Int. J. Engng Ed. Vol. 20, No. 1, pp. 46-51, 2004
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2004 TEMPUS Publications.

Atomic Requirements in Teaching Logic
Control Implementation™®

HANANIA SALZER and ILYA LEVIN
Tel-Aviv University, School of Education, Israel. E-mail: salzerha@post.tau.ac.il

The paper introduces an innovative approach for teaching design with logic control. The proposed
approach is based on: (a) a representation of the controlled system in a form of its control and
operational interacting portions; (b) atomic requirement (ATR) specifications of the system. The
ATR-based approach can be supported by a formal notation of transition formulae. Each of the
ATRs corresponds to its specific formula. ATRs with the algebra of transition formulae can be
considered as a theoretical basis in teaching logic control. While ATRs have been successfully used
in large, commercial software development projects, they have never been applied to logic control
teaching. In this paper we propose using ATRs for specifying logic control. This paper exposes
specific properties of ATRs. Owing to these properties, the ATRs will guide students to partition
specifications between control and operation, and to correctly identify control signals. As a direct
result, students will apply information hiding between the control unit and the operational

components.

INTRODUCTION

BUILDING PHYSICAL artifacts is an important
educational tool in learning the principles of logic
control [12]. However, knowledge of an artifact’s
structure and function may be insufficient for the
comprehension of the intangible ‘stuff’ that
traverses between its components [2, 22]. Students
tend to ignore the signals that operational and
control components send to each other [14].

Students, when given the freedom of creativity,
may engage into tasks that they do not have the
skills to make into reality. Students may start off
their mobile robot projects with high-level plans
for control only to find out rather late in their
project’s lifecycle that it was too complex to
implement [13], and that goals must be repeatedly
scaled back as the complexity of seemingly simple
behavior is revealed [3].

The first author of this paper has implemented
atomic requirement (ATR) specifications for large,
commercial software development projects [19],
and trained software developers in composing
ATRs, such as in [20]. The main goal of the present
paper is to apply the industrial experience to
undergraduate education. Encouraged by the
experience accumulated along the years, we
propose overcoming the above two problems
faced by students (control signals’ ignorance and
unbalanced complexity), by providing them with a
technique that uses ATRs to articulate system
functionality. The technique will lead students to
partition a particular system’s functionality
between control and operation, and will lead to
control signals sorting themselves out.

We define the notion of atomic requirement

* Accepted 28 September 2003.

46

(ATR) specifications and explain its difference
from non-atomic requirement specifications. We
show that a controlled system can be viewed as
consisting of two components, the control unit
(CU) and the operational unit (OU). Then we
show how ATRs are superior to non-atomic speci-
fications in recognizing control functionality, and
in helping devise control and operational modules.
We also outline the suggested steps that students
should take when designing a controlled system.

ATOMIC REQUIREMENT (ATR)
SPECIFICATIONS

Atomic requirements (ATRs) are, primarily,
‘well-formed requirements’ a /la ANSI/IEEE
Standard 1233-1998 [8]. ‘Well-formed require-
ments’ are abstract, unambiguous, traceable and
validatable (testable). In addition to being well-
formed requirements, ATRs are also the result of
splitting complex requirements into elementary, or
indivisible, requirements. Usually, an ATR takes
the form of a single sentence using non-formal
language, nevertheless precisely expressing a speci-
fication. The chances are considerably better to
achieve unambiguity with a set of ATRs than with
an equivalent, non-atomic specification [19].

The implications of the ATR notion are wide,
encompassing requirements and design specifica-
tions since both are documented in a similar way
[18], and since a specification at any abstraction
level can be viewed as both requirement and design
[5, 9]. Indeed, atomic requirements (ATRs) have
demonstrated their benefits in the hi-tech industry
[19] when were used to document data processing
applications in software requirements specifica-
tions documents, as well as in individual programs’
detailed design documents.

Atomic Requirements in Teaching Logic Control Implementation 47

An ATR in the logic control context relates
binary input signals entering the control unit
(CU) with its binary output signals. Following is
a description of a special language of transition
formulae that we use as a formal model for the
logic control [10].

The set X = xi,x3,...,x, of binary input
signals is transferred from the operational unit
(OU) to the CU. The set of binary signals
Y =y,y2,...,yy is the set of control micro-
operations, transferred from the CU of the
system to the OU. The CU generates control
micro-instructions that are subsets of the micro-
operations set Y, which are executed concurrently.
The OU performs micro-operations in one-to-one
correspondence with the set Y.

