
 
 

 

 
 

Synthesis of ASM-based Self-Checking Controllers1 
 

Ilya Levin 
Tel-Aviv University 
School of Education 
ilia1@post.tau.ac.il 

Vladimir Sinelnikov 
Academic Technological 
Institute, Department of 

Computer Science 
 

Mark Karpovsky 
Boston University 

Department of Electrical, 
Computer and System 

Engineering 
 
 
 

 
1 This research was supported by BSF under grant No. 9800154. 

 

Abstract 
 

In this paper we present a new technique for on-line 
checking of FPGA-based sequential devices defined by 
their algorithmic state machines (ASMs). The technique 
utilizes specific properties of ASMs for achieving the 
totally self-checking goal with a low hardware overhead. 
This technique is based on the architecture that consists 
of two portions: a self-checking sequential device and a 
separate totally self-checking (TSC) checker. Each of 
these portions is implemented as a combination of an 
"evolution" block and an "execution" block. Comparison 
of code vectors transferred between these blocks provides 
for the totally self-checking property. The proposed 
technique does not require any redundant encoding of 
output words and uses a one-rail design, thereby 
drastically decreasing the required overhead. The paper 
presents overhead estimations and results for benchmarks 
for the proposed architecture. 
 
 

1. Introduction 
 

Techniques for concurrent error detection for finite 
state machine (FSM) controllers have received a wide 
attention, since the control part of a digital system is 
usually the most critical part from the testability point of 
view. Irregularity and complexity of the control structure 
on one hand, and its central role in functioning of the 
whole controlled digital system on the other hand, puts the 
problem of synthesis of self-checking FSM controllers 
onto the theoretical and practical agenda. Most of the 
faults that occur in VLSI circuits and systems are 
transient/intermittent in nature. The self-checking property 

allows both the transient/intermittent and permanent faults 
to be detected on-line, thus preventing data contamination.  

Existing approaches for design of self-checking FSMs 
are based on either duplication, or application to them of 
specific error detecting codes (Berger code, constant 
weight code, etc.). In most cases, these approaches require 
a hardware overhead of more than 100 percent.  

Major difficulties in designing of self-checking devices 
are related to the complexity of decoding (i.e. verification 
that a given output is a codeword). Outputs of a self-
checking circuit are usually encoded by codewords of a 
code, which detects unidirectional errors [8, 15, 19]. For 
example, in [8, 15] it was shown that stuck-at fault, cross-
point faults and shorts in MOS PLAs and ROMs result in 
unidirectional errors at their outputs.  

Applications of the self-checking concept to Control 
Units and microprocessors were presented in [19]. Several 
works deal with synthesis of totally self-checking (TSC) 
Control Units [4, 10, 16, 17], design for testability of 
controllers [6, 7] and self-checking control networks [3, 9, 
14]. Paper [16] presents several schemes for on-line 
checking of microprogrammed control units, which are 
based on computing of a set of signatures and inserting of 
these signatures in a microprogram code at specific 
locations. Papers [10] and [17] are also dedicated to the 
problem of synthesis of self-checking microprogrammed 
control units. In [10] a design of a special monitor circuit 
enabling to detect a specified fault set is proposed. In 
[17], duplication of a microprogram sequencer was 
proposed to achieve the totally self-checking property.  

Paper [9] describes a special technique for 
decomposing the initial FSM to achieve both on-line 
checking and on-line testing. The concurrent testing and 
checking allows decreasing the overhead in comparison to 
traditional on-line checking approaches. The technique, 
which is presented in [15] allows detection of input faults 
by providing so-called bi-orthogonality of input vectors. 



 
 

 

To the best of our knowledge in the above-mentioned 
works the authors did not try to design eff icient controllers 
with on-line checking ability by utilizing specific ASM 
properties. 

