functions, then an efficient linear transformation of
variables can be determined analytically, it reduces to Gray
decoding of input variables.

A justification to consider symmetric functions can be found
in the following considerations. Symmetric Boolean functions
represent an important fraction of Boolean functions. There are
2n+1 binary-valued symmetric functions out of 22

n

functions.
There are efficient circuit-based methods and complete BDD-
based methods for identifying symmetries of completely and
incompletely specified functions [11], [17], [19], [23], [29],
[32].

In last several years, symmetric functions have been studied
from different aspects. Optimal Fixed Polarity Reed-Muller
(FPRM) expansions for totally symmetric functions are dis-
cussed in [4], [31] and references therein. A lower bound on
the number of gates in conjunctive (disjunctive) normal form
representation of symmetric Boolean functions is given in [30]
and a method for generating a minimal SOP cover is presented
in [3]. A multilevel synthesis of symmetric functions which ex-
ploits the disjoint decomposability and weight dependency of
the functions is presented in [16] and a mapping of symmetric
and partially symmetric functions to the CA-type FGPAs was
suggested in [2]. A new expansion of symmetric functions and
their application to non-disjoint functional decompositions for
LUT-type FPGAs is presented in [25]. In this paper we show
that the Gray decoding of the input variables almost always
reduces the complexity in terms of the above three measures:
the number of gates in two-level realization, the number of
FPRM terms and the number of FPGA LUTs.

The paper is organized as follows. Section II gives basic def-
initions of symmetric Boolean functions and Gray codes. Sec-
tion III presents the implementation of a symmetric function
as a superposition of a Gray decoder and a non-linear function.

25

978-1-4244-1710-0/07/$25.00 c© 2007 IEEE

ection IV presents an illustrative example discussing in detail
application of the proposed method. In Section V we discuss
features of the proposed method and prove that the solutions
produced can never increase complexity of representation of
SOPs compared to the given initial representations. Section
VI contains experimental results and Section VII concludes
the paper.

II. PRELIMINARIES

A. Totally symmetric functions
Let f(x) = f(xn−1, . . . x0) a Boolean function of n ≥ 2

inputs and a single output. The function f is symmetric in xi

and xj iff

f(xn−1 . . . xi . . . xj . . . x0) = f(xn−1 . . . xj . . . xi . . . x0).
(1)

The function f is totally symmetric iff it is symmetric in all
pairs of its variables.

A function f(x) = Si(x) is called an elementary symmetric
function with working parameter i iff

Si(x) =

{

1 ||x|| = i
0 otherwise

where ||x|| is the Hamming weight of x. There are n + 1
elementary symmetric functions satisfying

∑

x

Si(x)Sj(x) =

{ (n
i

)

i = j
0 otherwise

.

Any symmetric function can be represented as a linear com-
bination of elementary symmetric functions, i.e. f(x) =
⊕n

i=0aiSi(x) where ai ∈ {0, 1}. Hence, there are 2n+1

symmetric functions out of 22
n

functions.
Example 1: Consider an elementary 5-inputs symmetric

function f(x) = S3(x). The K-map of the function is given
in Table I. The minimal SOP representation of the function
consists of 10 minterms of 5 literals.

A Fixed Polarity Reed-Muller (FPRM) expansion is an
EXOR of product terms, where no two products consists of
the same variables and each variable appears in complemented
or un-complemented form, but not in both [24]. In matrix no-
tation [1], the FPRM expansion of a function f(xn−1, . . . x0)
with a given polarity vector h = (hn−1, . . . h1, h0), is defined
as

f(xn−1, . . . x0) =
(

⊗n−1
i=0 [1, xhn−1−i

n−1−i]
)

(

⊗n−1
i=0 Rhn−1−i(1)

)

F

where ⊗ is a Kronecker product,

xhi

i =

{

xi if hi = 0
x′

i otherwise

and

Rhi(1) =

(

1 0
1 1

)

if hi = 0

(

0 1
1 1

)

otherwise

and F is the truth vector. The number of product terms in the
FPRM depends on the polarity vector.

Example 2: The FPRM expansion of the 3-out-of-5 func-
tion in Example 1 with a positive polarity (h = 0) comprises
10 terms,

f = x4x3x2 ⊕ x4x3x1 ⊕ x4x2x1 ⊕ x3x2x1 ⊕ x4x3x0

⊕ x4x2x0 ⊕ x3x2x0 ⊕ x4x1x0 ⊕ x3x1x0 ⊕ x2x1x0.

