

Transforming FSMs for Synthesis
by Fault Tolerant Nano-PLAs

Ilya Levin, Osnat Keren
Tel Aviv University, Israel; Bar Ilan University, Israel

ilia1@post.tau.ac.il, kereno@eng.biu.ac.il

Abstract

The paper deals with designing finite state machines (FSM) by Nano PLA structures. Due to the device-
missing domination in nano-structures, it is desired to minimize both the area and the number of PLA devices
required for the FSM implementation. We propose a solution of the minimization problem. Our solution is
based on: a) partition of the FSM for two interacting components; b) transformation of one or two of the
component FSMs into a dense form. We show that combining the above techniques provides a significant
area reduction in comparison with the straightforward FSM implementation.

1. Introduction
Due to the significant grow of fault occurrence in nanoelectronic circuits, and in particular in

nano-PLAs, intensive fault tolerant techniques are required. The well-known way to increase fault-
tolerance of a circuit is by introducing redundancy. The tautology is the most popular methods for
increasing the fault tolerance (FT) of Nano PLAs. The method is based on doubling rows and/or
columns of PLA plans and called tautology. These methods basically double empty crosspoints of
the PLA, which results in unreasonable overhead. PLA crosspoints may be with or without
devices. PLA including a small percent of devices is considered to have low density. Due to the
device missing domination in nano-PLAs, the PLA with a more number of devices (dense PLA)
seems less fault-tolerant. Thus, both the number of PLA devices and the PLA area overhead are
considered as optimization criterion in synthesis of logic circuits by nano-PLA.

The methods presented in [1][2] are based on tautology and allow obtaining rather efficient
implementation, in comparison with the known TMR approach. Methods described in [1], have
become the starting point of research works [3][4]. The first of these works suggests "hardening"
of such portions of PLA, which are most critical to the potential faults. For example, one of the
proposed algorithms comprises gradually adding "hardening" tautologies into PLA, up to reaching
a required degree of fault-tolerance, where the degree of fault-tolerance is estimated according to
analytical techniques taking into account probability of faults as a function of a specific logic
structure. The above approach, being a continuation of [1], allows obtaining PL!-implementations
with predetermined fault tolerance features and with the best overhead results, in comparison with
the overhead obtained using a conventional approach.

The second paper [4] develops an approach, which is also based on tautologies. It proposes a a
compression of the initial system combined with the tautology. The method is intended for
implementing of a specific class of logical systems, namely - of combinational portions of
sequential circuits. The method proposes a dense transformation (compression) of the initial
system of logic functions that leads to reducing the area required for the circuit implementation
with negligibly increasing the number of devices. The paper demonstrates that the proposed
compromise between the area and the number of devices can be utilized for selecting the desired
PLA implementation. For the majority of benchmarks, the method [4] leads to a significant
improvement in comparison with known schemes of pure tautology [1][2]. However, there are
cases where the dense structure doesn’t improve the straightforward implementation of the initial
FSM. The aim of the present paper is to provide an area reduction also for such problematic cases.

We propose to divide the initial FSM into a network of two interacting component FSMs. Our
approach is motivated by the following reasons.

1. After the partitioning, each of the component FSMs may have smaller number of input
variables than the initial FSM, which leads to the total PLA area reduction.

2. There are FSMs whose dense implementation [4] is inefficient. The proposed partitioning
can allow to apply the dense transformation to one or to both of the component FSMs and
to achieve the total area reduction in comparison with the initial FSM.

The paper is organized as follows. The second section presents a motivation example. The third
section describes the proposed partitioning approach. Evaluation of the proposed solution is
presented in the forth section. Conclusions are provided in Section 5.

2. Motivation example
A PLA-description of FSM is a matrix comprising both dense and sparse fragments (see, for

example, Table I). A sparse PLA may be compressed in order to obtain an equivalent dense
structure of smaller area. A dense PLA structure is proposed in [4]. This structure consists of three
portions: Input transformation PLA, Core PLA and the Output transformation PLA. In the dense
structure, two data compressions are applied: the compression of the input variables, which is a
transformation of the initial AND plane, and the compression of the output variables, which is a
transformation of the initial OR plane.

Benchmark results reported in [4] demonstrate that the effectiveness of the dense
transformation depends of the structure and density of the initial description. However, if the
initial FSM includes a specific state with transitions depending of a large number of input
variables, the corresponding dense structure may require a large area. Consequently, it means that
the FSM includes this “undesirable” state that, being removed from for FSM, would allow
reducing the area drastically. It leads to an idea for improvement of the method [4] by partitioning
of the initial FSM for two interacting component FSMs. After the partitioning, each of the
component FSMs can be transformed and implemented separately allowing utilizing specific
characteristics of each of the components. Moreover, the partitioning may bring additional area
reduction even without the dense transformation. Indeed, if the component FSMs are defined on
small subsets of input variables the partitioning may reduce the total PLA area. The partitioning of
FSMs is in the focus of our study.

Let us illustrate this idea by partitioning the FSM example shown in Table I.

