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Abstract—The paper studies a new polynomial representa-
tion of Multi Output Functions (MOFs). The new representa-
tion, called GITE-polynomials, is based on a newly introduced
Generalized If-Then-Else (GITE) function. Being a compact
form of representation of MOFs, the GITE-polynomials allow
efficient manipulation with a set of functions. The paper
introduces algebra of GITE-polynomials. Properties of this
algebra are used for solving the MOF-decomposition problem.
The solution provides a compact representation of MOFs.

Keywords-Multi-output function, Binary Decision Diagram
(BDD), decomposition, If-Then-Else operator.

I. INTRODUCTION

Many problems in VLSI-CAD and other fields of com-
puter science can be formulated in terms of Boolean func-
tions. The central issue in providing computer-aided solu-
tions to such problems is to find a compact representation
for a set of Boolean functions, for which basic Boolean op-
erations and equivalence check can be efficiently performed.
Decision diagram based representation of a set of Boolean
functions can be useful in verification and synthesis [13],
[16], [6].

The requirements of compactness and manipulability usu-
ally are conflicting requirements. Currently, Binary Deci-
sion Diagrams (BDDs) serve the most popular compromise
between these conflicting requirements. In a large number
of practical cases, a conventional shared BDD and multi-
terminal BDD representation of a set of Boolean function
is exponential in the number of primary inputs. This fact
limits complexity of the problems, which can be solved by
using BDDs and, as a result, rises a problem of finding new
compact representations of a set of logic functions.

Logic decomposition provides an efficient tool for ob-
taining compact representations. Algorithms for disjunctive
and non disjunctive decomposition of Boolean function by
using BDDs were presented in [3], [23]. A method for de-
composition of a MOF into two functions with intermediate
outputs using BDD was presented in [20]. In [18], the MOF
representation using Galois field was studied. The authors
use decomposition of Ordered Binary Decision Diagrams
(OBDD) in their method. A unified logic optimization
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method, which handles both AND/OR and XOR function
based on various dominators is presented in [22].

A compact representation of Multi Output Functions
(MOFs) is in the focus of the present paper. Our approach
is based on a newly introduced Generalized If-Then-Else
(GITE) operator. A system of logic functions can be de-
scribed as a GITE-formula (GITE-polynomial). In this sense,
the conventional algebra of Boolean formula is a particular
case of the GITE-algebra.

A particular case of the GITE representation (called D-
polynomials) has been studied in [14], [15] where a multi-
output function has been defined in a form of disjoint cubes
having a specific structure. The GITE notation presented in
this paper supports a wide variety of multi-output represen-
tations.

The paper is organized as follows. Section II provides a
necessary background. The GITE operator and the algebra
of GITE-polynomials are introduced in Section III. The
decomposition algorithm is given in Section IV. Section
V includes experimental results. Conclusions are given in
Section VI

II. PRELIMINARIES

One of the popular forms for representation of a logic
function is a Binary Decision Diagram (BDD). A funda-
mental operator allowing operations between BDDs is Jf-
Then-Else (ITE) operator [9]. The operator has the following

form:

if f=1
if f=0"
where f is a Boolean function, g and h are BDDs corre-
sponding to a specific logic functions. The ITE operator
allows to implement any function of two variables [7], [9]
and consequently may be considered as universal basis on a
set of logic functions. In our paper, we use the 11" E operator
as an operator on the set of logic functions.

A set of logic functions can be considered as a single
function of n input binary variables and m binary output
variables [10], [17], [19]. The domain and range of such
a MOF are the n-dimensional and m-dimensional Boolean

e = {1

IEEE
computer
® psouety



cubes, respectively. We refer to a vertex of the Boolean cube
by its corresponding integer value.

The two main operations on MOF are the ITE and
the Apply [1]. The Apply may be used to accomplish
a large number of matrix operations. Its definition is:
Apply(f,g,0) = f o g, where f and g are MOFs, and
o is any binary operation on two operands, for example,
+, —, min, max, etc.