The positive polarity produces the minimal number of terms,
all the other 31 polarity vectors produces FPRM expansions
of at least 16 product terms.

B. Gray code

The reflected binary code, also known as Gray code after
Frank Gray [6], is used for listing n-bit binary numbers so
that successive numbers differ in exactly one bit position. The
definition of the Gray encoding and decoding is the following:
Elements of a binary vector of length n, z = (zn−1, . . . z0)
and the vector x = (xn−1, . . . x0) derived by Gray encoding
are related as

xi =

{

zi i = n − 1
zi ⊕ zi+1 otherwise

and

zi =

{

xi i = n − 1
xi ⊕ zi+1 otherwise

.

This relation can be written using matrix notation as x = GE z
and z = GD x where GE = (τn−1, . . . , τ1, τ0) is a non-
singular matrix of the form

GE =

1 0 . . . 0 0
1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0
0 0 0 . . . 1 1

. (2)

and GD = G−1
E . The matrices GE and GD are called the

Gray encoding and the Gray decoding matrices, respectively.
The implementation of the Gray encoder (decoder) requires
n − 1 two-input EXOR gates.

Example 3: Let n = 4 and z = (1, 1, 0, 1) then

x3 = z3 = 1

x2 = z3 ⊕ z2 = 0

x1 = z2 ⊕ z1 = 1

x0 = z1 ⊕ z0 = 1

or

x = (τ3, τ2, τ1, τ0)z =

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

1
1
0
1

=

1
0
1
1

.

26 2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007)

Fig. 1. Implementation of a Boolean function with a Gray decoding of the
input variables

III. IMPLEMENTATION OF SYMMETRIC FUNCTIONS BY
GRAY DECODED INPUTS

In this paper we introduce an implementation of a sym-
metric function as a superposition of two functions: a Gray
decoder defined by the matrix GD, and the corresponding
function fGD

whereas f(x) = fGD
(GDx) (see Figure 1).

The main idea behind this approach is the following: A
Boolean function maps elements of the vector space {0, 1}n

to {0, 1}. The vector space {0, 1}n is spanned by n base
vectors, usually the binary vectors {δi}

n−1
i=0 corresponding to

the integer value 2i are used. The set of δi’s is called the initial
basis. This basis is used in definition of SOP expressions.

Any set of n linearly independent vectors forms a basis, and
in particular, the columns {τi}

n−1
i=0 of the matrix GE .

Since Ix = GE z, the vector x can be interpreted as the
coefficient vector that defines an element of {0, 1}n using
the initial basis, and z can be interpreted as the coefficient
vector representing an element with the set of τ ’s. Thus, the
matrices GE and GD define a linear transformation between
the coefficient vectors.

Example 4: In Example 3, the element (1, 0, 1, 1) ∈ {0, 1}4

can be represented as a linear combination of the initial base
vectors δ3 = (1, 0, 0, 0), δ2 = (0, 1, 0, 0), δ1 = (0, 0, 1, 0) and
δ0 = (0, 0, 0, 1), or as a linear combination of the columns of
GE . Namely,

(1, 0, 1, 1) = 1·δ3+0·δ2+1·δ1+1·δ0 = 1·τ3+1·τ2+0·τ1+1·τ0,

thus, x = (1011) and z = (1101).

In theoretical considerations, complexity of circuit realiza-
tion of a Boolean function is usually estimated without refer-
ring to a specific implementation technology. It is, therefore,
often expressed in the number of two-input gates (AND/OR)
that are required for the realization of the function considered.
Formally, this criterion can be written in terms of a cost
function [12], [26]

µ(f) = |{x|x, τ ∈ {0, 1}n, f(x) = f(x + τ), ||τ || = 1}|

where + stands for a bitwise EXOR of two binary vectors
and ||τ || is the Hamming weight of a binary vector τ.
The autocorrelation function of f, is defined as R(τ) =
∑

x∈{0,1}n f(x)f(x⊕ τ). For a given function f, the value of
µ can be related to the values of the autocorrelation function
of f, at points corresponding to the base vectors,

µ(f) =
n−1
∑

i=0

R(δi).

TABLE I
K-MAP OF A 3-out-of-5 FUNCTION

x4x3x2 000 001 011 010 110 111 101 100
x1x0

00 1
01 1 1 1
11 1 1 1
10 1 1 1

TABLE II
K-MAP OF GRAY CODED 3-out-of-5 FUNCTION

z4z3z2 000 001 011 010 110 111 101 100
z1z0

00
01 1 1 1 1 1 1
11 1 1 1 1
10

In the case of initial basis, these are points 2i, and linear
transformation of variables performs the shift of these values.