In this paper we deal with one specific but widely used 
class of controllers, so-called Algorithmic State Machines 
(ASMs) [1] based controllers. This particular class of 
FSM-based controllers has several important properties 
that can be utilized for designing self-checking 
controllers. We investigate these properties from the point 
of their influence on the self-checking abili ty of the 
controller. We propose a novel ASM based self-checking 
controller architecture. 

Properties of ASM controllers that make them differ 
from conventional FSM-based controllers are the 
following. 

  P1. ASM controllers have orthogonal systems of 
product terms. A product of any two product terms 
corresponding to transitions from the same internal state is 
equal to 0. In the general case of the FSM based 
controllers we have only an orthogonal system of 
transition functions, but a non-orthogonal system of 
product terms.  

  P2. ASM controllers have "complete" systems of 
product terms. The sum of product terms, corresponding 
to transitions from any state is equal to 1. 

  P3. Number of different output vectors for ASM 
controller are much smaller than 2N, where N is a number 
of output lines and also smaller than a number H of 
transitions.  

  P4. A number of input variables corresponding to any 
one of the transitions is much smaller than the total 
number of input variables.  

It wil l be shown in the paper that these properties can 
be used for reduction of overheads. 

Known approaches for synthesis of Mealy-type FSMs 
are based on Berger encoding of outputs and m-out-of-n 
state assignment [11, 18]. For these architectures checkers 
detect presence of a fault by examining whether an output 
vector belongs to the corresponding code.  

The property P3 was used in [12] for designing of 
checkers. The authors show that the checker of an ASM 
controller can be eff iciently implemented in the form of 
"sum of minterms" (SOM) of output functions of the 
controller.  An unordered code for output vectors is used 
because for these codes any unidirectional error cannot 
transform one codeword into another codeword. In [12], 
the Berger code was used as an unordered code. Note that 
SOM-checker examines whether an output codeword 
belongs to the set of microinstructions, (and not to the 
Berger code as in the case of standard design [2, 11]. This 
allows a reduction of the required overhead. 

We will use Field Programmable Gate Arrays (FPGAs) 
as a basis for ASM controller's implementations. The 

approach described in [11] for synthesis of self-checking 
circuits by FPGAs is based on dual-rail implementations 
of the hardware to be checked. Using this approach 
FPGA-based ASM controller can be implemented as a 
combination of the dual-rail controller and the dual-rail 
SOM-based checker (SOM-checker). In this case, output 
vectors of the ASM controller have to be encoded by a 
code detecting all unidirectional errors (such as the Berger 
code). Needless to say, that such an implementation is 
critical from the point of view of resulting overhead due to 
both the dual-rail design and the Berger encoding. 

In present paper we propose a new architecture that 
does not require any encoding of output vectors and 
allows a single-rail design of controllers. In this work we 
investigate the proposed architecture from the point of 
view of the required overhead. Estimations of the 
overhead, presented in this paper, provides for guidelines 
for synthesis of ASM controllers with required 
parameters. 

This paper is organized as follows. Section 2 
introduces basic definitions and a review of related works. 
In Section 3 we describe the proposed architecture of the 
self-checking ASM controller. Evaluations of the required 
overhead for the proposed architecture are presented in 
Section 4. Benchmarks results are presented in Section 5. 
Conclusions are presented in Section 6. 
 

2. Frameworks  
 
In this section we remind basic definitions related to 

ASMs and fault models. 
 

2.1. ASM Controllers  
 
We will consider a system as a combination of a 

control unit (controller) and a data-path. A microoperation 
be an elementary step of data processing in the data-path, 
we denote by ^ `Ny,...,yY 1

�  the set of microoperations. 

The microoperations are initiated by the corresponding 
binary signals from of the controller. In other words, to 
perform the microoperation yi signal yi =1 has to appear 
at the output yi of the control unit. Sometimes several 
microoperations are executed simultaneously in the data-
path. A set of microoperations executed simultaneously is 
called a microinstruction.  

An Algorithmic State Machine (ASM) [1] is a directed 
connected graph containing an initial vertex, a final 
vertex, a finite set of operator vertices and conditional 
vertices.  