A CU is associated with a set of transition
formulae. A transition formula is constructed as
follows. Each product term «;, depending on a set
of variables X = x;,x3,...,Xx, is put into corre-
spondence with a control micro-instruction Y;,
which is a subset of the micro-operations set Y.
Product term «; is assumed to be equal to 1 if and
only if control micro-instruction Y; should be
performed. The resulting transition formula F;
associated with ATR; is defined as:

Fi = Q; Y, + 5[[Y()
where

i {17

0 ifa,-zO

The expression «; Yy in this formula tells explicitly
that the ATR specifies only the actions that should
be taken when the condition «; materializes, but
refrains from explicating what should happen
otherwise. When the condition in one ATR does
not realize, then the action specified in that ATR
does not take place. The transition formula
conveys this information by stating that the
micro-instruction Yj (the empty micro-instruction)
is executed.

We demonstrate below the correspondence
between an ATR and its transition formula.
Consider the following example ATR for a
mobile robot that should avoid touching obstacles:

® ATR-1: Keep turning left as long as facing an
obstacle that is too close.

ATR-1 is one of the many specifications that
define the robot’s logic control. The threshold
distance that is considered to be ‘too close’ is
defined in another ATR. The robot’s CU receives
from the OU two binary input signals: x; =1
means that the robot faces an obstacle. x; =0
means that the robot does not face an obstacle.
x, = 1 means that the robot is in a safe distance
from any obstacle. x; = 0 means that the robot is
within dangerous proximity to an obstacle. The
CU transmits to the OU a binary signal, indicating
a micro-operation: y; = 1 signals the OU to make
a right turn. y; = 0 signals the OU not to make a
right turn.

Transition formula F; corresponds to ATR-1:

Fi = x1X21 + (X1 + x2) Yo

Every ATR in the context of logic control imple-
mentation is in a one-to-one correspondence with a
specific transition formula. The non-formal text
in the ATR and the formal transition formula
(F; = o;Y; + @;Yy) carry the same information.
The Boolean function «; consists of one Boolean
product (product term). Each product term «;
represents the condition that the ATR describes.
The control micro-instruction Y; represents the
operation that the ATR describes.

At the foundation of our approach is the
reality that an ATR carries the specification of
the smallest meaningful quantum of functionality.
The one-to-one association between an ATR and
the formal representation of a corresponding
transition formula makes evident the ATR’s
indivisibility. The direct consequence of an
ATR’s oneness is that it cannot carry a function-
ality that is both control and operation. There-
fore, after atomizing any specification containing
control functionality, the resulting ATRs can be
segregated unambiguously into two groups,
control and operation.

Consequently, we are ready now to formulate a
procedural definition for an ATR in the context of
logic control.

A control-related atomic requirement specification
(control-related ATR) is a requirement or design
specification that is (a) associated with the system’s
control functionality, (b) is well-formed, (c) consists of
a condition and of a corresponding operation, and (d)
the condition and the operation are indivisible at
the abstraction level where the specification is being
considered.

See Fig. 1 for a concept map of the notion of
ATR.

SYSTEM SYNTHESIS FROM CONTROL
UNIT AND OPERATIONAL UNIT

A controlled system can be viewed as composed
of two high-level components, the control unit
(CU) and the operational unit (OU), as shown in
Fig. 2. The CU is the part of the system responsible
for taking the decisions that control the system’s
behavior. The OU is defined as all system compo-
nents, except the CU. The communication between
the system and its environment is only across the
OU-environment interface. The CU does not inter-
act directly with the system environment; it com-
municates only with the OU. The OU can be
viewed as an interface between the CU and the
system’s environment. Figure 2 presents two input
and output pairs. One pair is between the environ-
ment and the OU, and the other pair is between the
OU and the CU. From the CU design’s point of
view, this representation fully complies with the
Four-Variable Model [6, 18].

48

H. Salzer and I. Levin

of
type

describes

2N

that

lDesigﬁJ ‘ Requirement I [th.:tionalih;] | Component I l'%}-.reﬂ—frgtmed] Atomic I

associated

with

regards

dafl
Abstraction

Level

Fig. 1. Concept map of ATR’s properties.