There is a variety of minimization procedures that construct
a linear transformation deterministically, see, for instance [14],
[15] and [28] and references therein. It should be noticed
that implementation of such procedures may be a space and
time demanding task, and therefore, it is useful to take into
considerations specific features of functions to be realized. In
particular, we point out that for totally symmetric Boolean
functions the linear transformation of variables derived from
the Gray code almost always reduce the implementation cost.
The same transformation often reduces the number of terms
in Fixed polarity Reed-Muller expressions.

IV. MOTIVATION EXAMPLE

Consider the 3-out-of-5 function in Example 1. Let GE and
the GD be the 5×5 Gray encoding and decoding matrices. The
columns of GE are binary vectors of length 5 corresponding
to the integer values 1, 3, 6, 12 and 24. Let z = GDx be the
Gray decoded inputs. Table II shows the K-map of fGD

. The
minimal SOP representation of fGD

consists of 5 products,

fGD
(z4, z3, z2, z1, z0) =

z3z
′
2z0 + z3z

′
1z0 + z4z

′
2z0 + z′4z2z

′
1z0 + z4z

′
3z1z0.

The FPRM expansion of fGD
with a polarity vector h =

(11000) is

fGD
(z4, z3, z2, z1, z0) = z0 ⊕ z2z1z0 ⊕ z′3z2z0 ⊕ z′4z

′
3z0.

The values of the autocorrelation function of the original
3-out-of-5 function are shown in Figure 2 (top figure). The
values of R(τ) at positions τ = 1, 2, 4, 8 and 16 corresponding
to the initial base vectors are all zero , thus, the minimal
SOP comprises 10 minterms. The autocorrelation values at
positions τ = 1, 3, 6, 12 corresponding to the new base vectors
(τ0, τ1, τ2 and τ3) are equal to 6.

Applying the Gray decoding on the inputs is equivalent to
permuting the autocorrelation values so that high autocorrela-
tion values are now placed at positions 2i. The autocorrelation
function of fGD

is shown at the bottom of Figure 2. The
sum of the autocorrelation values of fGD

at positions 2i ,i =

2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007) 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

2

4

6

8

10

τ

Rf
σ
(τ)

Rf(τ)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

2

4

6

8

10

Fig. 2. Autocorrelation function values of the original 3-out-of-5 symmetric
function f (top) and the values of the autocorrelation function corresponding
to fGD

with the Gray decoded inputs (bottom).

0, . . . , 4 is 4 · 6 + 0, therefore, the number of pairs in the first
merging step of the Quine-McClusky minimization algorithm
is now 12 which leads to a minimal SOP representation.

V. ANALYSIS

Let f(x) = f(xn−1, . . . x0)
∑n

i=0 aiSi(x), ai ∈ {0, 1}, a
totally symmetric Boolean function of n variables and a single
output. The autocorrelation function of Si(x) is [12]

RSi
(τ) =

∑

x∈{0,1}n

Si(x)Si(x ⊕ τ)

=

{

(n−||τ ||
i−||τ ||/2

)(||τ ||
||τ ||/2

)

||τ || is even
0 otherwise

where
(a

b

)

= 0 for b < 0.
The cross correlation between Si(x) and Sj(x) is

RSi,Sj
(τ) =

∑

x∈{0,1}n

Si(x)Sj(x ⊕ τ)

=

{ (n−||τ ||
i−w

)(||τ ||
w

)

i − j + ||τ || is even
0 otherwise

where w = (i − j + ||τ ||)/2.
The autocorrelation function of f is

Rf (τ) =
∑

x∈{0,1}n

f(x)f(x ⊕ τ)

=
n

∑

i=0

aiRSi
(τ) +

n
∑

i, j = 0

i != j

aiajRSi,Sj
(τ). (3)

Therefore, the autocorrelation values in positions correspond-
ing the the initial set of base vectors {δi}

n−1
i=0 is

Rf (δi) = 2
n−1
∑

k=1

akak+1RSk,Sk+1
(τ)

= 2
n−1
∑

k=1

akak+1

(

n − 1

k

)

. (4)

On the other hand, the autocorrelation values at positions
corresponding to the base vectors τi = δi + δi+1, i =

0, . . . n − 2, defined by the columns of the Gray encoding
matrix GE , are

Rf (τi) = 2
n

∑

k=0

ak

(

n − 2

k − 1

)

+ 2
n−2
∑

k=1

akak+2

(

n − 2

k

)

(5)

The following Theorem states that the realization cost of
fGD

with the Gray decoded inputs is less or equal to the
realization cost of f for any totally symmetric function.