Every operator vertex is labelled by a microinstruction. 
We denote a set of microinstructions as }Y,,Y{ M

�
1

, 

where M is a number of microinstructions. The "1-out-of-
M" code of microinstruction Ym will be denoted by 

�
(Ym). 



 
 

 

In the vector � (Ym) the  m-th bit is equal to 1 while all 
others are equal to 0. 

The concept of ASM is very close to the concept of a 
finite state machine (FSM). For ASMs each path 
containing conditional vertices and one operational vertex 
can be interpreted as a transition within the FSM [1]. Each 
transition is associated with a product term that equals to 1 
when this transition occurs. The set of product terms we 
will denote as: }p,,p{P H

�
1

� . We will represent a 

FSM as the list of transitions, which correspond to paths 
in the ASM. 

An example of ASM with logical conditions ,x,,x 41
�  

micro-operations ,y,,y 61
� microinstructions 60 Y,,Y �  and 

states of FSM 51 a,,a � is shown in Figure 1.  
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Figure 1. The Example of an Algorithmic State Machine 

The transition table of the corresponding FSM is 
presented in Table 1. 

In this table: 
am and  as present state and next state correspondingly,  
X(am, as) - transition function, i.e. a Boolean function 

which is equal to 1 when FSM makes the transition from 
state am to state as. 

Y(am, as) - list of output signals which are equal 1 on 
the transition of the FSM from am to as,  

 

Table 1. Table of FSM corresponding to the ASM 
from Figure 1 

11y,y1aa

10xa

9y,yxaa

8y,yxa

7y,yxxa

6y,yxxaa

5y,y1aa

4yxa

3xxxa

2yxxxa

1y,yxxaa

h)a,Y(a)a,X(aaa

3115

21

65254

4144

41144

311413

4142

213

3211

43214

322121

smsmsm

A

A

 

We will use the following notations: 
L - number of input variables (L=4 for our example); 
N - number of output variables (N=6 for our example); 
H - number of transitions (product terms) (H=11 for 

our example); 
M - number of microinstructions (M=7 for our 

example); 
R - number of states (R=5 for our example). 
 

2. 2. Definitions and Assumptions 
 
We now recall some basic definitions from the theory 

of design of Totally Self Checking (TSC) sequential 
circuits.  

A state machine (ASM or FSM) is self-testing if, for 
every fault in a fault's set, there is such an input/state pair 
in the circuit that a non-code output is produced. A state 
machine is fault-secure if, for every fault from a faults set, 
the machine never produces an incorrect code output for a 
code input. A state machine is totally self-checking if it is 
both self-checking and fault-secure [11]. 

 
2. 3. Fault Model 

 
As it has been mentioned, the basis of target 

implementation of the ASM controller is LUT-based 
FPGA comprising Configurable Logic Blocks (CLBs). 
The fault model used in this paper is general model of 
single cell faults. We assume that at most one CLB can 
produce a faulty output. The circuit primary inputs are 
considered to be fault-free. 

 



 
 

 

3. Match Detector based architecture of a 
self-checking FSM 

 
We propose a new architecture for ASM controllers 

that does not require any encoding of output vectors and 
consequently allows reduction of the required overheads. 
We call this architecture Match Detector (MD) 
architecture since it is based on using a Match Detector 
within the checker. The FSM for this architecture consists 
of two portions: a self-checking FSM and a MD-checker. 
In turn, each of these portions contains two main blocks: 
the "evolution" block and "execution" block [13]. 
Additionally the FSM contains a Product Terms 
Compressor (PTC), while the checker contains a Math 
Detector (MD). A schematic diagram of the MD-
architecture is shown in Figure 2. 

