

Synthesis of ASM-based Self-Checking Controllers1

Ilya Levin
Tel-Aviv University
School of Education
ilia1@post.tau.ac.il

Vladimir Sinelnikov
Academic Technological
Institute, Department of

Computer Science

Mark Karpovsky
Boston University

Department of Electrical,
Computer and System

Engineering

1 This research was supported by BSF under grant No. 9800154.

Abstract

In this paper we present a new technique for on-line
checking of FPGA-based sequential devices defined by
their algorithmic state machines (ASMs). The technique
utilizes specific properties of ASMs for achieving the
totally self-checking goal with a low hardware overhead.
This technique is based on the architecture that consists
of two portions: a self-checking sequential device and a
separate totally self-checking (TSC) checker. Each of
these portions is implemented as a combination of an
"evolution" block and an "execution" block. Comparison
of code vectors transferred between these blocks provides
for the totally self-checking property. The proposed
technique does not require any redundant encoding of
output words and uses a one-rail design, thereby
drastically decreasing the required overhead. The paper
presents overhead estimations and results for benchmarks
for the proposed architecture.

1. Introduction

Techniques for concurrent error detection for finite
state machine (FSM) controllers have received a wide
attention, since the control part of a digital system is
usually the most critical part from the testability point of
view. Irregularity and complexity of the control structure
on one hand, and its central role in functioning of the
whole controlled digital system on the other hand, puts the
problem of synthesis of self-checking FSM controllers
onto the theoretical and practical agenda. Most of the
faults that occur in VLSI circuits and systems are
transient/intermittent in nature. The self-checking property

allows both the transient/intermittent and permanent faults
to be detected on-line, thus preventing data contamination.

Existing approaches for design of self-checking FSMs
are based on either duplication, or application to them of
specific error detecting codes (Berger code, constant
weight code, etc.). In most cases, these approaches require
a hardware overhead of more than 100 percent.

Major difficulties in designing of self-checking devices
are related to the complexity of decoding (i.e. verification
that a given output is a codeword). Outputs of a self-
checking circuit are usually encoded by codewords of a
code, which detects unidirectional errors [8, 15, 19]. For
example, in [8, 15] it was shown that stuck-at fault, cross-
point faults and shorts in MOS PLAs and ROMs result in
unidirectional errors at their outputs.

Applications of the self-checking concept to Control
Units and microprocessors were presented in [19]. Several
works deal with synthesis of totally self-checking (TSC)
Control Units [4, 10, 16, 17], design for testability of
controllers [6, 7] and self-checking control networks [3, 9,
14]. Paper [16] presents several schemes for on-line
checking of microprogrammed control units, which are
based on computing of a set of signatures and inserting of
these signatures in a microprogram code at specific
locations. Papers [10] and [17] are also dedicated to the
problem of synthesis of self-checking microprogrammed
control units. In [10] a design of a special monitor circuit
enabling to detect a specified fault set is proposed. In
[17], duplication of a microprogram sequencer was
proposed to achieve the totally self-checking property.

Paper [9] describes a special technique for
decomposing the initial FSM to achieve both on-line
checking and on-line testing. The concurrent testing and
checking allows decreasing the overhead in comparison to
traditional on-line checking approaches. The technique,
which is presented in [15] allows detection of input faults
by providing so-called bi-orthogonality of input vectors.

To the best of our knowledge in the above-mentioned
works the authors did not try to design eff icient controllers
with on-line checking ability by utilizing specific ASM
properties.

In this paper we deal with one specific but widely used
class of controllers, so-called Algorithmic State Machines
(ASMs) [1] based controllers. This particular class of
FSM-based controllers has several important properties
that can be utilized for designing self-checking
controllers. We investigate these properties from the point
of their influence on the self-checking abili ty of the
controller. We propose a novel ASM based self-checking
controller architecture.

Properties of ASM controllers that make them differ
from conventional FSM-based controllers are the
following.

