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Abstract

This paper presents methods for designing totally self
checking Mealy type synchronous sequential circuits
(SSCs). We use implementations of the output and next
state functions that are monotonic in state variables. The
monotony enables the SSC to react to permanent faults
differently than it does to transient faults. If the fault is
permanent, the SSC will produce a non-code output,
which will be detected as error by the checker after a
number of clock cycles. In the case of a transient fault, the
SSC is able to survive and to return to normal operation
after a number of clock cycles.

A novel universal architecture of self-checking SSCs
enabling to overcome the above contradiction is
proposed. This architecture can be adopted both for
reduction of the fault latency of a permanent fault and for
increasing the SSC survivability with respect to a
transient fault. A method for SSC synthesis for the
proposed architecture is presented. This method is
oriented to FPGA implementation.

1. Introduction

Two main approaches can be identified in the design of
self-checking SSCs. The first one is based on applying
special techniques to observe state transitions or a control
flow. These techniques range from state assignment by
codewords of error-detection codes to control flow
monitoring by signature analysis [Leveugle 90, Noubir
96] or special monitoring machines [Parekhji 95].
Usually, these techniques lead to considerable overhead.

The second approach is based on checking the SSC’s
outputs without direct checking of the memory [Ozguner
77, Diaz 79]. When these techniques are applied, a fault
that leads to a non-code state vector is detected in the next
clock cycle. This property can be achieved by introducing
an additional overhead.

The present paper investigates the behavior of the SSC
without memory checking. We deal with implementations
where both the next state and output equations are unate

[Lala 00] in state variables and binate in primary input
variables. SSCs that are implemented according to such a
scheme we call state monotonic SSCs. In most cases using
these implementations results in a considerable reduction
in overhead [Matrosova 00]. Furthermore, and that is
substantial in the present work, such SSCs can function
properly with the presence of a fault and even recover
from the fault [Levin 01]. This property is called self-
healing.

Let a fault occurs within an SSC. Known self-checking
SSCs architectures provide either immediate or next-clock
fault detection after the appearance of the test vector of
this fault [Lala 00]. Such a requirement is reasonable for
permanent faults because such faults have to be detected
as soon as possible. However, in the case of transient
faults the approach may be different. A sequential circuit
may pass through several incorrect states due to a fault,
while maintaining correct outputs before the error is
detected. Such a situation is suitable for transient faults
since before error detection, both the fault and its
manifestations may disappear, and the SSC may become
fault-free again. Should we use any one of the known
approaches, we would mark an SSC as erroneous
prematurely, although it could survive successfully. In
other words, the known approaches for synthesis of self-
checking SSCs are mostly oriented to permanent faults,
while usually declaring that both intermitted/transient
faults can be detected as well.

The fault latency is the number of clocks required for
detecting a fault after it occurs. Reduction of the fault
latency is one of the well-known challenges of self-
checking design. The above-mentioned self-healing
property correlates with the period of time when a fault is
present but has not yet been detected, i.e. with the latency.
Indeed, if any fault is detected either immediately, or on
the next clock pulse after its manifestation, the latency
looks minimal, but the SSC does not have enough time to
recover. Reduction of the latency leads to a decrease in
the self-healing ability. Since reduction of the fault latency
relates to permanent faults, while the self-healing ability
characterizes transient faults, the above contradiction can
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be considered as a contradiction between the SSC’s
reactions to the two different types of faults.

In the present paper we propose a technique to
overcome the above contradiction. We develop an
architecture for implementing self-checking SSCs, which
is applicable to both types of faults: permanent and
transient. Moreover, it can be adapted to both types of
faults. This adaptation can be achieved within the
framework of the same architecture by using different
implementations of certain blocks of the architecture.

The proposed architecture is based on: a) the state
monotonic implementation of self-checking SSCs
[Matrosova 00]; b) the Match Detector architecture that
does not require any coding of output vectors [Levin 99].

We investigate the architecture from the point of view
of fault latency and the self-healing ability for both kinds
of faults, assuming that the resulting on-line checking SSC
will be implemented by an FPGA.

