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Abstract 

The paper deals with synthesis technique for designing 
circuits with cascade errors detection. The proposed 
technique is based on partitioning a scheme into a 
number of cascades followed by parity checking their 
output logic. The algorithm for partitioning the scheme 
into cascades is provided.  

An universal scheme of Finite State Machine (FSM) 
with the cascade errors detection is presented and 
investigated. The scheme does not require any redundant 
coding variables. Benchmark results are presented and 
show significantly low overhead requirement.  

1. Introduction 

Systematic error-detecting coding is one of the most 
effective instruments for concurrent error detection. This 
type of coding often utilize separate codes, since such 
codes allow preserving informational bits of the binary 
words to be coded, while complementing the binary 
words by check bits. The coded binary words form a set 
A  of codeword.  The set A  can be defined either by a 

list of the codewords, or by a specific property 
distinguishing the codewords from non-codewords.  For 
example, parity of the sum of binary values of all bits of 
the codeword can serve such a property. In order to 
ensure that the codewords differ from non-codewords, 
each non-codeword â , formed at an output of a scheme 
instead of a codeword a A∈ due to a specific type of 
fault, should either not to belong to the set A, or to be 
equal to a word a . Models of distortion of codewords are 
usually built taking into account characterizing features 
of the stream of faults and of the scheme under checking. 

As it is accepted in relevant papers, we will consider 
that faults are manifested by pins signals of “0” or “1” on 
input or output contacts of logical elements forming the 
scheme to be checked. The faults can be temporary or 
permanent. It is traditionally accepted that a time interval 
between occurrences of two adjacent faults is sufficient 
for coping with the earliest fault. Therefore, only a single 
fault can present simultaneously in a scheme under 
checking. This fact is usually considered when building 
models of acceptable distortions of output codewords. 
Most of relevant publications use the following two 
models of distortions.  

The first model is based on an assumption that a 
system of functions, which reflects conversion of 
information in a scheme under check, is monotonous. 
For example, schemes that do not comprise invertors 
satisfy the mentioned assumption. In such schemes, any 
single fault may only result in so-called unidirectional 
faults of output code words [1]. The Berger code [2], and 
sometimes the Smith code [3] are used for detecting 
unidirectional faults. A number of algorithms are known 
[4, 5, 6, 7], which allow converting an arbitrary scheme 
in such a manner that the Berger code could be used for 
its checking. To this end, the scheme can be modified in 
such a way, that only its input variables become negated 
[4]. The works [5, 6] propose algorithms of converting 
the scheme under check by duplication of some of its 
elements. The paper [7] describes a combination of 
several approaches.  

The second model is based on an assumption that a 
number k of distorted bits in a codeword is not greater 
than a predetermined threshold t . The paper [8], based 
on a study of a great number of benchmarks, shows that 
in most of the cases a single fault results in errors in two 
or less bits of a codeword ( )2k ≤
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In order to detect faults in a scheme satisfying the 
assumptions of both the first model and the second 
model, codes of Bose-Lynn [9] are used. The paper [10] 
describes an algorithm and a program that allows 
determining the maximal value of k for an arbitrary 
scheme, and therefore allows simplifying the checking 
scheme so that the overhead can be lowered by up to 
25%. 

Schemes having the threshold 1t =  are of a special 
interest, since they allow the parity checking. However, 
in this case, the variables to be checked must be 
implemented by schemes that do not comprise common 
elements.  One example of converting an arbitrary 
scheme to the mentioned scheme is investigated in [5]. 
The study shows that independent implementation of 
output variables in a scheme complicates the scheme 
approximately twice. The works [5, 11, 12, 13, 14] 
suggest solutions based on dividing the set of variables 
under check into groups. Each of the groups comprises 
the variables, which can be implemented by separate 
schemes.  These groups are complemented with one 
checking variable and are checked by parity.  

And, finally, there is an approach according to which 
no limitations of possible distortions of a code word are 
set. In other words, it is assumed that an erroneous 
codeword â , obtained as a result of a single fault, may 
be equal to any other codeword from A . For the above 
approach, no code exists which could detect such faults. 
Usually, duplication of the scheme can be useful in such 
cases. The paper [15] suggests partitioning the set of 
variables to be checked into groups in such a manner that 
each group is implemented by a separate independent 
scheme. Since the schemes, implementing variables 
belonging to different groups, do not have common 
elements, only variables of one of the groups can be 
distorted. This fact is used for detecting faults. 