Table I. Example of PLA based FSM

!
In this table, the first column corresponds to the present state of the FSM. Columns from 2 to 8

correspond to input variables. The 9-th column corresponds to the next state of the FSM. The 10-th
column indicates the output vector. In our paper, for simplicity, we ignore outputs of the FSM and
don’t indicate outputs in our FSM examples. Rows of the table are in one-to-one correspondence
with transitions of the FSM.

The straightforward implementation of the above FSM has an area 468 bits. The corresponding
dense structure for the example is shown in Table II.

Table II. Dense implementation of the FSM: Input transformation PLA (left); Core PLA (right)

The total area of the dense structure equals 628, i.e. the straightforward implementation is
preferable for this FSM.

The proposed in the paper allows to compensate the growing of the PLA area in such cases.
Observing Table I we can see that the FSM comprises two very different portions: the top portion

including transitions from states a1 and a2 and the bottom portion including transitions form

states a3 and a4 . The top portion is extremely suitable for the dense transformation since its
transitions depend of a small number of input variables and, consequently, can be effectively
compressed by using the Input transformation. In contrast, the bottom portion is a dense one, and it
cannot be improved by the Input transformation. Such class of FSMs is in the focus of our paper.

We study partitioning the initial FSM into two interacting components in such a way that
allows handling each of components separately. The partitioning allows to apply the dense
transformation just for a suitable component FSM and to implement the rest FSM
straightforwardly.

3. FSM partitioning
In this section, we define component FSMs of the proposed partitioning network formally. Let

an initial FSM S be defined as S A, X , Y , ! , " , a1() , where: A = a1 ,… , aM{ } - the set of

states of the FSM;
 X = x1 ,… , xL{ } - the set of input variables of the FSM; Y = y1 ,… , yN{ } -

the set of output variables of the FSM; ! : A " X # A - the transition function;

! : A " X # Y - the output function; a1 - the initial state of the FSM.

Beside the initial FSM S , a two-block partition ! = A1; A2{ } on the set of its states A is
defined.

The proposed structure consists of two interacting component FSMs S1 and S2 . The
interacting is arranged in such a way that the network functions equivalently to the initial FSM

before the partitioning. Define the first component FSMs S1 B1 , X1 ,Y1 , !1 , "1 , a1
1() formally. It is

clear that the component FSM S2 is defined in the same way.

We use FSM described by Table I to illustrate our approach. Let ! = a1 , a2 ; a3 ,a4{ } be

the partition on the set A .

Let us define each of elements of the component FSM B1 , X1 ,Y1 , !1 , "1 , a1
1() as follows:

1. A set of states of the FSM S1 : B1 = A1 ! b1 , where b1 is a single auxiliary state of S1
.

The component FSM S1
resides in state b1when FSM S2

resides in states from the set A2 . In

our example: B1 = a1 , a2 , b1{ } B2 = a3 , a4 , b2{ } .

2. A set of input variables: X1 = !X am() ! E21 , where: X am() is a set of input variables of

the initial FSM sampled at transitions from am ! A1 ; E21 is a set of auxiliary input variables

connecting an input of S1 with an output of component FSM S2 . In our example:

X1 = {x1 , x2 , x3 , x4 } ! e1 ! e2 ,
X2 = {x5 , x6 , x7 , x8 , x9 } ! e3 ! e4 .

3. A set of output variables: Y1 = !Y am() ! E12 , where Y am() – is a set of output

variables of the initial FSM, generated at transitions from am ! A1 ; E12 – is a set of auxiliary

output variables arriving from the output of S1 to the input of the S2 . In this paper, we deal just

with input transformation and don’t provide FSM outputs. In our example: E12 = e3 , e4{ } ;

E21 = e1 , e2{ }

4. The transition and the output functions of the component FSM S1 are defined as follows:
a) In the case of transition within the one and the same component FSM:

! am , Xh() = a j() & " a1 , Xh() = Yt() & am , a j # A1() $!1 am , Xh() = a j() & "1 a1 , Xh() = Yt() ;

b) In the case of transition between the two component FSMs:

! am , Xh() = a j() & " am , Xh() = Yt() & am # A1 , a j # A2() $

$!1 am , Xh() = b1() & "1 am , Xh() = Yt % E21
j() &

& ! 2 b2 , M E21
j()() = a j() & "2 b2 , M E21

j()() = Y0()
 where E21

j

- the set of auxiliary variables equal to 1 when a component FSM moves to the

state a j ; M E21
j() - a minterm corresponding to the this set. In our example:

E21 = e1 , e2{ }

M E21

1() = e1e2 ; M E21
2() = e1e2 ;

E12 = e3 , e4{ } ;

M E12

3() = e3e4 ; M E12
4() = e3e4 .

Component FSMs S1 and S2 constructed according to the above definitions are presented in
Tables III and IV respectively.

Table III. PLA of Component FSM S1

Table IV. PLA of Component FSM S2

The total area of the network comprising two component FSMs is equal to 180+270=450, which
is lower than PLA area required for the initial FSM.