Theorem 1: Let f(x) =
∑n

i=1 aiSi(x), ai ∈ {0, 1} a to-
tally symmetric function, and let fGD

the corresponding func-
tion with the Gray decoded inputs, i.e. f(x) = fGD

(GDx).
Then,

µf ≤ µfGD
.

Proof: The proof is based the fact that RfGD
(δi) =

Rf (G−1
D δi) = Rf (τi). Let ∆i = Rf (τi) − Rf (δi), clearly,

∆n−1 = 0 and for 0 ≤ i < n − 1, ∆i = 2
∑n

k=0 dk where

dk = ak

((

n − 2

k − 1

)

− ak+1

(

n − 1

k

)

+ ak+2

(

n − 2

k

))

. (6)

We now show that ∆i ≥ 0 for all i. From 6, if ak = 0 than
dk = 0, otherwise, there are four possible cases:

1) If ak+1 = ak+2 = 0 than dk > 0.
2) If ak+1 = ak+2 = 1 than dk = 0 since

(

a

b

)

=

(

a − 1

b

)

+

(

a − 1

b − 1

)

.

3) If ak+1 = 0 and ak+2 = 1 than dk > 0.
4) If ak+1 = 1 and ak+2 = 0 than we may consider the

sum dk + dk+1 and get
(

n − 2

k − 1

)

−

(

n − 1

k

)

+

(

n − 2

k

)

+ ak+2

(

n − 2

k

)

≥ 0

(7)
Therefore, RfGD

(δi) = Rf (τi) ≥ Rf (δi). From [12], the cost
function µf of a function f : {0, 1}n → {0, 1} equals to
µf = 2n − 2Rf (0) + 2

∑n−1

i=0 Rf (δi), and thus µfGD
≥ µf .

VI. EXPERIMENTAL RESULTS

In this section, we compare the implementation cost of the
original and Gray-coded functions in terms of:
a) The number of Look-Up-Tables (LUT s) required to imple-
ment the function by SPARTAN3 xcs200ft256 as computed by
LeonardoSpectrum.
b) The number of literals (L) in its minimal SOP representa-
tion as produced by ESPRESSO.
c) The number of nonzero terms in the optimal Fixed-Polarity
Reed-Muller (FPRM) expansion.

Tables III and IV show the number LUTs for several totally
symmetric functions of 8 and 12 input variables, the number
of literals in the minimal SOP expression and the number
of non-zero FPRM terms as computed with and without the
Gray decoding. The improvement in those parameters is given
in percentage. The symmetric functions f =

∑

i aiSi(x) are
specified by a set I, I = {i|ai)= 0}, of working parameters,
I is written in the left column of Tables III and IV.

28 2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007)

TABLE III
TOTALLY SYMMETRIC FUNCTIONS OF 8 INPUTS

I LUT LUT % L L %
orig Gray orig Gray

3 12 7 41.7 448 92 79.5
4 13 9 30.8 560 106 81.1

3, 4 18 13 27.8 490 185 62.2
3, 5 15 8 46.7 896 45 95.0

3, 4, 5 18 15 16.7 336 123 63.4
2, 3, 5, 7 19 10 47.4 904 74 91.8

0, 2, 3, 5, 8 18 11 38.9 856 109 87.3

I FPRM FPRM %
orig Gray

3 64 24 62.5
4 107 15 86.0

3, 4 96 31 67.7
3, 5 104 17 83.6

3, 4, 5 162 49 69.7
2, 3, 5, 7 36 40 -11.1

0, 2, 3, 5, 8 107 25 76.6

TABLE IV
TOTALLY SYMMETRIC FUNCTIONS OF 12 INPUTS

I LUT LUT % L L %
orig Gray orig Gray

3 65 26 60.0 2640 470 82.2
4 32 41 -28.1 5940 800 86.5

3, 4 143 71 50.3 5445 1225 77.5
3, 5 37 57 -54.1 12144 584 95.2

3, 4, 5 204 118 40.2 7920 1170 85.2
0, 2, 3, 5, 8 217 101 53.5 17876 1582 91.1

I FPRM FPRM %
orig Gray

3 232 200 13.8
4 794 166 79.1

3, 4 562 306 45.6
3, 5 1024 136 86.7

3, 4, 5 1354 356 73.7
0, 2, 3, 5, 8 738 328 55.6

Table V shows how the Gray decoding reduces the im-
plementation cost of several totally symmetric LGSynth93
benchmark functions. Given a polarity vector, the number of
non-zero FPRM terms of a k-output function is defined as the
size of the union of the non-zero terms in the FPRM expansion
of each one of the k single-output functions. For example, the
original benchmark function rd84 has four outputs, the number
of non-zero FPRM terms of each is 28, 8, 1 and 70 and the size
of the union of these terms is 107. The number of non-zero
terms of the corresponding Gray coded single-output functions
is 14, 4, 1 and 38 and the size of their union is 39.