Among the criteria for evaluating various methods of 
detecting faults, the criterion of reducing the scheme 
overhead is one of the most important criteria. 
Simplification of the scheme means not only the cost 
reduction, the size reduction and reduction of energy 
consumption; it also means reduction of probability of 
faults, i.e., improving the scheme reliability. The paper 
[13] comprises the most complete comparative study of 
various known methods of checking. According to [13], 
the minimal overhead can be achieved by the duplication 
and by the parity check. The difference between the 
respective results can be of about 10% in the saved 
overhead. It is noted that sometimes conversion of a 
scheme for parity check is comparable, by complexity, 
with duplication of the scheme.  

The present paper studies whether the above 
conversion can be simplified by preliminary partitioning 
the scheme under check into a number of sequential sub-

schemes (cascades) in such a manner, that any constant 
fault in a cascade would result in distorting of no more 
than a single bit at the output of the cascade.  In this 
case, the scheme to be checked is additionally equipped 
only by circuits forming one additional parity bit.
Naturally, if parity of the code is constant and known in 
advance, for example if the cascade is a decoder, no 
additional bits and circuits for such bits are required. One 
of the disadvantages of the cascade checking is that the 
parity check is required not only for output variables of 
the whole scheme, but also for output variables of each 
of the cascades.   

In order to obtain the total estimation of the proposed 
method, it was applied for checking sequential circuits 
described by Finite State Machine (FSM) model. A 
cascade FSM (CFSM) was developed and investigated. 
The scheme comprises three cascades, the output 
variables are checked only at two of the cascades.  

The paper is organized in the following order. Section 
2 describes, in detail, the methods of partitioning a 
scheme into cascades. FSM with the cascaded checking 
is presented in Section 3.  Section 4 comprises results of 
studying overhead of the CFSMs.

2. Partitioning schemes into cascades 

Our task is to represent a combinational scheme in the 
form of cascades connected in sequence, and in such a 
manner that any single fault in a cascade results in 
distortion of no more than one bit at the output of the 
cascade. In the paper, the fault will be understood as a 
constant stuck-at fault at an input or at an output of an 
element. Let us consider the task in two versions. In the 
first version, the scheme to be checked is given and the 
only problem is to distribute its component elements 
between the cascades. Let us call such first version the 
structural cascade decomposition. In the second version, 
the scheme to be checked is unknown but its functional 
description is available. The problem is to divide the 
scheme into cascades while designing it. Such a second 
version will be called the functional cascade 
decomposition.

The structural cascade decomposition. Let us consider 
a scheme having no feedback connections. En exemplary 
scheme is illustrated in Fig. 1.  
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Figure 1. Exemplary scheme of the structure 
cascade decomposition.

The numbering of input and output pins of the 
scheme belongs to the proposed decomposition 
method and will be explained below. 

It should be noted that, for proper conversion of the 
scheme, functions implemented by elements of the 
scheme are not important; only connections there-
between are important. The basic condition of the 
algorithm of the structural cascade decomposition is as 
follows: an element which has outputs with a splitting 
coefficient two and more then two can be situated only 
at the output of the cascade. It is obvious that if the 
above condition is satisfied, all outputs of the cascade 
will be implemented by independent schemes and, 
consequently, any fault may affect the value of 
maximum one output variable. 

In order to partition the scheme into cascades, let us 
number the component elements and their outputs 
according to the following rules: 
- assign to each specific element a number equal to 

the maximal number among those assigned to the 
inputs of the element; this number is  also the 
cascade level. 

- assign a number  c  to each specific non-fan-out 
output of an element having number c ;

- assign a number  1c +  to each split output of an 
element having number c ;

- assume that the number of an input of an element is 
equal to the number of an output connected to that 
input.  

Let us start the numeration from input of the scheme, 
assuming that number “1” is assigned to input pins of the 
scheme. After running the algorithm, the number of an 
element is the same of its cascade. An example of the 
numeration is shown in Fig. 1, and the result of the 
cascade decomposition – in Fig. 2.   

As for the checking, the scheme should be 
accomplished with a circuit for parity prediction and 
with a checker which comprises an EXOR block and a 
two-rail checker. 
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Figure 2. The result of the cascade 
decomposition of scheme from Figure 1. 

Note that the cascade allows parity checking even if it 
comprises fanouts.  Therefore, the condition of absence 
of fanouts is sufficient but not necessary. However, in 
order to remove the mentioned limitation, a specific 
functional analysis should be performed.     

The functional cascade decomposition. Let we have a 
system of Boolean functions 

( )1, , , 1, , .i Ly F x x i N= =  The task is to 
implement the system in the form of a scheme divided 
into cascades which are checked by parity. In other 
words, the necessity of cascade operation should be 
taken into account at the stage of developing the scheme.  
The task does not have a single solution. 

We consider only two-level implementation of a Sum-
of-Products representation of a logic function.  

Theorem 1. If output variables iy  and jy of a two-
level logic scheme are mutually disjoint 

( )& 0i jy y = , and both have values “0” in a 

codeword, there is no such a fault in the scheme, 
which would result in changing values of the both 
variables to “1”  in the same codeword. 