 P1. ASM controllers have orthogonal systems of
product terms. A product of any two product terms
corresponding to transitions from the same internal state is
equal to 0. In the general case of the FSM based
controllers we have only an orthogonal system of
transition functions, but a non-orthogonal system of
product terms.

 P2. ASM controllers have "complete" systems of
product terms. The sum of product terms, corresponding
to transitions from any state is equal to 1.

 P3. Number of different output vectors for ASM
controller are much smaller than 2N, where N is a number
of output lines and also smaller than a number H of
transitions.

 P4. A number of input variables corresponding to any
one of the transitions is much smaller than the total
number of input variables.

It wil l be shown in the paper that these properties can
be used for reduction of overheads.

Known approaches for synthesis of Mealy-type FSMs
are based on Berger encoding of outputs and m-out-of-n
state assignment [11, 18]. For these architectures checkers
detect presence of a fault by examining whether an output
vector belongs to the corresponding code.

The property P3 was used in [12] for designing of
checkers. The authors show that the checker of an ASM
controller can be eff iciently implemented in the form of
"sum of minterms" (SOM) of output functions of the
controller. An unordered code for output vectors is used
because for these codes any unidirectional error cannot
transform one codeword into another codeword. In [12],
the Berger code was used as an unordered code. Note that
SOM-checker examines whether an output codeword
belongs to the set of microinstructions, (and not to the
Berger code as in the case of standard design [2, 11]. This
allows a reduction of the required overhead.

We will use Field Programmable Gate Arrays (FPGAs)
as a basis for ASM controller's implementations. The

approach described in [11] for synthesis of self-checking
circuits by FPGAs is based on dual-rail implementations
of the hardware to be checked. Using this approach
FPGA-based ASM controller can be implemented as a
combination of the dual-rail controller and the dual-rail
SOM-based checker (SOM-checker). In this case, output
vectors of the ASM controller have to be encoded by a
code detecting all unidirectional errors (such as the Berger
code). Needless to say, that such an implementation is
critical from the point of view of resulting overhead due to
both the dual-rail design and the Berger encoding.

In present paper we propose a new architecture that
does not require any encoding of output vectors and
allows a single-rail design of controllers. In this work we
investigate the proposed architecture from the point of
view of the required overhead. Estimations of the
overhead, presented in this paper, provides for guidelines
for synthesis of ASM controllers with required
parameters.

This paper is organized as follows. Section 2
introduces basic definitions and a review of related works.
In Section 3 we describe the proposed architecture of the
self-checking ASM controller. Evaluations of the required
overhead for the proposed architecture are presented in
Section 4. Benchmarks results are presented in Section 5.
Conclusions are presented in Section 6.

2. Frameworks

In this section we remind basic definitions related to

ASMs and fault models.

2.1. ASM Controllers

We will consider a system as a combination of a

control unit (controller) and a data-path. A microoperation
be an elementary step of data processing in the data-path,
we denote by ^ `Ny,...,yY 1

� the set of microoperations.

The microoperations are initiated by the corresponding
binary signals from of the controller. In other words, to
perform the microoperation yi signal yi =1 has to appear
at the output yi of the control unit. Sometimes several
microoperations are executed simultaneously in the data-
path. A set of microoperations executed simultaneously is
called a microinstruction.

An Algorithmic State Machine (ASM) [1] is a directed
connected graph containing an initial vertex, a final
vertex, a finite set of operator vertices and conditional
vertices.

Every operator vertex is labelled by a microinstruction.
We denote a set of microinstructions as }Y,,Y{ M

�
1

,

where M is a number of microinstructions. The "1-out-of-
M" code of microinstruction Ym will be denoted by

�
(Ym).

In the vector � (Ym) the m-th bit is equal to 1 while all
others are equal to 0.

