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Abstract- Despite differences between Computer Science (CS) 

education and Computer Engineering (CE) education, certain basic 
principles exist in both. We present a spreadsheet model of an 
elementary hardware Sorter, and show its efficiency in allowing 
students to gain deep understanding into the complicated inner 
workings of Checkers and in expressing some basic principles 
shared by both CS and CE. We describe the usage of Sorters in 
designing Checkers and describe a potential constructive teaching 
method for advanced hardware topics. 

I.  INTRODUCTION 

It is accepted that computers are studied in two different 
academic curriculums – Computer Science (CS) and 
Computer Engineering (CE). Though some integrated 
curriculums have been developed and are in use in a number 
of universities, there is a principle difference in the 
approaches to teaching CS and CE. 

The difference can be seen at all levels – in the 
curriculum, in the theoretical base, in the methodology of 
research, etc. Due to that, graduating students of CS and CE 
have different approaches to problem solving, different 
structure of scientific knowledge, and different practical 
capabilities and skills. Understanding these differences 
between CS and CE is very important for preparing and 
teaching specific courses within the two curriculums  

For example, the process of teaching hardware courses has 
some distinctive features in comparison with teaching 
software courses. It should be noted that these features 
couldn’t be formulated just as different mental approaches or 
difference in basic knowledge. The very approach to solving 
problems and performing tasks can be principally different.  

While the key term in teaching software is the 
"algorithm", the key term in teaching hardware is "structure" 
and interaction between elements in a structure. These 
different approaches and terms indicate computer specialists 
of two different types: a programmer and a hardware 
engineer.  

In this paper, we focus our attention not on the differences 
between approaches; on the contrary, we formulate 
principles we believe to be common to both approaches. It is 
our goal to show that these principles may become the base 
for building individual learning environments by students. 
One of such environments is the spreadsheet tool. The idea 
using the spreadsheet as learning environment in Computer 
Engineering was studied in [1, 2]. Later the approach was 
extended for teaching principles of on-line hardware 
checking [3]. 

Our the present work, we demonstrate a number of 
innovative spreadsheet based solutions for teaching complex 
hardware constructs belonging to advanced topics of 
Computer Engineering.  

We examine teaching principles of a checker for equal-
weighted codes - codes with an equal amount of 0's and 1's 
[4]. The properties of this type of topics are unique:  

1) complex structural connections are characteristic in 
two-dimensional schemes of hardware solutions, as well as 
parallel functioning of elements within the scheme;  

2) the traditional algorithmic approach for Computer 
Science is principally unsuitable when searching for a 
hardware solution. A more structural approach is necessary. 

The common principle that binds this topic to both CS and 
CE has to do with the nature of solutions to problems in this 
area. Teaching hardware solutions has an essential difficulty. 
As a rule, hardware solutions have an inductive character. 
Namely, some elementary scheme with a simple function is 
taken as a base, and further on, a more complex solution is 
developed on that base. 

If the way of connecting simple component schemes is 
understandable, the resulting scheme usually occurs to be 
understandable, as well. However, very often the resulting 
scheme is complex and comprises an original idea of the 
developer. In such situations, a student encounters a non-
trivial task when the study of a common scheme requires 
serious and usually informal analytical skills. 

Spreadsheets as Constructive learning environments 
New means for computer simulations that have recently 

appeared present powerful tools which support solving 
analytic problems. One important step in teaching hardware 
is using computer micro-worlds and utilizing the 
constructive approach for building learning environments. 
According to this novel method, study of a scheme proceeds 
dynamically. 

In this work, we show that learning the functioning rules 
of an elementary scheme, fulfilled by constructive 
experiments with a model of a fully integrated, complex 
scheme, form an excellent ground for studying complex 
hardware solutions.    

