
Cascade Scheme for Concurrent Errors Detection1

1 This research was supported by Israeli Science Foundation under grant No. 545/04.

Ilya Levin, Vladimir Ostrovsky
Tel Aviv University, Ramat Aviv, Tel Aviv

69978, Israel,
i.levin@ieee.org, vladio@post.tau.ac.il

Osnat Keren, Vladimir Sinelnikov
Bar Ilan University, Ramat Gan 52900,

Israel,
kereno@eng.biu.ac.il, sinel@hait.ac.il

Abstract

The paper deals with synthesis technique for designing
circuits with cascade errors detection. The proposed
technique is based on partitioning a scheme into a
number of cascades followed by parity checking their
output logic. The algorithm for partitioning the scheme
into cascades is provided.

An universal scheme of Finite State Machine (FSM)
with the cascade errors detection is presented and
investigated. The scheme does not require any redundant
coding variables. Benchmark results are presented and
show significantly low overhead requirement.

1. Introduction

Systematic error-detecting coding is one of the most
effective instruments for concurrent error detection. This
type of coding often utilize separate codes, since such
codes allow preserving informational bits of the binary
words to be coded, while complementing the binary
words by check bits. The coded binary words form a set
A of codeword. The set A can be defined either by a

list of the codewords, or by a specific property
distinguishing the codewords from non-codewords. For
example, parity of the sum of binary values of all bits of
the codeword can serve such a property. In order to
ensure that the codewords differ from non-codewords,
each non-codeword â , formed at an output of a scheme
instead of a codeword a A∈ due to a specific type of
fault, should either not to belong to the set A, or to be
equal to a word a . Models of distortion of codewords are
usually built taking into account characterizing features
of the stream of faults and of the scheme under checking.

As it is accepted in relevant papers, we will consider
that faults are manifested by pins signals of “0” or “1” on
input or output contacts of logical elements forming the
scheme to be checked. The faults can be temporary or
permanent. It is traditionally accepted that a time interval
between occurrences of two adjacent faults is sufficient
for coping with the earliest fault. Therefore, only a single
fault can present simultaneously in a scheme under
checking. This fact is usually considered when building
models of acceptable distortions of output codewords.
Most of relevant publications use the following two
models of distortions.

The first model is based on an assumption that a
system of functions, which reflects conversion of
information in a scheme under check, is monotonous.
For example, schemes that do not comprise invertors
satisfy the mentioned assumption. In such schemes, any
single fault may only result in so-called unidirectional
faults of output code words [1]. The Berger code [2], and
sometimes the Smith code [3] are used for detecting
unidirectional faults. A number of algorithms are known
[4, 5, 6, 7], which allow converting an arbitrary scheme
in such a manner that the Berger code could be used for
its checking. To this end, the scheme can be modified in
such a way, that only its input variables become negated
[4]. The works [5, 6] propose algorithms of converting
the scheme under check by duplication of some of its
elements. The paper [7] describes a combination of
several approaches.

The second model is based on an assumption that a
number k of distorted bits in a codeword is not greater
than a predetermined threshold t . The paper [8], based
on a study of a great number of benchmarks, shows that
in most of the cases a single fault results in errors in two
or less bits of a codeword ()2k ≤

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

In order to detect faults in a scheme satisfying the
assumptions of both the first model and the second
model, codes of Bose-Lynn [9] are used. The paper [10]
describes an algorithm and a program that allows
determining the maximal value of k for an arbitrary
scheme, and therefore allows simplifying the checking
scheme so that the overhead can be lowered by up to
25%.

Schemes having the threshold 1t = are of a special
interest, since they allow the parity checking. However,
in this case, the variables to be checked must be
implemented by schemes that do not comprise common
elements. One example of converting an arbitrary
scheme to the mentioned scheme is investigated in [5].
The study shows that independent implementation of
output variables in a scheme complicates the scheme
approximately twice. The works [5, 11, 12, 13, 14]
suggest solutions based on dividing the set of variables
under check into groups. Each of the groups comprises
the variables, which can be implemented by separate
schemes. These groups are complemented with one
checking variable and are checked by parity.

And, finally, there is an approach according to which
no limitations of possible distortions of a code word are
set. In other words, it is assumed that an erroneous
codeword â , obtained as a result of a single fault, may
be equal to any other codeword from A . For the above
approach, no code exists which could detect such faults.
Usually, duplication of the scheme can be useful in such
cases. The paper [15] suggests partitioning the set of
variables to be checked into groups in such a manner that
each group is implemented by a separate independent
scheme. Since the schemes, implementing variables
belonging to different groups, do not have common
elements, only variables of one of the groups can be
distorted. This fact is used for detecting faults.