This paper is organized as follows. Section 2 gives
basic definitions. Description of the self-healing SSC is
given in Section 3. Universal Match-Detector (UMD)
architecture is proposed in Section 4. Implementing PTC
and ExSSC are given in Section 5. Benchmarks results are
given in Section 6. Conclusions are presented in Section
7.

2. Basic Definitions

We describe an SSC according to the Mealy model.
Let I, O, Q - be sets of input, output and state vectors
respectively. N;, N, and N, - numbers of elements in

these sets.
We will use the following notations for the SSC:

M fin, - D-lip-flops, x={x;,...xy }- input
variables of SSC, y={y,,....» N, } - current state variables,
Y={Y,,.., YNV} - next state variables, Z :{ZI,...,ZNZ -

output variables.

An SSC that is monotonic in state variables belongs to
the class of partially monotonic SSC [Matrosova 00].
Such an SSC is also called state monotonic [Levin 01]. A

Table 1. Example of a state monotonic SSC

state-monotonic SSC can be presented in the form of a
sum-of-products, which is unate in state variables [Mago
73]. Table 1 shows an example of a state monotonic SSC.
P={p, ,...,pr} is a set of product terms.

The basis of target implementation of the SSC is LUT-
based FPGA comprising Configurable Logic Blocks
(CLBs). The fault model used in this paper is general
model of single cell faults. We assume that at most one
CLB can produce a faulty output. The circuit primary
inputs are considered to be fault-free.

3. Self-healing SSC

SSC may function in four different modes: fault free
(F) mode; latent (L) mode; silent (S) mode and erroneous
(E) mode. The SSC behavior is described in presence of
either permanent or transient faults, using a graphical
representation. We introduce a Mode Transition Graph
(MTG) for this purpose.

An MTG describing the SSC behavior in a presence of
a permanent fault is shown in Figure la.

F - Fault free mode. The circuit remains in the fault
free mode until a fault occurs.

L - Latent mode. It is a mode where the presence of a
fault cannot be detected since a test vector detecting the
fault has not yet appeared at the circuit’s inputs. The
circuit moves to the latent mode from the fault free mode
when a fault occurs, and leaves the latent mode when a
test vector is applied to the circuit.

S - Silent mode. It is a mode where a fault does not
manifest itself in the form of a non-code output, although
the presence of the fault could potentially be detected if
the next state lines (or the memory) can be observed. In
this case only values of state variables Y;,....Yy are

distorted. The circuit moves to the silent mode from the
latent mode when a non-code state vector appears at the
flip-flop inputs or outputs. From the silent mode the
circuit is able either to move to an erroneous mode (E), or
to revert to the latent mode.

E - Erroneous mode. It is a mode in which the circuit
terminates its proper functioning, i.e. when a non-code
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output vector has been produced. The circuit is able to
move to this mode either from the silent mode or from the
latent mode.

The number of clocks, required for detecting a
permanent fault (transition to E mode) after the fault
occurs (transition from F mode to L mode) is called the
fault latency.

In the case of transient fault, the dynamics of the
above-mentioned modes are shown in Figure 1b.

Obviously, the latent mode, L, is absent in the case of a
transient fault. When the transient fault occurs, the SSC
moves from Fault mode, F, either to the Erroneous mode,
E, (if a non-code output vector is produced) or to the
silent mode, S, if a non-code next state vector is produced,
while the output vector is a codeword. Note, that the
sequential circuit is able to revert to the F mode after it's
functioning in the S mode, which means that the SSC has
become fault free again. Such a transition of the SSC from
the S mode to the F mode we will call self-healing.

The number of clocks, required for the disappearance
of the consequences of the transient fault (transition from
S mode to F mode) after the fault occurs (transition from
F mode to S mode), is called the self-healing time.

4. Universal Match Detector Architecture

The proposed universal self-checking architecture is
based on the Match Detector (MD) architecture presented
in [Levin 99]. The main advantage of the MD architecture
is that it does not require a redundant portion, which is
always necessary when using a standard solution of self-
checking FSMs. The MD architecture does not require
encoding of any output vectors and consequently provides
solutions having a relatively low overhead. The MD
architecture is based on using a Match Detector within the
checker. The checker that includes the Match Detector is
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Figure 2. The Schematic Diagram of UMD
Architecture

called an MD-checker.