The concept of ASM is very close to the concept of a
finite state machine (FSM). For ASMs each path
containing conditional vertices and one operational vertex
can be interpreted as a transition within the FSM [1]. Each
transition is associated with a product term that equals to 1
when this transition occurs. The set of product terms we
will denote as: }p,,p{P H

�
1

� . We will represent a

FSM as the list of transitions, which correspond to paths
in the ASM.

An example of ASM with logical conditions ,x,,x 41
�

micro-operations ,y,,y 61
� microinstructions 60 Y,,Y � and

states of FSM 51 a,,a � is shown in Figure 1.
���

�	�

�

� �

 �

� � ��� �

� � ��� �� �

� � ���

!#"

$ %

& '

& (
$ () $ '

* +

, -

. /

. 0

1 2

3 4 5 6

3 7 5 8

5 9

: ;

: <

=

>
?

? @

@

? ?

@

?
@

@
?

Figure 1. The Example of an Algorithmic State Machine

The transition table of the corresponding FSM is
presented in Table 1.

In this table:
am and as present state and next state correspondingly,
X(am, as) - transition function, i.e. a Boolean function

which is equal to 1 when FSM makes the transition from
state am to state as.

Y(am, as) - list of output signals which are equal 1 on
the transition of the FSM from am to as,

Table 1. Table of FSM corresponding to the ASM
from Figure 1

11y,y1aa

10xa

9y,yxaa

8y,yxa

7y,yxxa

6y,yxxaa

5y,y1aa

4yxa

3xxxa

2yxxxa

1y,yxxaa

h)a,Y(a)a,X(aaa

3115

21

65254

4144

41144

311413

4142

213

3211

43214

322121

smsmsm

A

A

We will use the following notations:
L - number of input variables (L=4 for our example);
N - number of output variables (N=6 for our example);
H - number of transitions (product terms) (H=11 for

our example);
M - number of microinstructions (M=7 for our

example);
R - number of states (R=5 for our example).

2. 2. Definitions and Assumptions

We now recall some basic definitions from the theory

of design of Totally Self Checking (TSC) sequential
circuits.

A state machine (ASM or FSM) is self-testing if, for
every fault in a fault's set, there is such an input/state pair
in the circuit that a non-code output is produced. A state
machine is fault-secure if, for every fault from a faults set,
the machine never produces an incorrect code output for a
code input. A state machine is totally self-checking if it is
both self-checking and fault-secure [11].

2. 3. Fault Model

As it has been mentioned, the basis of target

implementation of the ASM controller is LUT-based
FPGA comprising Configurable Logic Blocks (CLBs).
The fault model used in this paper is general model of
single cell faults. We assume that at most one CLB can
produce a faulty output. The circuit primary inputs are
considered to be fault-free.

3. Match Detector based architecture of a
self-checking FSM

We propose a new architecture for ASM controllers

that does not require any encoding of output vectors and
consequently allows reduction of the required overheads.
We call this architecture Match Detector (MD)
architecture since it is based on using a Match Detector
within the checker. The FSM for this architecture consists
of two portions: a self-checking FSM and a MD-checker.
In turn, each of these portions contains two main blocks:
the "evolution" block and "execution" block [13].
Additionally the FSM contains a Product Terms
Compressor (PTC), while the checker contains a Math
Detector (MD). A schematic diagram of the MD-
architecture is shown in Figure 2.

3.1. Self-checking FSM

Inputs of the evolution block of the FSM (EvFSM)

comprise working inputs X of the FSM and output

memory signals � �rttT ,,1 �
� . Outputs of the EvFSM

correspond to product terms },,{ 1 HppP �� . At each

clock, one and only one product term is equal to 1, which
means that EvFSM outputs are codewords of the "1-out-
of-H" code. The EvFSM is denoted in Figure 2 as � �PTX

��� . The Product Terms Compressor (PTC)

transforms "1-out-of-H" code � (P) into "1-out-of-M"
code � (Y). As mentioned in Section 1, the number of
microinstructions is essentially smaller than the number of
product terms for the typical ASM controller. PTC
comprises CLBs that are programmed for implementation
of "1-out-of-2g" functions.