Among the criteria for evaluating various methods of
detecting faults, the criterion of reducing the scheme
overhead is one of the most important criteria.
Simplification of the scheme means not only the cost
reduction, the size reduction and reduction of energy
consumption; it also means reduction of probability of
faults, i.e., improving the scheme reliability. The paper
[13] comprises the most complete comparative study of
various known methods of checking. According to [13],
the minimal overhead can be achieved by the duplication
and by the parity check. The difference between the
respective results can be of about 10% in the saved
overhead. It is noted that sometimes conversion of a
scheme for parity check is comparable, by complexity,
with duplication of the scheme.

The present paper studies whether the above
conversion can be simplified by preliminary partitioning
the scheme under check into a number of sequential sub-

schemes (cascades) in such a manner, that any constant
fault in a cascade would result in distorting of no more
than a single bit at the output of the cascade. In this
case, the scheme to be checked is additionally equipped
only by circuits forming one additional parity bit.
Naturally, if parity of the code is constant and known in
advance, for example if the cascade is a decoder, no
additional bits and circuits for such bits are required. One
of the disadvantages of the cascade checking is that the
parity check is required not only for output variables of
the whole scheme, but also for output variables of each
of the cascades.

In order to obtain the total estimation of the proposed
method, it was applied for checking sequential circuits
described by Finite State Machine (FSM) model. A
cascade FSM (CFSM) was developed and investigated.
The scheme comprises three cascades, the output
variables are checked only at two of the cascades.

The paper is organized in the following order. Section
2 describes, in detail, the methods of partitioning a
scheme into cascades. FSM with the cascaded checking
is presented in Section 3. Section 4 comprises results of
studying overhead of the CFSMs.

2. Partitioning schemes into cascades

Our task is to represent a combinational scheme in the
form of cascades connected in sequence, and in such a
manner that any single fault in a cascade results in
distortion of no more than one bit at the output of the
cascade. In the paper, the fault will be understood as a
constant stuck-at fault at an input or at an output of an
element. Let us consider the task in two versions. In the
first version, the scheme to be checked is given and the
only problem is to distribute its component elements
between the cascades. Let us call such first version the
structural cascade decomposition. In the second version,
the scheme to be checked is unknown but its functional
description is available. The problem is to divide the
scheme into cascades while designing it. Such a second
version will be called the functional cascade
decomposition.

The structural cascade decomposition. Let us consider
a scheme having no feedback connections. En exemplary
scheme is illustrated in Fig. 1.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

4 86

5 7 10

9

1
2

2 2

2
2

2

2
2 3

3

3
1

y1

y2

y3
3

3
3

3

33

2

2

2

1

3

2

x1
x2

x3

x1
x3

x2

x4

1
1
1

1

1
1

1

1
1

1

1

Figure 1. Exemplary scheme of the structure
cascade decomposition.

The numbering of input and output pins of the
scheme belongs to the proposed decomposition
method and will be explained below.

It should be noted that, for proper conversion of the
scheme, functions implemented by elements of the
scheme are not important; only connections there-
between are important. The basic condition of the
algorithm of the structural cascade decomposition is as
follows: an element which has outputs with a splitting
coefficient two and more then two can be situated only
at the output of the cascade. It is obvious that if the
above condition is satisfied, all outputs of the cascade
will be implemented by independent schemes and,
consequently, any fault may affect the value of
maximum one output variable.

In order to partition the scheme into cascades, let us
number the component elements and their outputs
according to the following rules:
- assign to each specific element a number equal to

the maximal number among those assigned to the
inputs of the element; this number is also the
cascade level.

- assign a number c to each specific non-fan-out
output of an element having number c ;

- assign a number 1c + to each split output of an
element having number c ;

- assume that the number of an input of an element is
equal to the number of an output connected to that
input.

Let us start the numeration from input of the scheme,
assuming that number “1” is assigned to input pins of the
scheme. After running the algorithm, the number of an
element is the same of its cascade. An example of the
numeration is shown in Fig. 1, and the result of the
cascade decomposition – in Fig. 2.

As for the checking, the scheme should be
accomplished with a circuit for parity prediction and
with a checker which comprises an EXOR block and a
two-rail checker.

1x1
x2

x1
x3

3
x2

x4

4
6

5

8

2
9

7

10

v1

v2

v3

v8

v3

v5 = y2

y1

y3

y2
Cascade 1

Cascade 2
Cascade 3

Figure 2. The result of the cascade
decomposition of scheme from Figure 1.

Note that the cascade allows parity checking even if it
comprises fanouts. Therefore, the condition of absence
of fanouts is sufficient but not necessary. However, in
order to remove the mentioned limitation, a specific
functional analysis should be performed.