The Universal Match Detector (UMD) architecture
proposed in this paper is a natural generalization of the
architecture described in [Levin 99]. A schematic diagram
of the UMD architecture is shown in Figure 2.

Like the MD-architecture, the UMD architecture
consists of two parts: a self-checking SSC and an MD-
checker. In turn, each of these parts contains two main
blocks: an “evolution” block and an “execution” block. In
addition, the SSC contains a Product Terms Compressor
(PTC). The function of the PTC is to form l-out-of- N,

code from the output codeword.

Self-checking SSC. The evolution block of the SSC
(EvSSC) implements all the product terms, while the
execution block of the SSC (ExSSC) implements outputs
functions and next state functions of the SSC. In turn, the
ExSSC consists of two sub-blocks: an execution block for
the next state logic (ExNSL) and an execution block for
the output logic (ExOUT).

Inputs of the evolution block of the SSC (EvSSC)
comprise primary inputs, X ={x,,...xy } of the SSC and

output memory signals ¥ ={Y;,...Yy }. Outputs of the

EvSSC correspond to product terms P. The EvSSC is
implemented as a tree, wherein each of the nodes is either
a LUT or a fan-out. The memory signals are coded by
codewords of the l-out-of- N, code. The Product Terms

Compressor (PTC) transforms the vector of product terms
into 1-out-of- N .

The MD-checker. The MD-checker consists of the
evolution block (EvCh), the execution block (ExCh) and
the Math Detector (MD) situated between them. EvCh
implements all minterms, while ExCh assembles these
minterms to implement the checker’s function.

The EvCh is built as a tree with “AND” nodes for
implementation of product terms and “fork” nodes
actually implemented by regular fan-outs. The ExCh
comprises either l-out-of- N,, or (N, -1)-out-of-N,
LUTs combining all minterms, coming from the EvCh.

EvCh is implemented in the form of a self-checking
two-rail tree. This tree is constructed in such a way that, in
the case of proper functioning of both the SSC and the
checker, one and only one dual-rail output (S;,V;) will have
the value (1,0). All the remaining outputs will have the
value (0,1). Outputs of the EvCh tree are inputs of the
ExCh of the checker. Each of the two-rail outputs of the
EvCh corresponds to a certain output vector of the
original SSC.

All S-outputs of EvCh serve as inputs of the first
component of the ExCh. This component is implemented
as a converging l-out-of- N, multilevel tree. All V-

outputs of the EvCh are inputs to the second component of
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the ExCh, which is implemented as a converging (N, -1)-
out-of- N, multilevel tree.

The Match Detector compares outputs of the PTC and
outputs of the evolution block of the checker (EvCh). Any
output vector of the PTC is formed by N, binary one-rail

outputs. Output vectors of EvCh are N, dual-rail-coded

outputs. If the two compared vectors are equal, the
resulting vector will be equal to the EvCh output vector. If
they are not, the ExCh will receive a predetermined faulty
dual-rail vector.

The main idea of the proposed approach is based on
the property that an output vector of the PTC and the
vector that is applied to ExCh are both equal to the 1-out-
of- N, encoding of the corresponding output codeword.

These vectors have to be equal for the proper functioning
of the SSC, and different in the case of a fault.
Comparison of these two vectors by the Match Detector
(MD) provides for the TSC property of the SSC.

5. Implementing PTC and ExSSC

In this section, we discuss the influence of different
types of implementing blocks PTC, ExOUT and ExNSL
on both the self-healing property and the latency of the
UMD architecture. We show that changing the basis of
implementation between the OR function and the 1-out-of-
n function allows adapting the UMD architecture to
permanent/transient faults.

All the blocks discussed (PTC, ExXNSL and ExOUT)
can be implemented by using either the OR or the 1-out-
of-n assembling elements. In both cases, the Self-checking
Property of the UMD architecture is satisfied. As they are
functionally equivalent in the fault free mode, these
solutions behave differently if a fault occurs. The 1-out-
of-n based solution, generally, provides a lower fault
latency than the OR based solution. In turn, the OR based
implementation provides the self-healing property for
transient faults.