 
3.1. Self-checking FSM 

 
Inputs of the evolution block of the FSM (EvFSM) 

comprise working inputs X of the FSM and output 

memory signals � �rttT ,,1 �
� . Outputs of the EvFSM 

correspond to product terms },,{ 1 HppP �� . At each 

clock, one and only one product term is equal to 1, which 
means that EvFSM outputs are codewords of the "1-out-
of-H" code. The EvFSM is denoted in Figure 2 as � �PTX

��� . The Product Terms Compressor (PTC) 

transforms "1-out-of-H" code �  (P) into "1-out-of-M" 
code �  (Y).  As mentioned in Section 1, the number of 
microinstructions is essentially smaller than the number of 
product terms for the typical ASM controller. PTC 
comprises CLBs that are programmed for implementation 
of "1-out-of-2g" functions.   

The EvFSM is implemented as a tree, wherein each of 
the nodes is either a pre-designed Configurable Logic 
Block (CLB), or a fan-out. Each CLB is designed for 
implementation of either a sum of two product terms of g 
variables, or an AND-function of 2g variables. We use the 
Xil inx-4000 series FPGAs [20] for implementation of the 
proposed self-checking scheme. In this case the number of 
inputs of the CLB is equal to 8, which means g = 4. 

The execution block of the FSM (ExFSM) implements 
OR-assembling of EvFSM outputs. Outputs of ExFSM are 
output signals Y of the FSMand input memory signals D 
= (d1 ,.., dR).  The memory signals are coded by 
codewords of the "1-out-of-R" code. 

 
3.2. TSC MD-checker 

 
The MD-checker consists of the evolution block 

(EvCh), the execution block (ExCh) and the Math 
Detector (MD) between them. EvCh implements all 

minterms, while ExCh assembles these minterms to 
implement the checker's function.   

The EvCh is built as a self-checking tree with "AND" 
nodes for implementation of "long" product terms and 
"fork" nodes actually implemented by regular fan-outs. 
The ExCh comprises either "1-out-of-2g", or "(2g -1)-out-
of-2g" cells (CLBs) combining all minterms, coming from 
the EvCh. 

It is proposed to use the following pre-designed A-
Cells and O-cells for implementation of the above-
mentioned nodes of the checker. 

A-Cell implements nodes of the "AND" type. It has 
two inputs, four functional inputs for implementation of 
minterms, and two cascade outputs. 

O-Cell implements nodes of either "g-out-of-2g" or 
"(2g -1)-out-of-2g" types. These cells have 8 inputs and 1 
output. 

EvCh is a self-checking two-rail tree comprising a 
number of A-Cells. This tree is constructed in such a way 
that in the case of proper functioning of both the 
controller and the checker one and only one dual-rail 
output (Si,V i) will have value (1,0). All the remaining 
outputs will have value (0,1). Outputs of the EvCh tree are 
inputs of the ExCh of the checker. Each of the two-rail 
outputs of the EvCh corresponds to a certain 
microinstruction of the original FSM. 

ExCh comprises two components consisting of O-
Cells. All S-outputs of EvCh serve as inputs of the first 
component of the ExCh. This component is implemented 
as a converging "1-out-of-M" multilevel tree. All V-
outputs of the EvCh are inputs to the second component of 
the ExCh, which is implemented as a converging "(M-1)-
out-of-M" multilevel tree. 

The Match Detector compares outputs of the PTC and 
outputs of the evolution block of the checker (EvCh). Any 
output vector of PTC is formed by M binary one-rail 
outputs. Output vectors of EvCh are M dual-rail -coded 
outputs. In Figure 2, the checker is shown as MD-checker. 
If the two compared vectors are equal, the resulting vector 
will be equal to the EvCh output vector. If they are not, 
the ExCh will receive a predetermined faulty dual-rail 
vector.  