The functional cascade decomposition. Let we have a
system of Boolean functions

()1, , , 1, , .i Ly F x x i N= = The task is to
implement the system in the form of a scheme divided
into cascades which are checked by parity. In other
words, the necessity of cascade operation should be
taken into account at the stage of developing the scheme.
The task does not have a single solution.

We consider only two-level implementation of a Sum-
of-Products representation of a logic function.

Theorem 1. If output variables iy and jy of a two-
level logic scheme are mutually disjoint

()& 0i jy y = , and both have values “0” in a

codeword, there is no such a fault in the scheme,
which would result in changing values of the both
variables to “1” in the same codeword.

The Proof of the Theorem follows from the fact that
any two output variables iy and jy are disjoint and,
thus, don’t include any common products.

Consequence 1. If the two-level scheme allows
occurrence of only unidirectional faults, and its outputs
are coded by 1- - -out of N code, a single fault may
result in changing value of no more than one output
variable.

Proof of the consequence is obvious. If the
conditions of the consequence are fulfilled, the parity
of all the code words is the same, and no parity
prediction is required for checking additional check
bits. Implementation of the above definitions is
illustrated by the example of FSM having a cascade
checking arrangement.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

3. FSM with Cascaded Checking

We propose a new architecture for the FSM and a
checker. The architecture does not require any
encoding of output vectors and consequently allows
reduction of the required overheads.

The FSM consists of three blocks: an "evolution"
block, an "execution" block and a Product Terms
Compressor (PTC) [16]. A schematic diagram of the
self-checking FSM is shown in Figure 3.

Two rail

Checker

Mo mo

meMe

R-1
do
d1

y0

y1

ro

r1

R

H M N

y

N -1

Z

X

L
EvFSM PTC ExFSM

Checker

FSM

Figure 3. A schematic diagram of the self-
checking FSM.

Inputs of the evolution block of the FSM (EvFSM)
comprise working inputs X of the FSM and output
memory signals { }1, , RZ z z= . Outputs of the
EvFSM correspond to product
terms { }1, , HP p p= .

Outputs { }1, , Mm m of the PTC correspond to of
output codewords. At each clock, one and only one
product term is equal to 1, which means that EvFSM
outputs are codewords of the 1 out of H− − − code.
The EvFSM is denoted in Figure 3
as ()X Z Pδ× → . The Product Terms Compressor

(PTC) transforms 1 out of H− − − code ()Pδ into

1 out of M− − − code of ()Yδ . The number of
codewords is essentially smaller than the number of
product terms for the typical FSM.

The execution block of the FSM (ExFSM)
implements OR-assembling of the EvFSM outputs.
Notice that each of output signals is formed by its own
independent logic circuit. Outputs of ExFSM are
output signals Y of the FSM and input memory

signals { }1, , RD d d= . The memory signals are

coded by codewords of the 1 out of R− − − code.
The checker comprises a number of EXOR based
adders and a two-rail checker. M outputs of PTC are
partitioned into two subsets. The first of the subsets
includes outputs corresponding to codewords with
even number of ones, while the second subset
corresponds of codewords with odd number of ones.
Signals of each of the subsets are assembled by
EXORs. As a result, indicators "even" em and "odd"

om are generated.
Obviously, unequal combinations of the checker's

outputs em and om correspond to codeword
occurrence on the FSM's outputs. According to
Consequence 1, any fault may affect to the value of not
more than one of PTC outputs and, consequently, leads
to equality of outputs em and om .

In order to check output signals, one of the signals
(for example, 1y) is distinguished while the rest of the

signals are EXOR-summed with even signal em :
1

2 1,o e
Ny y y m y y= ⊕ ⊕ ⊕ = . Signals

1, , Rd d are checked in similar manner taking into
account that their codewords belong to
1 out of R− − − code:

1
2 1,o

Rd d d d d= ⊕ ⊕ = . Codewords is
indicated by inequality of three pairs of signals:

() () ()0 1 0 1, , , , ,o em m d d y y . This fact is checked

by the two-rail checker.
Example
Let us illustrate the above description on an example

of a reversible counter. A table of transitions/outputs
of the counter is shown as Table 1.