A number of representations of MOFs were intensively
studied. For example, a matrix representation (which is ac-
tually a Karnaugh-like form), and the Multi-Terminal Binary
Decision Diagram (MTBDD) representation [1], [12], [21],
[24]. This paper suggests an analytical representation of
MOFs.

III. GENERALIZED ITE OPERATOR

The first argument in the definition of the IT'E operator
can be interpreted as a Boolean function or as a certain
two-block partition on the Boolean cube. In the present
paper, we consider an arbitrary n-block partition instead
of the two-block partition of the ITE operator. Such kind
of generalization leads to a new Generalized ITE (GITE)
operator.

Definition 1: Let m be a partition of the n-dimensional
Boolean cube comprising w disjoint blocks B;, m =
{B;}*!. Let X = (zn_1,...70) be an input vector of
length n. Let H be a set of values. Denote by h(B;) € H
the value associated with the i’th block. Then, the GITE
operator is

o(X) = GITE(m h(Bo),... h(Buw1))
o 0 if X ¢ B

|

The GITE comprises a partition (input) portion and a
functional (output) portion. The GITE operation maps a
partition of the Boolean cube on the predefined set of output
values.

In this paper, we use a Sum-of-Products (SOP) based
analytical form for representing GITE formulas of MOFs.
We call this analytical representation a GITE-polynomial
representation.

Definition 2: Let 7 = {B;}";' be a partition where
{B;}*7! is a set of pairwise-disjoint Boolean functions
expressed in a SOP form and By = V,'B;. Denote by
Y; the output value of the MOF associated with the ’th
block. A GITE-polynomial is defined as follows,

DY ST BY; + ByYy = GITE(r,Y)
== GITE(Bl, ey Bw—la Bo;Yl, N ,Yw_l, Yo)
where Y[ is the Null output vector, that is, Yy o Y; = Y; for
allY;. m
Next we introduce two operators of the GITE-

polynomials, product (apply) and factorization.

The Apply operation corresponds to a product operation
between GITE-polynomials. This product operation between
two GITE-polynomials is defined as follows.

Denote by m; - m; the intersection (product) of partitions
m; and 7, and by m; + m; the sum of two partitions. Let
Y; oY; be a predefined operation between Y; and Y;.

Definition 3 (Product of GITE-polynomials): Let

mi m2
Dy =) B}Yi+ B}Y, and Dy = Y _ B?Y; + BjYj.

i=1 i=1

The product of D; and D5, denoted as D; o D5 is defined
by:

DyoDy =) (B} -B){YioY;} + B - B3Yo,

over each pair of products from D; and Ds, including the
implicit terms BLY, and B2Y,. m

Here B} - B? is a logic product (AND) of the corre-
sponding functions. In other words, when B} -BJZ evaluates
to 1, a specific predefined operation between Y; and Y is
performed.

According to the definition, the Apply operation corre-
sponds to the product of the partition portions of GITE-
polynomials. The GITE-polynomial operation that corre-
sponds to the sum of the partition portions is the factor-
ization on the set of GITE-polynomials.

Definition 4 (Factorization of GITE-polynomials): Let
D; and D; be two GITE-polynomials with partitions m;
and m;. Denote by D the product D = D; o D;. The
factorization of D is its representation in the following
form: D = GITE(m; + ©j;D1,...,D;) where [ is a
number of blocks in (m; + m;); Di,...,D; stand for
GITE-polynomials corresponding to remaining functions. H

Example 1: Consider two partitions on the Boolean cube,

™ = {B%aBévBé}:{xlaf1f2»flm2}a

T = {B127B§7B?2>} :{fl,x1f3,$1x3}7

and two GITE-polynomials defined by these partitions

Dl = GITE(7717Y1aY27}/3)
= 1Y1+Z122Ys + Z122Y53,
D2 = GITE(’/T27}/47Y57}/6)

= 1Yy +2123Y5 + 2123Y56.