TABLE V
BENCHMARK FUNCTIONS

in out LUT LUT L L
orig Gray orig Gray

rd53 5 3 6 4 140 35
rd73 7 3 24 8 756 141
rd84 8 4 51 13 1774 329
9sym 9 1 36 36 504 135

in out FPRM FPRM
orig Gray

rd53 5 3 20 12
rd73 7 3 63 24
rd84 8 4 107 39
9sym 9 1 173 33

VII. CONCLUSIONS

The problem of linearization of logic functions may be
considered as a determining a linear transform for variables
in a given function, which produces a representation of the
function appropriate for particular applications. However, it
is not always necessary to determine the best possible linear
transformation for a class of functions. For many practical ap-
plications it is sufficient to find a suitable transform producing
acceptable solutions.

In this paper we consider the class of symmetric functions
and point out a suitable linear transformation of variables
resulting in considerably reduced number of product terms in
AND-OR and Reed-Muller expressions.

We propose a method to represent a symmetric logic func-
tion as a superposition of a linear portion that realize the Gray
decoding of input vectors and a non-linear portion. Being
a particular case of the linear transformation, the described
Gray decoding transform enables to achieve very compact
implementations of the initial symmetric function.

We have shown that the use of the Gray transform improves
the complexity of the initial function implementation in terms
of a specific cost function. Experimental results show that for
majority of benchmarks the proposed method improves also
a LUT based implementation of the function. The suggested
approach can be extended to partially symmetric functions by
the Gray decoding of each symmetry class separately.

REFERENCES

[1] J.T. Astola and R.S. Stankovic, Fundamentals of Switching Theory and
Logic Design: A Hands on Approach, Springer-Verlag New York, 2006.

[2] M. Chrzanowska-Jeske and Z. Wang, ” Mapping of symmetric and
partially-symmetric functions to theCA-type FPGAs” proc. of the 38th
Midwest Symposium on Circuits and Systems, vol. 1, pp. 290-293, Aug
1995.

[3] D. L. Dietmeyer, ”Generating minimal covers of symmetric functions,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 12, No. 5, pp. 710-713, May 1993.

[4] R. Drechsler, B. Becker, ”Sympathy: fast exact minimization of fixed
polarity Reed-Muller expressions for symmetric functions,” Proc. of the
European Design and Test Conference, pp. 91 - 97, March 1995.

[5] R. Drechsler and B. Becker, ”EXOR transforms of inputs to design
efficient two-level AND-EXOR adders,” IEE Electronic Letters, vol. 36,
no. 3, pp. 201-202, Feb. 2000.

[6] F. Gray, ” Pulse code communication,” March 17, 1953 (filed Nov. 1947).
U.S. Patent 2,632,058.

[7] W. Günther, R. Drechsler, ”BDD minimization by linear transforms”,
Advanced Computer Systems, pp. 525-532, 1998.

[8] S.L. Hurst,D.M. Miller, J.C. Muzio, Spectral Techniques in Digital Logic,
Academic Press, Bristol, 1985.

[9] J. Jain, D. Moundanos, J. Bitner, J.A. Abraham, D.S. Fussell and D.E.
Ross, ”Efficient variable ordering and partial representation algorithm,”
Proc. of the 8th International Conference on VLSI Design, pp. 81-86,
Jan. 1995.

[10] J. Jakob, P.S. Sivakumar, V.D. Agarwal, ”Adder and comparator syn-
thesis with exclusive-OR transform of inputs”, Proc. 1st Int. Conf. VLSI
Design, pp. 514-515, 1997.

[11] S. Kannurao and B. J. Falkowski, ”Identification of complement sin-
gle variable symmetry in Boolean functions through Walsh transform,”
Proceedings of the International Symposium on Circuits and Systems
(ISCAS), 2002.

[12] M.G. Karpovsky, Finite Orthogonal Series in the Design of Digital
Devices, John Wiley, 1976.