 
Table 2. Truth table of the Match Detector 

�  (i) S1(i), V1(i) 
 
S0(i), V0(i) 

1 1 0 1 0 
0 0 1 0 1 
1 0 1 1 1 
0 1 0 0 0 
- 0 0 0 0 
- 1 1 1 1 
 



 
 

 

An example of the match detection function is shown 
in Table 2. In this table: 

S1(i), V1(i) - dual-rail code of bit i of an output vector 
of the EvCh; 

S0(i), V0(i) - dual-rail code of bit i of the corresponding 
output vector the match detector (MD); �

 (i) - the state of bit i of the PTC single-rail output 
vector 

�
 (Y). 
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Figure 2. The MD-architecture of the totally self-
checking controller 

For the MD-architecture of at any clock, an input vector 
initiates one and only one product term. The "1-out-of-H" 
vector produced by the EvFSM is transformed by PTC 
block in to X  (Ym) ("1-out-of-M" code of Ym). This code is 
introduced both into the ExFSM and the match detector. 
Output vectors produced by ExFSM are transformed into 
the same X  (Ym) code that has been produced by the PTC. 
The match detector checks whether these codes are the 
same, and if the codes differ from one another, the MD-
checker will produce the error signal. 

 

4. Estimations of the required hardware 
overheads 

 
In this section we will estimate expected overheads for 

the proposed MD- architecture. 
The MD-architecture does not require any redundancy 

for the FSM itself. Therefore, the difference between the 
two implementations with and without the self-checking 
abili ty equals to a complexity of the MD-checker (i.e. the 
number of CLBs). We assume that the PTC block of the 
MD-architecture does not introduce overhead, since it is 
present in the ExFSM of the basic architecture. The match 

detector (MD) also does not require any additional 
overhead, since MD can be implemented within the last 
level of EvCh. (It wil l require one additional input in each 
LUT of the last level of the EvCh.) 

The goal of this section is to estimate the checker's 
complexity as a function of two parameters: number of 
microinstructions M and length N of microinstructions.  
The complexity of the MD-checker will be estimated as a 
sum of complexities of its two components: EvCh and 
ExCh. 

 
4.1. Estimations of the EvCh complexity 

 
The EvCh tree implements a system of M logical 

functions of N variables. Each of these M functions is a 
unique minterm. The EvCh tree comprises CLBs having g 
dual-rail inputs (g = 4) [20] and one dual-rail output.  

The upper bound of the complexity (number of CLBs) 
Smax(EvCh) of the Evolution block of the MD-checker is: 

� � M
g

N
EvChSmax YZ

[\]^ _ `a
1

1
  (1) 

(here g is decreased by 1 in denominator since one dual-
rail input is used for the cascade connection between 
CLBs). 

This bound corresponds to the case of a disjoint 
implementation of the minterms. 

For the lower bound on complexity we assume that: 
the number of CLBs at the first level of the EvCh tree is 
equal to M. 

Each level of the EvCh tree should comprise CLBs 
implementing the maximal number of different minterms 
of (g-1) variables. Then the lower bound on a number of 
CLBs at level i of the EvCh tree can be computed as: 

  1
2 11 bcd

efghi jk
g

i
i

A
A    (2) 

and we have: 

  � � ¦
lm nopq r s

tu 1

1

1

g

N

i
imin AEvChS .  (3) 

 
4.2. Estimations of the ExCh complexity  

 
As have been mentioned above, ExCh consists of two 

equal converging multilevel trees. One of these trees 
implements the "1-out-of-2g" function, while the second 
implements a function "(2g-1)-out-of-2g". 

The complexity of the ExCh can be computed as:  � �,BB)ExCh(S K

vvw x
1

2   (4) 

where Bk is the number of CLBs at level k of the tree and ª ºglogK 2
y . Then Bk can be computed using the 

following recursive expression: 



 
 

 

B1 = �� ����
g

M

2
;  Bk = 

� �
,

g

gBMB kk �� ���� �� ��
2

2 11  

.K,,k �2�      (5) 
The sequence B1, ..., BK, which defines the ExCh 

complexity, converges rapidly to 1. All members of this 

sequence turn to 1 at step j = 	
 	��� 
 1
2

g

Mlog
and stay equal to 

1, for all i>j. This fact allows assessing an effectiveness of 
the proposed estimations. We note, that for any N and 

M, 	
 	��� 
���
���� �

�
11

1 2

g

Mlog

g

N
. In the case of equality the gap 

between lower and upper bounds is minimal, which means 
that the accuracy of the proposed estimations is maximal. 
In this situation the real EvCh complexity can be 
estimated by its upper bound. The accuracy of the 
estimations decreases as the difference between the two 
sides of the inequality increases. 