The product of the GITE-polynomials corresponding to the
partition m3 = 7 - w9 is calculated as follows:

T3 = T, -T2 :{filfg,i’llig,:ﬂl:fg,wll’g},
Y = [Yao0VY,, Y30V, Yi0Ys Y0V,
DioDy, = GITE(ws;Y)

= T1Z2{Yo oYy} + T1zo{Y30Ya} +
21Z3{Y1 0 Y5} + z123{Y1 0 Y5}



The factorization corresponds to the sum of partitions 74 =
71 + 7o and is calculated as follows:

T + T2 = {xlvil?ﬁ

GITE(74; D234, Diss)

x1D234 + %1 D156,

T4
Dl [e] D2

where D56 = Yj o (.7?‘3}/5 + 733}/6) and Dsy3y = (.i‘QYQ +
$2Y3) o Y4.

Let us introduce a substitution of certain GITE-
polynomials into another GITE-polynomial as follows:
Let Dy, Dy, D3 be defined as,

Dy = GITE(m; Y11, Y12),
Dy = GITE(m2;Ya1,. .., Yam),
D3 GITE(TFg;Ygl,...,ng).

After substitution Y71 <« Doy, Y19 < D3 we have Dy
GITE(m; Da, D3) which is a hierarchical structure com-
prising a number of GITE-polynomials.

A particular case of GITE-polynomials plays an important
role in our study - the D-binomial.

Definition 5. GITE-binomial is a GITE-polynomial,
which comprises exactly one cube, D = B1Y; + ByYy. B

The following theorem states that any GITE-polynomial
can be represented as the product of all its GITE-binomials.

Theorem 1: An arbitrary GITE-polynomial
D =3, B;Y; + BoYy can be represented as a product of
GITE-binomials D; = (B;Y;+ BjY), thatis, D =[], D;,
where By =[], Bl

IV. DECOMPOSITION ALGORITHM

The goal of the proposed decomposition is to represent
an initial function as a hierarchical network of modular
components, each performing a part of the common func-
tionality. We introduce a method for transforming functions
into a structured hierarchical network of interconnected
components. The MOF is decomposed into components
while minimizing the total number of nodes in the MTBDD
representing the initial function.

There are two extreme cases of decomposition of GITE-
polynomials - the monolith and the binomial-representation.
Recall that, any product of GITE-polynomials [], D; can
be represented as a product of GITE-binomials (Theorem
1). We consider this binomial representation as one extreme
case. The opposite extreme case can be obtained by using
the conventional MTBDD representation of MOF. We refer
to this representation as monolith.

By applying the factorization (defined in Def. 4) on an
initial GITE-polynomial, it is possible to represent a MOF
as a monolith with terminals which are GITE-polynomials,
D = GITE(rwy, D1, ..., D;j). In this case, the partition 7y,
(mn, > m) is referred to as a header partition. Similarly,
it is possible to use GITE-polynomials as terminals in the
binomial representation.

Figure 1. A monolith representation

Figure 2.

Decomposed MTBDD

There are many ways to group GITE-binomials to form
a network of GITE-polynomials. Different grouping of the
binomials yields different representations of MOF. Each
GITE-polynomial has its own optimal structure, i.e. its own
optimal header. This fact forms the basis of our decompo-
sition approach. The decomposition goal is to represent the
initial GITE-polynomial in a compact form so to optimize
a certain cost function, e.g. the number of nodes in the

corresponding decision diagram.

Example 2: Figures 1 and 2 show a monolith representa-
tion and a compact decomposed representation of the same
MOF respectively. The decomposed MOF consists of two
parts as follows:

Dieyt = Tor1Z3Ys + Tor123Y6 +
zoF123Y12 + By Yo,
Dm‘ght Toxa Y1 + X2TaY3 + Toxa Y1 + Bgightym
D Diegi © Dright-

In this example, the monolith MTBDD has 17 non-terminal
nodes, while the decomposition allows to reduce the number
of non terminal nodes to 8.