The EvFSM is implemented as a tree, wherein each of
the nodes is either a pre-designed Configurable Logic
Block (CLB), or a fan-out. Each CLB is designed for
implementation of either a sum of two product terms of g
variables, or an AND-function of 2g variables. We use the
Xil inx-4000 series FPGAs [20] for implementation of the
proposed self-checking scheme. In this case the number of
inputs of the CLB is equal to 8, which means g = 4.

The execution block of the FSM (ExFSM) implements
OR-assembling of EvFSM outputs. Outputs of ExFSM are
output signals Y of the FSMand input memory signals D
= (d1 ,.., dR). The memory signals are coded by
codewords of the "1-out-of-R" code.

3.2. TSC MD-checker

The MD-checker consists of the evolution block

(EvCh), the execution block (ExCh) and the Math
Detector (MD) between them. EvCh implements all

minterms, while ExCh assembles these minterms to
implement the checker's function.

The EvCh is built as a self-checking tree with "AND"
nodes for implementation of "long" product terms and
"fork" nodes actually implemented by regular fan-outs.
The ExCh comprises either "1-out-of-2g", or "(2g -1)-out-
of-2g" cells (CLBs) combining all minterms, coming from
the EvCh.

It is proposed to use the following pre-designed A-
Cells and O-cells for implementation of the above-
mentioned nodes of the checker.

A-Cell implements nodes of the "AND" type. It has
two inputs, four functional inputs for implementation of
minterms, and two cascade outputs.

O-Cell implements nodes of either "g-out-of-2g" or
"(2g -1)-out-of-2g" types. These cells have 8 inputs and 1
output.

EvCh is a self-checking two-rail tree comprising a
number of A-Cells. This tree is constructed in such a way
that in the case of proper functioning of both the
controller and the checker one and only one dual-rail
output (Si,V i) will have value (1,0). All the remaining
outputs will have value (0,1). Outputs of the EvCh tree are
inputs of the ExCh of the checker. Each of the two-rail
outputs of the EvCh corresponds to a certain
microinstruction of the original FSM.

ExCh comprises two components consisting of O-
Cells. All S-outputs of EvCh serve as inputs of the first
component of the ExCh. This component is implemented
as a converging "1-out-of-M" multilevel tree. All V-
outputs of the EvCh are inputs to the second component of
the ExCh, which is implemented as a converging "(M-1)-
out-of-M" multilevel tree.

The Match Detector compares outputs of the PTC and
outputs of the evolution block of the checker (EvCh). Any
output vector of PTC is formed by M binary one-rail
outputs. Output vectors of EvCh are M dual-rail -coded
outputs. In Figure 2, the checker is shown as MD-checker.
If the two compared vectors are equal, the resulting vector
will be equal to the EvCh output vector. If they are not,
the ExCh will receive a predetermined faulty dual-rail
vector.

Table 2. Truth table of the Match Detector

� (i) S1(i), V1(i)

S0(i), V0(i)

1 1 0 1 0
0 0 1 0 1
1 0 1 1 1
0 1 0 0 0
- 0 0 0 0
- 1 1 1 1

An example of the match detection function is shown
in Table 2. In this table:

S1(i), V1(i) - dual-rail code of bit i of an output vector
of the EvCh;

S0(i), V0(i) - dual-rail code of bit i of the corresponding
output vector the match detector (MD); �

 (i) - the state of bit i of the PTC single-rail output
vector

�
 (Y).