We consider the teaching of designing an m-out-of-n 
checker. The following two hardware schemes are proposed 
to students, one after another: 

1. Checker based on a sorting matrix,  
2. Smith's Checker 
We demonstrate a method of building and studying 
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Checkers using spreadsheet modeling. 
The paper is organized as follows. Section II is devoted to 

building a Checker on the basis of an elementary Sorter 
scheme. Section III describes the structure of a cellular 
Sorter and the method of modeling the Sorter. Section IV 
describes how a Smith’s Checker can be built on the basis of 
the cellular one, and how it can be modeled. Conclusions are 
given in the final Section. 

II. HARDWARE IMPLEMENTATION OF SORTING 

The initial task is formulated as follows: for a given binary 
vector B, a combinational scheme is synthesized, 
transforming the vector into a sorted vector S in which all 1's 
are positioned in its left portion. Such a scheme allows for 
determining a variety of vector characteristics. For instance, 
it can easily be seen whether an initial vector is equal-
weighted simply by checking the value of the central binary 
positions in the resulting sorted vector. 

A.  Basic Sorter 
There is an elegant hardware solution for the task 

formulated above. This solution is based on using an 
elementary 2x2 Sorter (2 inputs - 2 outputs) and comprises 
of logical OR and AND elements. As can be seen from 
Fig.1, the elementary Sorter transforms a binary pair in such 
a manner, that 1's are always shifted to the left. 

 
Fig. 1 elementary 2 bit Sorter 

B.  Sorting Matrix 
To sort a binary vector of arbitrary length n, the natural 

choice is to use a matrix of interconnected elementary 
Sorters. The most naive implementation is shown in Fig. 2 
below. Starting from the bottom layer, Sorters in each layer 
are shifted with respect to Sorters of the previous layer. In 
such a manner, connection between binary positions is 
achieved and the sorting is performed at the n-th layer. 

 
Fig. 2 8x8 Sorter made of interconnected 2x2 Sorters 

 

C.  Sorting Matrix in Spreadsheet 
A simulation of an 8x8 Sorter is possible using 

spreadsheets. The sorting matrix spreadsheet is built as 
follows: 

1. The first (bottom) layer comprises the initial vector B.  
2. Each Functional layer consists of elementary Sorters. 

Outputs of lower layers are connected to inputs of upper 
layers. 

TABLE I 
Excel Spreadsheet Sorter Simulation 

S 1 1 1 0 0 0 0 0 

8 1 1 1 0 0 0 0 0 

7 1 1 1 0 0 0 0 0 

6 1 1 1 0 0 0 0 0 

5 1 1 0 1 0 0 0 0 

4 1 0 1 0 1 0 0 0 

3 1 0 0 1 0 1 0 0 

2 1 0 0 0 1 0 1 0 

1 0 1 0 0 1 0 1 0 

B 0 1 0 0 1 0 1 0 

 

III.  CELLULAR CHECKER 

Based on the idea of an elementary Sorter, a scheme for a 
m-out-of-n cellular Checker (a Checker that only returns no-
error when there are m 1's in a vector of n bits) can be built. 
The cellular Checker is an assembly of elementary Sorters. 
Specifically, the basis for building a 4-out-of-8 cellular 
Checker is using a 4x4 Sorter (4 inputs - 4 outputs). The 4x4 
Sorter scheme comprises a number of elementary 2x2 
Sorters, interconnected, so that at the output the scheme 
generates the desired sorted binary vector. The complete 
scheme for a 4x4 Sorter is shown in Fig. 3. (The scheme is 
taken form [4]). 

Each binary position in the final sorted vector S 
corresponds to a logical function (For instance: M(4,1), 
M(4,2), M(4,3), M(4,4) in Fig. 3). 

 
Fig. 3 4x4 Sorter 

These logical functions are both symmetrical and 
monotonous. Let us denote these functions M(i,n). Careful 
observation of each binary position in the sorted vector 
raises the following formulation:  

46



©EDA Publishing/EWME2012  ISBN: 978-2-35500-019-5 

 
 

EWME, 9-11 May, 2012 - Grenoble, France EWME, 9-11 May, 2012 - Grenoble, France 
 

M(i,n) is equal to one 1, when its n-positional code 
comprises no less than i ones.  