Let us show that the dense transformation of the first FSM provides an additional improvement.
The corresponding Input transformation PLA and the Core PLA are presented in Table V.

Table V. Dense PLA implementation of the component FSM S1

For this example, the dense implementation of the FSM S1 leads to 20% total area reduction in
comparison with the straightforward implementation of the initial FSM without the partitioning.

4. Experimental Results
Benchmarks results provided in [4] indicate the area overhead required for the dense

transformation. We estimate the area overhead analytically by using the approximate expressions.
Obviously, there is no exact expression for the dense PLA area. We suggest to estimate the area

approximately, assuming that the number of products in the Input transformation PLA is equal to the
number of FSM states. In most cases this estimation is the upper bound of the number of products.
Based on the above, the Input transformation PLA area can be calculated as follows:

WI = L + 2R + P()R , where: L – the number of FSM inputs, R – the number of FSM states, P –
the number of output variables of the Input transformation PLA. The area of the AND plane of the

Core PLA equals to Wc = 2 P + R()H .
Now it is easy calculate the expected area overhead. The question is: how the proposed

estimation expressions reflect the real area overhead obtained by the algorithm [4]? To answer for
this question we compared the benchmarks results with the area values obtained by our formulas. It
is easy to check that our approximate formula gives area values that are 30%-60% more than real
area of dense PLA [4]. . We use the formula to evaluate results of the proposed method of FSM
partitioning.

To evaluate the method of FSM partitioning, we performed experiments with the same set of
FSM benchmarks that was used in [4]. The aim of the experiments was to compare the area required
for the dense PLA implementation with the area required for PLA implementation of the same FSM
after the partitioning.

Obviously, the important concern in the partitioning process is choosing the optimal partition. It
is clear that the success of the partitioning strongly depends of the chosen partition. In this paper, we
don’t provide an algorithm of choosing the optimal partition. We choose the desired partition
manually for each benchmark, taking into account a number of heuristics. Due to the limited space,
we don’t present these heuristics in the paper. The partitions were chosen in such a way that one of
the component FSMs would be desirable for the dense transformation while the second is not.

According to this strategy, one FSM was transformed and the other was implemented
straightforwardly.

The benchmark results are presented in Table VI. Columns of the table are (left to right):
benchmark names; areas required: Wsf - for the straightforward PLA implementation, Wd - for the

dense structure, Wp - partitioned structure; Wpd - partitioned structure with dense transformation of

one component;

kd = Wd /Wsf()i100% ;

kp = Wp /Wsf()i100%

and

kpd = Wpd /Wsf()i100% .

Table VI. Benchmark results

!
It is clear from the table that, for the majority of the benchmarks, the proposed partitioning allows

reduction of the required area in comparison with the straightforward implementation. Moreover, the
dense transformation of one of the component FSMs, leads to additional area reduction in most
cases. Recall that all the results were obtained by the approximate formula that gives about 50%
overhead, which means that real improvement, would be meaningfully larger.

5. Conclusions
We presented an approach for synthesis FSMs by Nano-electronic PLAs. The main concern in such

synthesis is the fault-tolerance that can be achieved by introducing significant hardware overhead.
The most promising approaches to synthesis NanoPLAs are based on the tautology, which is
doubling of PLA rows and columns. On this way, the bottleneck is a huge area overhead.
Additionally, due to the devices missing domination, the problem of increasing the number of
devices becomes especially important.

In our paper, we presented a solution of the above problems. A newly introduced approach allows
minimizing the area overhead by combining two manipulations with FSMs: partitioning and dense
transformation.

We introduced the FSM partitioning procedure formally and preformed the partitioning for a set of
FSM benchmarks. In each FSM, we carried out the dense transformation of one of the components.
Results show that both the partitioning and the dense transformation lead to area reduction in
majority of cases.

The main conclusions of the paper may be summarized as follows.
1. The FSM partitioning in majority of cases leads to reduction in the PLA area .
2. The separate transformation of component FSM leads to significant area reduction in

comparison with non-partitioned FSM.
3. The combination of the FSM partitioning and the dense transformation is a promising way for

synthesis of fault-tolerant FSMs by NanoPLAs.

References
[1] Wenjing Rao, Alex Orailoglu, Ramesh Karri, “Logic Level Fault Tolerance Approaches Targeting Nanoelectronics

PLAs”, Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE '07, 2007 pp. 1 – 5.
[2] Wenjing Rao, Alex Orailoglu, Ramesh Karri, “Fault Tolerant Approaches to Nanoelectronic Programmable Logic

Arrays”, 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, 2007. DSN '07, 216 –224.
[3] Ilia Polian, Wenjing Rao: Selective Hardening of NanoPLA Circuits. DFT 2008: 263-271.
[4] Baranov S., Levin I., Keren O., Karpovsky M. (2009) Designing Fault Tolerant FSM by Nano-PLA, 15th IEEE

International On-Line Testing Symposium (IOLTS 2009, Sesimbra-Lisbon, Portugal, 229-234.