The Proof of the Theorem follows from the fact that 
any two output variables iy  and jy are disjoint and, 
thus, don’t include any common products. 

Consequence 1. If the two-level scheme allows 
occurrence of only unidirectional faults, and its outputs 
are coded by 1- - -out of N code, a single fault may 
result in changing value of no more than one output 
variable.  

Proof of the consequence is obvious. If the 
conditions of the consequence are fulfilled, the parity 
of all the code words is the same, and no parity 
prediction is required for checking additional check 
bits. Implementation of the above definitions is 
illustrated by the example of FSM having a cascade 
checking arrangement.  
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3. FSM with Cascaded Checking

We propose a new architecture for the FSM and a 
checker. The architecture does not require any 
encoding of output vectors and consequently allows 
reduction of the required overheads.  

The FSM consists of three blocks: an "evolution" 
block, an "execution" block and a Product Terms 
Compressor (PTC) [16]. A schematic diagram of the 
self-checking FSM is shown in Figure 3. 
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Figure 3. A schematic diagram of the self-
checking FSM. 

Inputs of the evolution block of the FSM (EvFSM) 
comprise working inputs X of the FSM and output 
memory signals { }1, , RZ z z= . Outputs of the 
EvFSM correspond to product 
terms { }1, , HP p p= .

Outputs { }1, , Mm m of the PTC correspond to of 
output codewords. At each clock, one and only one 
product term is equal to 1, which means that EvFSM 
outputs are codewords of the 1 out of H− − − code. 
The EvFSM is denoted in Figure 3 
as ( )X Z Pδ× → . The Product Terms Compressor 

(PTC) transforms 1 out of H− − − code ( )Pδ  into 

1 out of M− − −  code of ( )Yδ . The number of 
codewords is essentially smaller than the number of 
product terms for the typical FSM.  

The execution block of the FSM (ExFSM) 
implements OR-assembling of the EvFSM outputs. 
Notice that each of output signals is formed by  its own 
independent logic circuit. Outputs of ExFSM are 
output signals Y of the FSM and input memory 

signals { }1, , RD d d= . The memory signals are 

coded by codewords of the 1 out of R− − − code.   
The checker comprises a number of EXOR based 
adders and a two-rail checker. M outputs of PTC are 
partitioned into two subsets. The first of the subsets 
includes outputs corresponding to codewords with 
even number of ones, while the second subset 
corresponds of codewords with odd number of ones. 
Signals of each of the subsets are assembled by 
EXORs. As a result, indicators "even" em and "odd" 

om are generated.  
Obviously, unequal combinations of the checker's 

outputs em  and om correspond to codeword 
occurrence on the FSM's outputs. According to 
Consequence 1, any fault may affect to the value of not 
more than one of PTC outputs and, consequently, leads 
to equality of   outputs em  and om .

In order to check output signals, one of the signals 
(for example, 1y ) is distinguished while the rest of the 

signals are EXOR-summed with even signal em :
1

2 1,o e
Ny y y m y y= ⊕ ⊕ ⊕ = .  Signals 

1, , Rd d  are checked in similar manner taking into 
account that their codewords belong to 
1 out of R− − − code: 

1
2 1,o

Rd d d d d= ⊕ ⊕ = . Codewords is 
indicated by inequality of three pairs of signals: 

( ) ( ) ( )0 1 0 1, , , , ,o em m d d y y . This fact is checked 

by the two-rail checker. 
Example 
Let us illustrate the above description on an example 

of a reversible counter. A table of transitions/outputs 
of the counter is shown as Table 1.  

Table 1. Transition/output table for the 
example 

x2 x1 S1 S2 S3
0  0 S1/11 S1/00 S1/11 
0  1 S2/00 S3/00 S1/01 
1  0 S3/10 S1/00 S2/00 

The scheme of the FSM, partitioned into cascades, is 
presented in Fig 4. The scheme of a checker is 
presented in Fig. 5.  
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Let us define and prove the property of the 
cascade checking to detect any errors in an output code 
word caused by faults of the considered class.  

Theorem 2. CFSM is fault secure with respect of 
faults of the considered class. 

Proof: According to the consequence 1, no more 
than one bit can be erroneous in the binary word: 

1, , .Mm m   If such an error takes place, the 

variables om  and em  will take equal values, which 
will result in manifestation of the fault on the output of 
the two-rail checker, independently of values of other 
signals on its input. If the word 1, , .Mm m  is free of 

errors, then an error in the output word 1, , Ny y  is 
also possible only in one single bit thereof. Similarly 
to the previous case, if a single bit error occurs in the 
output word, it will lead to the fact that 1 0y y= , and 

0 1r r= . It can be seen that the system detects any 

errors in the word 1, , Ny y . Signals 1, , Rd d  for 
checking flip-flops are checked in a similar way as the 
output signals. If a flip-flop is faulty, it will be 
detected in one of the next clocks, in the form of 

erroneous (different from1 out of R− − − ) values of 

the words 0 , , .Mm m  and/or 1, , Rd d .
Notice, that the self-testing property of the CFSM is 

obvious, and thus the CFSM is totally self-checking.