� �� �
�� � ��	

��
 ���� ��� ���
 �

�

�
�

������

�
��� �

!#"%$ &�')()&�*+(-,
. / 0 1

2 3 4
5 6)7 8 8 9 9

Y)

:

;=<?> @ A#B%CD> CD@ > E+F
G G H I J K?L M N O P Q

R R

STU

V W

Figure 2. The MD-architecture of the totally self-
checking controller

For the MD-architecture of at any clock, an input vector
initiates one and only one product term. The "1-out-of-H"
vector produced by the EvFSM is transformed by PTC
block in to X (Ym) ("1-out-of-M" code of Ym). This code is
introduced both into the ExFSM and the match detector.
Output vectors produced by ExFSM are transformed into
the same X (Ym) code that has been produced by the PTC.
The match detector checks whether these codes are the
same, and if the codes differ from one another, the MD-
checker will produce the error signal.

4. Estimations of the required hardware
overheads

In this section we will estimate expected overheads for

the proposed MD- architecture.
The MD-architecture does not require any redundancy

for the FSM itself. Therefore, the difference between the
two implementations with and without the self-checking
abili ty equals to a complexity of the MD-checker (i.e. the
number of CLBs). We assume that the PTC block of the
MD-architecture does not introduce overhead, since it is
present in the ExFSM of the basic architecture. The match

detector (MD) also does not require any additional
overhead, since MD can be implemented within the last
level of EvCh. (It wil l require one additional input in each
LUT of the last level of the EvCh.)

The goal of this section is to estimate the checker's
complexity as a function of two parameters: number of
microinstructions M and length N of microinstructions.
The complexity of the MD-checker will be estimated as a
sum of complexities of its two components: EvCh and
ExCh.

4.1. Estimations of the EvCh complexity

The EvCh tree implements a system of M logical

functions of N variables. Each of these M functions is a
unique minterm. The EvCh tree comprises CLBs having g
dual-rail inputs (g = 4) [20] and one dual-rail output.

The upper bound of the complexity (number of CLBs)
Smax(EvCh) of the Evolution block of the MD-checker is:

� � M
g

N
EvChSmax YZ

[\]^ _ `a
1

1
 (1)

(here g is decreased by 1 in denominator since one dual-
rail input is used for the cascade connection between
CLBs).

This bound corresponds to the case of a disjoint
implementation of the minterms.

For the lower bound on complexity we assume that:
the number of CLBs at the first level of the EvCh tree is
equal to M.

Each level of the EvCh tree should comprise CLBs
implementing the maximal number of different minterms
of (g-1) variables. Then the lower bound on a number of
CLBs at level i of the EvCh tree can be computed as:

 1
2 11 bcd

efghi jk
g

i
i

A
A (2)

and we have:

 � � ¦
lm nopq r s

tu 1

1

1

g

N

i
imin AEvChS . (3)

4.2. Estimations of the ExCh complexity

As have been mentioned above, ExCh consists of two

equal converging multilevel trees. One of these trees
implements the "1-out-of-2g" function, while the second
implements a function "(2g-1)-out-of-2g".

The complexity of the ExCh can be computed as: � �,BB)ExCh(S K

vvw x
1

2 (4)

where Bk is the number of CLBs at level k of the tree and ª ºglogK 2
y . Then Bk can be computed using the

following recursive expression:

B1 = �� ����
g

M

2
; Bk =

� �
,

g

gBMB kk �� ���� �� ��
2

2 11

.K,,k �2� (5)
The sequence B1, ..., BK, which defines the ExCh

complexity, converges rapidly to 1. All members of this

sequence turn to 1 at step j = 	
 	���
 1
2

g

Mlog
and stay equal to

1, for all i>j. This fact allows assessing an effectiveness of
the proposed estimations. We note, that for any N and

M, 	
 	���
���
���� �

�
11

1 2

g

Mlog

g

N
. In the case of equality the gap

between lower and upper bounds is minimal, which means
that the accuracy of the proposed estimations is maximal.
In this situation the real EvCh complexity can be
estimated by its upper bound. The accuracy of the
estimations decreases as the difference between the two
sides of the inequality increases.