Table 1. Transition/output table for the
example

x2 x1 S1 S2 S3
0 0 S1/11 S1/00 S1/11
0 1 S2/00 S3/00 S1/01
1 0 S3/10 S1/00 S2/00

The scheme of the FSM, partitioned into cascades, is
presented in Fig 4. The scheme of a checker is
presented in Fig. 5.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

d0

y1

y2

d2

d1

p1

p8

m2

m4

m4

m3

p3

p5

p2

p9

p6

m1

m2

m3

m4

p2p4
p5p6p9

p8

p3

p1

p7

x1
x2

s1

x1

x2

s2

s3

x1

x2

x1

x2

p1

p2

p3

p4

p5

p6

p7

p8

p9

Figure 4. Exemplary cascade FSM.

Two-rail
Checker

y1
y2

m4

m2
m3

d2

d3

d1

mo

r0

r1

m1

me

y1

y0

d0

d1

Figure 5. The checker for the cascade FSM.

Let us define and prove the property of the
cascade checking to detect any errors in an output code
word caused by faults of the considered class.

Theorem 2. CFSM is fault secure with respect of
faults of the considered class.

Proof: According to the consequence 1, no more
than one bit can be erroneous in the binary word:

1, , .Mm m If such an error takes place, the

variables om and em will take equal values, which
will result in manifestation of the fault on the output of
the two-rail checker, independently of values of other
signals on its input. If the word 1, , .Mm m is free of

errors, then an error in the output word 1, , Ny y is
also possible only in one single bit thereof. Similarly
to the previous case, if a single bit error occurs in the
output word, it will lead to the fact that 1 0y y= , and

0 1r r= . It can be seen that the system detects any

errors in the word 1, , Ny y . Signals 1, , Rd d for
checking flip-flops are checked in a similar way as the
output signals. If a flip-flop is faulty, it will be
detected in one of the next clocks, in the form of

erroneous (different from1 out of R− − −) values of

the words 0 , , .Mm m and/or 1, , Rd d .
Notice, that the self-testing property of the CFSM is

obvious, and thus the CFSM is totally self-checking.

4. Experimental results

In order to examine the proposed approach for
design of self-checking CFSMs a number of
experiments on standard MCNC benchmarks were
provided. The experiments were made by using
Leonardo Spectrum Synthesis tool. LUT-based FPGA
Xilinx Spartan-3 were used as a basis for the
implementation of CFSMs. Results of the experiments
are presented in Table 2.

Table 2. Experimental results

NAME N M R W(FSM) W(FSM) W(Ch) W%

1 bbsse 7 11 13 37 47 13 62
2 bbtas 2 4 6 12 16 8 100
3 beecount 4 4 7 31 29 8 19
4 cse 7 11 16 72 90 15 46
5 Dk14 5 12 7 48 47 11 21
6 Dk15 5 11 4 14 24 10 143
7 Dk16 3 5 27 64 73 4 20
8 Dk17 3 5 8 22 24 9 50
9 Dk512 3 4 15 18 21 11 78
10 Ex1 19 60 20 104 195 36 122
11 Ex4 3 5 3 6 6 7 117
12 Ex6 8 12 8 43 46 12 35
13 keyb 2 3 19 71 86 11 17
14 planet 19 54 48 136 182 45 67
15 pma 8 24 24 122 119 22 16
16 S1 6 20 20 95 85 18 8
17 S208 2 4 18 36 48 13 69
18 S298 6 5 218 549 570 80 18
19 S386 7 11 13 43 54 13 56
20 S420 2 4 18 36 48 12 67
21 S510 7 13 47 78 74 25 27
22 S820 19 22 25 91 132 25 72
23 S832 19 22 25 88 122 26 68
24 S1488 19 64 48 172 264 47 81
25 sand 9 27 32 141 151 26 25
26 Scf 54 39 121 147 194 75 83
27 sse 7 11 16 42 54 13 59
28 styr 10 25 30 133 148 21 27
29 tbk 3 5 32 256 297 17 23

The three columns in the table, which follow the
FSM benchmark’s capture, respectively show
characteristics of its complexity:
N – the number of the outputs, M – the number of
codewords, R – the number of states. The columns

()W FSM and ()W CFSM respectively
characterize the complexity of the initial and the
cascade schemes, presented as the number of LUTs.
The column ()W Ch corresponds to the complexity of
the LUT-based checker. Finally, the last column
presents the scheme’s overhead W in percents.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

As can be seen from the table the overhead changes
in relatively broad limits. Large values of the overhead
(100% and higher) can usually be found in relatively
simple FSMs, while a small complication of about 10-
20 LUTs results in essential increase of the overhead.
Approximately for one third of the benchmarks, the
overhead does not exceed 30%, and for half of the
benchmarks – it does not exceed 50%. Notice, that the
relative overhead decreases with increase of
complexity of the FSMs.

For some benchmarks, the CFSM implementation is
simpler than FSM implementation (say, for beecount,
Dk14, pma, and some more). The meaning of such a
feature is that the partitioning of a sequential scheme
into cascades creates additional possibilities for
simplification of the scheme which possibilities are not
utilized by standard tools.