These bounds were used for estimation of complexities 
of checkers for benchmarks. Results of the computation 
are presented in Table 2, and enable comparison of the 

estimated complexities of the MD-architecture with the 
real ones. 

 

5. Benchmarks results 
 
We applied the synthesis approach described above to 

several MCNC benchmarks to compute FPGA 

implementations for Xilinx-4000 series FPGSs [20] 
Results for benchmarks are presented in Table 3. In this 
table:  

L - number of input lines, 
N - number of output lines, 
H - number of product terms (transitions), 
R - number of states of the FSM, 
M - number of output vectors (microinstructions). 
SFSM and SMD - complexities (numbers of CLBs) of the 

initial FSM and the MD-checker correspondingly.  
Smin , Smax - minimal and maximal complexities of the 

MD checker calculated by (1) - (5). � MD = SMD/SFSM*100%; 
SB ��� B - complexity (numbers of CLBs) and overhead (in 
%) for FSM self-checking implementations based on the 
Berger coding architecture [2, 11]. 

Table 3. Overheads results for FSM benchmarks implemented by Xilinx-4000 series FPGAs 
 
NAME R L N   H M SFSM Sb � b SMD Smin Smax � MD 

bbsse 13 7 7 53 14 37 38 103% 22 21 44 59% 

cse 13 7 7 98 12 60 51 85% 24 21 42 40% 

Dk-14 7 5 3 56 13 38 31 82% 22 22 22 58% 

Dk-15 4 5 3 30 16 27 26 96% 21 20 22 78% 

styr 32 10 9 161 25 110 77 70% 52 34 108 47% 

saund 32 12 11 134 27 116 79 68% 58 38 116 50% 

S1488 48 19 8 236 64 213 201 94% 153 93 210 72% 

S1 20 6 8 109 20 116 38 33% 33 29 68 28% 

pma 24 8 8 120 24 91 83 91% 49 41 80 54% 

planet 51 19 7 118 54 82 151 184% 135 80 170 165% 

S820 24 18 18 199 22 175 91 52% 57 32 162 33% 

Ex6 8 8 5 36 14 45 46 102% 34 20 34 76% 

Ex1 20 23 9 154 60 74 171 231% 133 87 258 180% 

tav 4 4 4 49 11 26 23 88% 21 18 28 81% 

big 18 28 17 185 17 124 87 70% 71 26 114 57% 

bs 19 13 17 185 17 125 67 54% 43 21 91 34% 

acdl 16 27 22 214 23 158 114 72% 89 61 214 56% 

cow 49 24 24 261 18 262 111 42% 84 53 152 32% 

v1_6 14 18 17 169 17 74 63 85% 45 42 124 61% 

v1_10 15 18 18 264 18 102 70 69% 49 42 132 48% 

v11_20 14 29 18 367 17 110 82 75% 71 61 176 65% 
 
 



 
 

 

One can see from this table that the proposed approach 
for design of totally self-checking microcontrollers results 
in overheads, which are about 65% and our approach 
results in about 25-30% reduction of overhead as 
compared to known implementation based on Berger 
coding architecture [2, 11]. 

 
6. Conclusions 

 
We have proposed a novel technique for the synthesis 

of self-checking FPGA-based controllers. By utilizing 
several intrinsic features of the corresponding ASMs, the 
proposed architecture allows implementation of 
controllers by a single-rail scheme without any additional 
encoding of output words. This results in considerable 
reduction of the required overhead. Benchmarks results 
indicate that the proposed approach for the design of self-
checking controllers is efficient from the points of view of 
required overheads. 
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