The output vector consists of M(1,n),..,M(n,n). Analysis of 
the scheme by analysis of each binary position in the output 
vector is useful for an informal yet in depth understanding of 
the scheme operation. For example, it is easy to see that the 
binary position M(n,n) will be equal to 1 only when the 
whole input vector consists of ones, and that M(1,n)will be 
equal to 0 only given a 0 input vector.  

We will use the obtained functions at the next stage of 
building the 4-out-of-8 Checker. At the output of a 4-out-of-
8 Checker, there are two outputs, which take opposite binary 
values when a code combination is fed to the input, and 
equal binary values when a non-code combination is fed to 
the input.  

The main task of designing the Checker is implementing 
two functions Z1 and Z2, with behavior corresponding to the 
described outputs. These functions are implemented using 
4x4 Sorters marked MA, MB. For implementation of the 
Checker these functions are expressed as follows: 

 

 
 
Z1 and Z2 are implemented as combinations of the output 

for Sorters MA and MB. Indeed, all possible combinations for 
MA and MB corresponding to a 4-out-of-8 code are listed in 
the logical equations shown above. 

 
Fig. 4 m-out-of-n Checker 

Each binary position of the last layer corresponds to a 
monotonic symmetric function. A monotonic symmetrical 
function M(8,k) is equal to 0, when the number of ones in the 
code is less than k.  Each of the binary positions (k=1,2,..) of 
the last cascade corresponds to a monotonic function M(8,k). 
Due to that, the rightmost binary position is equal to 1 if the 
code is equal to 2n-1, and the last position on the left is equal 
to 0 when the code is equal to 0.  In general, it is easy to see 
that the Checker somehow shifts the 1's to the bottom. This 
is the principle of binary sorting.  

It should be noted that the described sorting matrix 
performs so-called structural sorting, while the classical 
programmed sorting operates according to the algorithm of 
bubble-sort. 

 

IV.  SMITH'S CHECKER 

The sorting matrix is only an intermediate solution and 
almost cannot be used as is in practical design solutions. The 
scheme of Smith's Checker, which is much more practical, 
can also be built on the basis of a sorting matrix. The Smith's 
Checker uses the matrix structure in which the border right 
and left layers are interconnected according to special rules. 
These rules allow, having the m-out-of-n code at the input, 
obtaining the code 010101… at the output of the matrix. A 
simple assembly of AND-OR elements allows determining 
correctness of the code in the form of a two-bit word.   

In order to understand the structure and the principles of 
the scheme’s operation, we suggest to our students that they 
convert the spreadsheet matrix into the Smith’s Checker [4]. 
The figure below (Fig. 5) is presented for that purpose. Upon 
building a spreadsheet model of the Smith’s Checker, we 
may suggested to the students to simulate it's operation on 
different input vectors.  

The spreadsheet model of the Checker not only allows 
students to see whether the scheme works properly, but also 
gives them the possibility to observe how the code passes 
through layers in the Checker. It allows to deeply 
understanding the principles working within a Checker in 
operation. 

 
Fig. 5 Smith's Checker 

CONCLUSIONS 
We presented a spreadsheet model of a basic Sorter. This 

Sorter was shown to posses certain properties, making it 
ideal for designing a Checker. This model was shown to 
express the basic principle of inductive reasoning - building 
a complex construct out of very simple basic structures. The 
simple manner in which a Sorter can be used for the design 
and understanding of Checkers makes it a good candidate for 
advanced logic design courses, where an interactive and 
easily programmable interface can be a powerful tool. Using 
the spreadsheet model of a Sorter, students can design a 
Checker and truly touch on its inner workings. 
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