Notice that the terminals in Fig. 1 correspond to a o
operation between pairs of terminals in Fig. 2, the o in
this example stands for a bitwise OR. It is important to
emphasize that the compactness of the decomposed MTBDD
results from a significant reduction of the total number of
distinct leaves (from 11 to 7). B



The proposed decomposition algorithm is based on group-
ing of the set of cubes representing the function to a set of
blocks. The algorithm follows the concept of conventional
algebraic decomposition methods. In these methods, a single
logic function is treated as a polynomial and is being
decomposed by a division operation. Namely, a function F'
is represented as FF = D - Q + R where D,(Q and R, are
the divisor, quotient and remainder, respectively [4]. In this
paper, the decomposition is performed simultaneously on
the set of functions that are represented as a single GITE-
polynomial. Our algebraic decomposition has the following
form:

D = GITE(my, D1,...Dj)oR.

In this equation GITE determines: a divisor 7, referred
to as a block header, a quotient (D1, ...D,) where each
D;, i =1,...,7, is referred to as a block fragment, and a
reminder R which consists of the remaining cubes that were
not included in the block. The partition 7, together with the
GITE-polynomials D; form a block consisting of a subset
of the initial set of cubes.

The flow of the decomposition algorithm is presented in
Fig. 3. The algorithm is based on the consecutive partitions
of blocks into a block header, set of block fragments and a
reminder. On each step, these three elements are assigned to
a stack. The algorithm starts from the given initial binomial
representation and finishes when the stack is empty, which
means that all cubes of the initial function are distributed
between the blocks of the resulting network. As happens in
all expansion based methods (e.g. in the Shannon expansion)
at a certain point in time the stack becomes empty and the
process ends.

The block header is selected in such a way as to provide
minimization of the resulting network. We propose to select
the header by taking into account the complexity of its
component GITE-polynomials. In what follows we briefly
describe how to form the block header by gathering a so
called set of prefixes.

Let B be a cube in a block. Each hypercube Bp containing
the cube B (Bp 2 B) is called a prefix. The set of all
prefixes associated with the cubes of the block defines the
block header.

The block header can be represented as a monolith whose
internal nodes are associated with the prefix variables. The
terminal nodes of the monolith correspond to the block frag-
ments representing a GITE-polynomial with the remaining
input variables. We call such fragments as tails.

Each iteration consists of choosing the prefixes for the
current block. The prefixes that form the block header
are chosen one by one. Each newly added prefix must be
orthogonal (disjoint) to all prefixes accumulated so far.

An iteration starts by preparing a list of candidate prefixes.
A candidate prefix can be either an initial cube of the
initial MOF or its hypercube. Then, the first (basic) prefix

| Stack <= D-polynomial |

| D-polynomial <= Stack |

'

1
Stack is empty ﬂ

0

| Decomposition |

'

| Stack <= tails |

'
L

Stack <= Remainder |

Figure 3. Block diagram of main decomposition procedure

is chosen. The basic prefix defines the set of input variables
that will determine the partition m;. It is chosen so as
to make the block header the most suitable for a BDD
implementation. For this, the basic prefix has to attract the
secondary prefixes “close” to it and repel those “far” from
it. There are three main concerns to consider here: the input
variables, the output functions and the length of the prefix. In
addition, it is imperative to measure the self-orthogonality of
the block elements. After choosing the prefix that carries the
maximal grade as the basic prefix, the algorithm constructs
the block header by adding secondary prefixes. The set of
criteria for ranking the candidate secondary prefixes are: a)
the number of additional inputs added to the block, b) the
number of additional outputs added to the block, and c) the
overhead in terms of the percentage of additional literals in
the block.

V. EXPERIMENTAL RESULTS

The efficiency of the suggested method was evaluated
by comparing the compactness of a monolith MTBDD,
which corresponds to the initial MOF with the compactness
of the proposed decomposed network. In the experiments,
the PLA-like representations of the standard combinatorial-
circuit benchmarks (LGSYNTH93) were used.