When estimating the obtained results, it can be
concluded that the proposed method allows achieving
the totally self-checking property for a very essential
group of the FSMs and by relatively low overhead.

5. Conclusions

The paper proposes a method designing self-
checking FSMs. The method is based on partitioning
of a scheme to be checked into cascades, and in such a
manner that any single fault in any cascade could result
in distortion of no more that a single variable at the
output of the cascade. The proposed method suggests
checking all output variables of all cascades of the
scheme EXOR. The algorithm for partitioning the
scheme into cascades has been developed.

Based on the proposed method the authors obtained
and studied a universal FSM-scheme with the cascade
checking. The universal scheme comprises three
cascades and does not use any coding variable.

The benchmark study has shown that the method
does not require large overhead. For example, in one
half of the cases the overhead did not exceed 50%, and
in some cases it was even lower than 20%.

Notice, that the proposed cascade structure allows
equalizing signal delays in various circuits and also
allows increasing the efficiency owing to the use of
pipeline processing of operation.

6. References

[1] Lala, P., Self-checking and Fault-Tolerant Digital
Design, Morgan Kaufmann Publishers, San-
Francisco/San-Diego/New-York/Boston/ London/
Sydney/ Tokyo, 2000.

[2] Berger, J. M., “A Note on Error Detection Codes
for Asymmetric Channels”, Information and Control,
Vol. 4, 1961, 68-73.
[3] J. E. Smith, “On separable unordered codes”, IEEE
Trans. Computers, vol. C-33, no. 8, Aug., 1984, 741-743.
[4] N.K. Jha and S.-J. Wang, “Design and Synthesis of
Self-Checking VLSI Circuits”, IEEE Transaction
CAD, Vol. 12, No. 6, 1993, 878–887.
[5] Kaushik De., Chitra Natarajan, Devi Nair,
Prithviraj Banerjee, “RSYN: A System for Automated
Synthesis of Reliable Multilevel Circuits”, IEEE
Transaction on Very Large Integration (VLSI) Systems,
Vol. 2, 1994, No. 2, 186-195.
[6] V.V. Saposhnikov, A. Morosov, Vl. V.
Saposhnikov, M. Gössel., “A New Design Method for
Self-Checking Unidirectional Combinational Circuits”,
Journal of Electronic Testing: Theory and
Applications, 12, 1998, 41-53.
[7] C. Metra, S. Francescantonio, M. Omana.,
“Automatic Modification of Sequential Circuits for
Self-Checking Implementation”, Proceedings of the
18th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT’03), 2003, 417-
424.
[8] I. Pomeranz and S.M. Reddy., “Recovery During
Concurrent On-Line Testing of Identical Circuits”.,
Proceedings of the 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT’05), 475-483.
[9] Bose, B. and D. J. Lin, “Systematic Unidirectional
Error-Detecting Codes”, IEEE Trans. Comp., Nov.
1985, 1026-1032.
[10] M. Omana, O. Losco, C. Metra, A. Pagni. “On the
Selection of Unidirectional Error Detecting Codes for
Self-Checking Circuits Area Overhead and
Performance Optimization”., Proceedings of the 4-th
IEEE International On-line Testing Symposium, pp.
163-168.
[11] E. S. Sogomonyan, Design of Built-in Self-
Checking Monitoring Circuits for Combinational
Devices, Automation and Remote Control, vol. 35, No.
2, 1974, 280-289.
[12] N.A. Touba and E.J. McCluskey, “Logic
Synthesis of Multilevel Circuits with Concurrent Error
Detection”, IEEE Transactions on Computer-Aided
Design, Vol. 16, No. 7, 1997, 783-789.
[13] S. Mitra and E. J. McCluskey. “Which Concurrent
Error Detection Scheme to Choose?” Proceedings
International Test Conference, 2000, p. 98.
[14] V. V. Saposhnikov, A. Morosov, VL. V.
Saposhnikov, M. Gössel. “Design of Self-Checking
Unidirectional Combinational Circuits with Low Area
Overhead”, Proc. 2nd Int. On-Line Testing Workshop,
1996.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

[15] V. Ostrovsky, I. Levin. “Implementation of
Concurrent Checking Circuits by Independent Sub-
circuits”, Proceedings of the 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT’05), 2005, 343-351.

[16] Levin I., Sinelnikov V. “Self-checking of FPGA
based Control Units”, Proceedings of 9th Great Lakes
Symposium on VLSI, Ann Arbor, Michigan, IEEE
press, 1999, 292-295.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