[13] M.G. Karpovsky, E.S. Moskalev, ”Utilization of autocorrelation charac-
teristics for the realization of systems of logical functions,” Avtomatika
i Telemekhanika, No. 2, 1970, 83-90, English translation Automatic and
Remote Control, Vol. 31, pp. 342-350, 1970.

2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007) 29

[14] M.G. Karpovsky, R.S. Stankovic and J.T. Astola, ”Reduction of sizes
of decision diagrams by autocorrelation functions,” IEEE Trans. on
Computers, vol. 52, no. 5, pp. 592-606, May 2003.

[15] O. Keren, I. Levin and R.S. Stankovic, ”Linearization of Functions
Represented as a Set of Disjoint Cubes at the Autocorrelation Domain,”
Proc. of the 7th International Workshop on Boolean Problems, pp. 137-
144, Sept. 2006.

[16] B. G. Kim, D.L. Dietmeyer, ”Multilevel logic synthesis of symmetric
switching functions,” IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol.10, No. 4O, pp. 436-446, Apr. 1991.

[17] E.J., Jr. McCluskey, ”Detection of group invariance or total symmetry
of a Boolean function,” Bell Systems Tech. Journal, vol. 35, no. 6, pp.
1445-1453, 1956.

[18] Ch. Meinel, F. Somenzi, T. Tehobald, ”Linear sifting of decision
diagrams and its application in synthesis,” IEEE Trans. CAD, Vol. 19,
No. 5, 2000, 521-533.

[19] D. Moller, J. Mohnke, and M. Weber, ”Detection of symmetry of
Boolean functions represented by ROBDDs,” Proc. of the International
Conference on Computer-Aided Design (ICCAD), 1993, pp. 680684.

[20] C. Moraga, ”Introducing disjoint spectral translation in spectral multiple-
valued logic design”, IEE Electronics Letters, 1978, Vol. 14, No. 8, pp.
248-243, 1978.

[21] C. Moraga, ”On some applications of the Chrestenson functions in logic
design and data processing”, Mathematic and Computers in Simulation,
Vol. 27, pp. 431-439, 1985.

[22] E.I. Nechiporuk, ”On the synthesis of networks using linear transforma-
tions of variables”, Dokl. AN SSSR. Vol. 123, No. 4, pp. 610-612, Dec.
1958.

[23] S. Panda, F. Somenzi, and B. Plessier, ”Symmetry detection and dy-
namic variable ordering of decision diagrams,” Proc. of the International
Conference on Computer-Aided Design (ICCAD), 1994.

[24] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, Feb. 1999

[25] T. Sasao, ”A new expansion of symmetric functions and their application
to non-disjoint functional decompositions for LUT type FPGAs”, IEEE
Int. Workshop on Logic Synthesis, IWLS-2000, May 2000.

[26] C. E. Shannon, ”The Synthesis of Two-Terminal Switching Circuits,”
Bell System Technical Journal, Vol. 28, pp. 59-98, Jan. 1949.

[27] R.S. Stankovic,J.T. Astola, ”Some remarks on linear transform of
variables in adders,” Proc. 5th Int. Workshop on Applications of Reed-
Muller Expression in Circuit design, Starkville, Mississippi, USA, Aug.
10-11, pp. 294-302, 2001.

[28] D. Varma and E.A. Trachtenberg, ”Design automation tools for efficient
implementation of logic functions by decomposition,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 8,
no. 8, pp. 901-916, Aug. 1989.

[29] K.H. Wang and J.H. Chen, ”Symmetry Detection for Incompletely
Specified Functions,” Proc. of the 41st Conference on Design Automation
Conference, (DAC’04), pp. 434-437, 2004.

[30] G. Wolfovitz ”The complexity of depth-3 circuits computing symmetric
Boolean functions,” Information Processing Letters, vol. 100, No. 2, pp.
41 - 46, Oct. 2006.

[31] S.N. Yanushkevich, J.T. Butler, G.W. Dueck, V.P. Shmerko, ”Experi-
ments on FPRM expressions for partially symmetric logic functions”,
Proc.30th Int. Symp. on Multiple-Valued Logic, Portland, Oregon USA,
141-146, May 2000.

[32] J. S. Zhang, A. Mishchenko, R. Brayton, M. Chrzanowska-Jeske, ”Sym-
metry detection for large Boolean functions using circuit representation,
simulation, and satisfiability”, Proceedings of the 43rd annual conference
on Design automation , pp. 510 - 515, 2006.

30 2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007)