To analyze the experimental results, we define a block
density - a specific parameter of a block. This parameter
corresponds to a number of literals in the block’s cubes
normalized by the maximal possible number of literal in this
block. The success of the decomposition strongly depends on
the such defined density. Consequently, the effectiveness of
the decomposition can be predicted quite reliably by making
some preliminary study of the initial MOF representation.

The experimental results are shown in Tables I and II
Table I lists the benchmarks, for which the decomposition
network is simpler than the monolith MTBDD of the initial



Table 1
EXPERIMENTAL RESULTS - LOW DENSITY

Title X | D% Nmon Nnet ratio
ALU1 12 18 982 25 0.02
B12 15 29 155 145 0.93
DK48 15 31 3428 58 0.02
DK27 9 34 79 22 0.28
CONI1 7 37 16 15 0.94
ALU2 10 39 264 150 0.57
DUKE2 22 40 1435 326 0.23
ALU3 10 42 278 151 0.54
MISEX3C 14 43 10875 705 0.06
WIM 4 50 15 10 0.67
F51M 8 53 255 155 0.61
DK17 10 57 160 55 0.34
APLA 10 64 128 85 0.66
INC 7 79 39 35 0.90
Table 11
EXPERIMENTAL RESULTS - HIGH DENSITY
Title X | D% Nmon Nnet ratio
ADD6 12 52 504 731 1.45
RADD 8 57 90 143 1.59
CLIP 9 59 189 376 1.99
74 7 61 52 101 1.94
ROOT 8 65 72 134 1.86
SQR6 6 67 63 85 1.35
SQN 7 69 81 116 1.43
MLP4 8 73 240 345 1.44
SAO2 10 73 95 157 1.65
DIST 8 73 125 326 2.61
BW 5 80 25 58 2.32
RD53 5 90 15 53 3.53

MOF. Table II shows the opposite cases. The columns in the
tables are as follows: | X| is the number of inputs, D is the
benchmark’s density D, N,,on and N,.; are the number of
nodes in the monolith MTBDD and in the decomposition
network. The last column shows the ratio Nyet/Noon.

The results show that the density is a consistent indicator
of the success of the decomposition. The successful cases
are mostly in the low-density area (density up to 45%)
and the unsuccessful ones are mostly in the high-density
area (density at least 60%). The middle functions (density
within 40-60%) are divided more or less evenly between
the successes and the failures. Moreover, there are several
examples where the high-density functions are successfully
decomposed, and no examples where the method failed to
work on low-density functions.

The proposed decomposition, on the other hand, relies
upon extracting dense blocks from the given MOF, and
treating the sparse remainders and tails separately. Therefore,
a sparse MOF can be easily dealt with by splitting them
into a network of component MTBDDs. With dense MOFs,
choosing suitable blocks is difficult, and arbitrary choices
lead to ineffective resulting network.

VI. CONCLUSIONS

A new analytical approach for representation and manip-
ulation of MOFs was presented. The main results can be

summarized as follows.

o A GITE operator was introduced. The GITE operator
is a generalization of ITE operator on the Boolean
domain.

e The concept of GITE-polynomials as a compact ana-
lytical representation of GITE-formula was presented.

o The problem of compact representation of multi-output
functions was then formulated as a problem of de-
composition of GITE-polynomials. A solution to this
problem, based on algebra of GITE-polynomials and
its properties, was presented.

Experimental results obtained on a number of benchmarks
are promising. We believe that the present work will initiate
future research of the GITE based representation and its
possible applications in logic design. We plan to develop
the present concept into directions, theoretical and practical.
In the theoretical direction intend to develop fundamental
basics of GITE algebra and corresponding decompositions
based on this algebra. On the practical direction we intend
to apply the developed concept to solving problem of design
verification and design for testability of large systems.
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