4. Experimental results 

In order to examine the proposed approach for 
design of self-checking CFSMs a number of 
experiments on standard MCNC benchmarks were 
provided. The experiments were made by using 
Leonardo Spectrum Synthesis tool. LUT-based FPGA 
Xilinx Spartan-3 were used as a basis for the 
implementation of CFSMs.  Results of the experiments 
are presented in Table 2.  

Table 2. Experimental results 

NAME N M R W(FSM) W( FSM) W(Ch) W%

1 bbsse 7 11 13 37 47 13 62
2 bbtas 2 4 6 12 16 8 100
3 beecount 4 4 7 31 29 8 19
4 cse 7 11 16 72 90 15 46
5 Dk14 5 12 7 48 47 11 21
6 Dk15 5 11 4 14 24 10 143
7 Dk16 3 5 27 64 73 4 20
8 Dk17 3 5 8 22 24 9 50
9 Dk512 3 4 15 18 21 11 78
10 Ex1 19 60 20 104 195 36 122
11 Ex4 3 5 3 6 6 7 117
12 Ex6 8 12 8 43 46 12 35
13 keyb 2 3 19 71 86 11 17
14 planet 19 54 48 136 182 45 67
15 pma 8 24 24 122 119 22 16
16 S1 6 20 20 95 85 18 8
17 S208 2 4 18 36 48 13 69
18 S298 6 5 218 549 570 80 18
19 S386 7 11 13 43 54 13 56
20 S420 2 4 18 36 48 12 67
21 S510 7 13 47 78 74 25 27
22 S820 19 22 25 91 132 25 72
23 S832 19 22 25 88 122 26 68
24 S1488 19 64 48 172 264 47 81
25 sand 9 27 32 141 151 26 25
26 Scf 54 39 121 147 194 75 83
27 sse 7 11 16 42 54 13 59
28 styr 10 25 30 133 148 21 27
29 tbk 3 5 32 256 297 17 23

The three columns in the table, which follow the 
FSM benchmark’s capture, respectively show 
characteristics of its complexity: 
N  – the number of the outputs, M  – the number of 
codewords, R  – the number of states. The columns 

( )W FSM and ( )W CFSM  respectively 
characterize the complexity of the initial and the 
cascade schemes, presented as the number of LUTs. 
The column ( )W Ch corresponds to the complexity of 
the LUT-based checker. Finally, the last column 
presents the scheme’s overhead W  in percents.  
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As can be seen from the table the overhead changes 
in relatively broad limits. Large values of the overhead 
(100% and higher) can usually be found in relatively 
simple FSMs, while a small complication of about 10-
20 LUTs results in essential increase of the overhead.  
Approximately for one third of the benchmarks, the 
overhead does not exceed 30%, and for half of the 
benchmarks – it does not exceed 50%. Notice, that the 
relative overhead decreases with increase of 
complexity of the FSMs. 

For some benchmarks, the CFSM implementation is 
simpler than FSM implementation (say, for beecount, 
Dk14, pma, and some more). The meaning of such a 
feature is that the partitioning of a sequential scheme 
into cascades creates additional possibilities for 
simplification of the scheme which possibilities are not 
utilized by standard tools.  

When estimating the obtained results, it can be 
concluded that the proposed method allows achieving 
the totally self-checking property for a very essential 
group of the FSMs and by relatively low overhead.  

5. Conclusions 

The paper proposes a method designing self-
checking FSMs. The method is based on partitioning 
of a scheme to be checked into cascades, and in such a 
manner that any single fault in any cascade could result 
in distortion of no more that a single variable at the 
output of the cascade.  The proposed method suggests 
checking all output variables of all cascades of the 
scheme EXOR. The algorithm for partitioning the 
scheme into cascades has been developed.  

Based on the proposed method the authors obtained 
and studied a universal FSM-scheme with the cascade 
checking. The universal scheme comprises three 
cascades and does not use any coding variable.  

The benchmark study has shown that the method 
does not require large overhead. For example, in one 
half of the cases the overhead did not exceed 50%, and 
in some cases it was even lower than 20%.  

Notice, that the proposed cascade structure allows 
equalizing signal delays in various circuits and also 
allows increasing the efficiency owing to the use of 
pipeline processing of operation.
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