These bounds were used for estimation of complexities
of checkers for benchmarks. Results of the computation
are presented in Table 2, and enable comparison of the

estimated complexities of the MD-architecture with the
real ones.

5. Benchmarks results

We applied the synthesis approach described above to

several MCNC benchmarks to compute FPGA

implementations for Xilinx-4000 series FPGSs [20]
Results for benchmarks are presented in Table 3. In this
table:

L - number of input lines,
N - number of output lines,
H - number of product terms (transitions),
R - number of states of the FSM,
M - number of output vectors (microinstructions).
SFSM and SMD - complexities (numbers of CLBs) of the

initial FSM and the MD-checker correspondingly.
Smin , Smax - minimal and maximal complexities of the

MD checker calculated by (1) - (5). � MD = SMD/SFSM*100%;
SB ��� B - complexity (numbers of CLBs) and overhead (in
%) for FSM self-checking implementations based on the
Berger coding architecture [2, 11].

Table 3. Overheads results for FSM benchmarks implemented by Xilinx-4000 series FPGAs

NAME R L N H M SFSM Sb � b SMD Smin Smax � MD

bbsse 13 7 7 53 14 37 38 103% 22 21 44 59%

cse 13 7 7 98 12 60 51 85% 24 21 42 40%

Dk-14 7 5 3 56 13 38 31 82% 22 22 22 58%

Dk-15 4 5 3 30 16 27 26 96% 21 20 22 78%

styr 32 10 9 161 25 110 77 70% 52 34 108 47%

saund 32 12 11 134 27 116 79 68% 58 38 116 50%

S1488 48 19 8 236 64 213 201 94% 153 93 210 72%

S1 20 6 8 109 20 116 38 33% 33 29 68 28%

pma 24 8 8 120 24 91 83 91% 49 41 80 54%

planet 51 19 7 118 54 82 151 184% 135 80 170 165%

S820 24 18 18 199 22 175 91 52% 57 32 162 33%

Ex6 8 8 5 36 14 45 46 102% 34 20 34 76%

Ex1 20 23 9 154 60 74 171 231% 133 87 258 180%

tav 4 4 4 49 11 26 23 88% 21 18 28 81%

big 18 28 17 185 17 124 87 70% 71 26 114 57%

bs 19 13 17 185 17 125 67 54% 43 21 91 34%

acdl 16 27 22 214 23 158 114 72% 89 61 214 56%

cow 49 24 24 261 18 262 111 42% 84 53 152 32%

v1_6 14 18 17 169 17 74 63 85% 45 42 124 61%

v1_10 15 18 18 264 18 102 70 69% 49 42 132 48%

v11_20 14 29 18 367 17 110 82 75% 71 61 176 65%

One can see from this table that the proposed approach
for design of totally self-checking microcontrollers results
in overheads, which are about 65% and our approach
results in about 25-30% reduction of overhead as
compared to known implementation based on Berger
coding architecture [2, 11].

6. Conclusions

We have proposed a novel technique for the synthesis

of self-checking FPGA-based controllers. By utilizing
several intrinsic features of the corresponding ASMs, the
proposed architecture allows implementation of
controllers by a single-rail scheme without any additional
encoding of output words. This results in considerable
reduction of the required overhead. Benchmarks results
indicate that the proposed approach for the design of self-
checking controllers is efficient from the points of view of
required overheads.