If a fault affects an output vector of the ExOUT, the
properties of the MD architecture will detect the fault
immediately, so that self-healing cannot be achieved.
Thus, the ExOUT block has to be implemented by using
1-out-of-n functions, regardless of the orientation of the
UMD architecture (to permanent faults and/or transient
faults).

The self-healing may happen in the case when a fault
occurs and does not affect the SSC’s outputs but appears
on the SSC next state lines. To provide the self-healing, in
the case of transient fault orientation (maximization of the
self-healing ability), both the PTC and the ExXNSL are to
be implemented by OR elements. In turn, in the case of
permanent fault orientation (minimizing the fault latency)

both of blocks are to be implemented by l-out-of-n
elements.

Hence, the UMD architecture can be adapted to a
particular type of fault by choosing the basis of
implementation of its two blocks: PTC and ExNSL. The
1-out-of-n based implementation of these blocks leads to
an architecture that has the minimal permanent fault
latency and lacks the self-healing ability. On the other
hand, the OR based implementation leads to the high
permanent fault latency and the self-healing ability with
respect of faults.

The implementation of the SSC shown in Table 1 is
illustrated in Figure 3. Elements of ExNSL and PTC
blocks implement either the OR functions (v ) or the 1-
out-of-n functions (@ ) according to the selected solution.
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Figure 3. Exemplary SSC implemented according to
UMD architecture
Let a stuck-at-1 fault occur on the input x; of the

element realizing the product term p, . As was estimated

in Section 6, in the case when the fault is permanent, the
average latency for the OR-based implementation is equal
to 16.77; for the l-out-of-n — based implementation the
latency is equal to 7.17. The second solution provides a
substantial reduction in the latency (less than half). If the
fault is transient, then the OR-based implementation
provides the self-healing property. In our example the
probability of self-healing is 16.57%.

6. Experimental Results

To arrive at values of fault latencies and self-healing
for both of the proposed implementations of the UMD
architecture, experiments were performed with
benchmarks circuits in which both permanent and
transient fault injections were made. Behavior of the
faulty and the fault-free circuits was simulated on random
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input sequences. We assumed that the input vectors of the
SSC are equally probable. Random single stuck-at-1 faults
were injected into an arbitrary input or output bit position
of blocks (EvSSC, ExNSL, PTC and ExOUT). The time
selected for starting injecting the faults was the steady-
state time. We assumed that the duration of a transient
fault is equal to one clock cycle.

Experimental results are presented in Table 2. Column
T, corresponds to the fault latency for a permanent fault

in the OR-based case, and columns T, - for the 1-out-of-n
based case. Q=100%*(T, —T,)/T; is the percentage of the

latency reduction for the l-out-of-n based case in
comparison with latency for the OR-based case. T, and

Tyoq are the latency and the time for self-healing of

transient faults respectively. Percentages for sequences on
which the circuit survived are shown in column v .

Experimental results show that the 1-out-of-n - based
implementation provides a reduction of the permanent
faults latency of about 41% as compared with the OR-
based implementation. On the other hand, in the case of
the OR-based implementation, the SSC is able to survive
with a probability of about 21%.

7. Conclusions

In this paper, we present a novel architecture for self-
checking Synchronous Sequential Circuits (SSC) that is
based on a Universal Match Detector (UMD). We point
out the phenomenon of self-healing of such circuits.
Circuits with the self-healing ability are partially
monotonic in their state variables. Such circuits are called
state monotonic SSCs. On the one hand, the state
monotony enables the circuit to be self-healing with

Table 2. Experimental results

respect to transient faults. On the other hand, using state
monotonic SSCs leads to a considerable latency increase
for permanent faults. The proposed UMD architecture can
be adapted to both types of faults. In other words, the
same solution can be applied to both types of faults. Two
alternative implementations are proposed, relating to
functions of specific blocks in the proposed architecture.
In the case of the predominance of permanent faults these
blocks are implemented by using an 1l-out-of-n function,
while in the case where transient faults predominate the
same blocks are implemented by using an OR function.
This difference between the two versions of the same
architecture does not affect the overhead. Moreover, the
implementation can be changed from one type to the other
by reconfiguring the blocks in the UMD architecture.
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