References

[1] S. Baranov. Logic Synthesis for Control Automata. Kluwer
Academic Publisher, Dordrecht/Boston/London. 1994.
[2] C. Bolchini, R. Montandon, F. Salince, and D. Sciuto. "Design
of VHDL-Based Totally Self-Checking Finite State Machines and
Data-Path Descriptions", IEEE Transaction on Very Large Scale
Integration (VLSI) Systems, Vol. 8, No. 1, 2000.
[3] C. Bolchini, F. Salice, D. Sciuto. "Fault Analysis in Networks
with Concurrent Error Detection Properties", Proc. Design
Automation Test Europe (DATE'98), Paris, F, 1998, pp. 957-958.
[4] C. Bolchini, R. Montandon, F. Salice, D. Sciuto, "Self-
checking FSMs based on a constant distance state encoding", Proc.
1995 IEEE International Workshop on Defect and Fault Tolerance
in VLSI Systems (DFT '95), Lafayette, U.S.A., 1995, pp. 271-277.
[5] A. L. Burress and P. K. Lala. "On-line Testable Logic Design
for FPGA Implementation", Proc. of 1997 International Test
Conference, pp. 471-478.
[6] S. Dey, V. Gangaram and M. Potkonjak, "A Controller-Based
Design-for-Testability Technique for Controller-datapath
Circuits," Proc. Intl. Conf. on Comp. -Aided Design, pp. 534-540,
October 1995.
[7] B. Eschermann and H. Wunderlich, "Optimized Synthesis of
Self-Testable Finite State Machines," Intl. Conf. on Fault Tolerant
Computation, 1990.
[8] W. K. Fuchs, C. R. Chen, J. A. Abraham. Error Detection in
Highly Structured Logic Arrays. IEEE Journal of Solid-State
Circuits, Vol. Sc-22, no.4, August 1987, pp. 583-594.

[9] A. Hertwig. "Utilizing Off-line BIST Circuitry for the On-line
Test of FSMs", 4-th International On-line Testing Conference,
Capri, 1998, Compendium of papers, pp. 42-46.
[10] V. S. Iyengar, L. L. Kinney. "Concurrent Fault Detection in
Microprogrammed Control Units", IEEE Transactions on
Computers, Vol. C-34, No. 9, September 1985, pp. 810-821.
[11] P. Lala. Self-checking and Fault-Tolerant Digital Design.
Morgan Kaufmann Publishers, San-Francisco/San-Diego/New-

York/Boston/London/Sydney/Tokyo, 2000.

[12] I. Levin, M. Karpovsky. "On-line Self-Checking of
Microprogram Control Units", 4-th International On-line Testing
Conference, Capri, 1998, Compendium of papers, pp. 153-159.
[13] I. Levin, V. Sinelnikov. "Self-checking of FPGA based
Control Units", Proceedings of 9th Great Lakes Symposium on
VLSI, Ann Arbor, Michigan, 1999, IEEE press, pp. 292-295.
[14] G. P. Mak, J.A. Abraham and E. S. Davidson. The Design of
PLAs with concurrent Error Detection. Digest 12th Int. Symp.
Fault-Tolerant Computing, 1982, pp. 303-310.
[15] A. Yu. Matrosova, S. A. Ostanin. "Self-Checking FSM
Networks Design", 4-th International On-line Testing Conference,
Capri, 1998, Compendium of papers, pp. 162-166.
[16] M. Namjoo. "Design of Concurrently Testable
Microprogramming Control Units", Proc. Of the 15 Annual
Workshop on Microprogramming, Palo Alto, CA., pp. 173-180,
Oct. 1982.
[17] A. M. Paschalis, C. Halatsis, G. Philokyprou. "Concurrently
Totally Self-Checking Microprogram Control Unit with
Duplication of Microprogram Sequencer", Microprocessing and
Microprogramming, 20, 1987, pp. 271-281.
[18] M. G. Sami, D. Sciuto, R. Stefanelli, "Concurrently Self-
Checking Structures for FSMs". Microprocessing and
Microprogramming, 39 (1993) 237-240, North-Holland.
[19] M. M. Yen, W. K. Fuchs, J. A. Abraham. Designing for
Concurrent Error Detection in VLSI: Application to a
Microprogram Control Unit. IEEE Journal of Solid-State Circuits,
vol. Sc-22, no.4, August 1987, pp. 595-605.
[20] Xilinx, "The Programmable Logic", Data Book, 1996.