The system partition into a CU and an OU is a
special case of system modularity. Modular design
constructs a system from a number of modules
with well-defined interfaces; each one is small
enough and simple enough to be thoroughly
understood and well programmed [17]. Modular
design brings with it great productivity improve-
ments [7]. Parnas coined the term ‘information
hiding’ [16], and suggested that the design of
each module will be independent of other modules
designs [17]. Two of the factors contributing to
module independence are coupling and cohesion
[15].

Module coupling

Module coupling is the degree of connection
between modules; hence it is a measure of module
interdependence. Designers should strive for data

Environment

Input
Output

Controlled System
ou

coupling, where two modules communicate by
passing arguments [15].

Mobile robot construction is a popular educa-
tional tool for exposing students to hands-on
experience with controlled systems, sometimes
peaking in a competition, such as in [21].
Acquaintanceship with a program, which trains
students towards mobile robot competitions [4],
reveals that rarely a team designs the software with
control segregated from operation. Students on
this program build autonomous mobile robots
that explore apartment corridors, peaking into
rooms in search for a fire. A typical software
program section monitors a fire detection sensor,
and manipulates two motors connected to the
robot’s two active wheels. In this overly simplified
example, the program section implements the non-
atomic, and rather cryptic, requirement Req-2,
below:

—t»
‘__

CuU

Fig. 2. The system partitioning into an operational unit (OU) and a control unit (CU).

Atomic Requirements in Teaching Logic Control Implementation 49

Req-2: When the value at the memory address allocated
to the Pyroelectric Sensor drops below 102, or peaks
above 153—then set to 1 the two Motor Direction bits,
and set to 160 the two T-on (cycle time on) registers
allocated to the left and to the right motors.

The program section directly references memory
locations in a Motorola 68HC12 family micro-
controller. In contrast, a well-designed CU
should not be aware of hardware locations or of
the threshold value determining a certain state,
because these are ‘secrets’ of OU components.
Instead, the CU should communicate with the
rest of the system (the OU) only via binary input
and output signals [1, 11] thus providing pure data
coupling.

The set of ATRs below is the result of splitting
the non-atomic requirement Req-2 into atomic
requirements. The CU implements ATR-3:

® ATR-3: When flames are detected at the front—
move forward in medium speed.

The OU implements ATR-4 through ATR-7:

® ATR-4: The robot is facing flames when the
pyroelectric sensor’s output drops to below +2V
or peaks above +4V.

® ATR-5: The value at the memory address allo-
cated to the pyroelectric sensor’s measurement is:
51x (sensor output in volts)

e ATR-6: To move forward, release brakes and turn
Sforward both left and right motors.

® ATR-7: Medium motor speed is achieved by a
duty cycle of 63%.

According to these ATRs the OU sends to the CU
binary signals indicating whether it is facing
flames. The CU sends to the OU a binary signal
whether to move forward or not. Thus, the ATRs
have facilitated the design of data coupling
between the CU and the OU.

Module cohesion

Module cohesion is the degree of inner self-deter-
mination of the module; hence it measures the
strength of the module’s independence. Designers
should strive to design functionally cohesive
modules. In such a module all of the elements are
related to the performance of a single function [15].

The above-mentioned procedure carries out
three functions: it taps a certain hardware location
(memory), then it determines whether the received
input has exceeded a certain threshold, and finally,
it sets absolute values at certain memory locations
according to the predicate’s outcome. This is an
example of sequential cohesion.

Replacing the non-atomic requirement Req-2
with the six ATRs (ATR-2 through ATR-7),
results with the different functions implemented
by separate modules. Some OU modules handle
inputs from certain sensors, and make the derived
information available for the CU in the form of
binary signals. Other OU modules respond to CU
signals by operating their respective actuators
(such as certain motors). Finally, the CU has

only one function: to decide which OU functions
to activate at any point of time.

We have shown that ATRs facilitated the design
of a functionally cohesive CU module, and func-
tionally cohesive modules in the OU.

LEARNING ACTIVITY

Encouraged by the success of professional soft-
ware designers and programmers in Wwriting
ATRs, we suggest a process that incorporates
the same technique. Although ATR lists are
useful for concisely specifying any component of
a system, the subject matter of this paper limits
our scope to the CU and to the OU components
that communicate with the CU.

To prepare the students, they learn the notions
of cohesion and coupling, and the phrasing of well-
formed requirements. Finally, they learn atomizing
non-atomic requirements.

In the following process the students design a
CU and a set of software components that com-
municate directly with the CU:

1. Atomize the requirements in the manner shown
for the example above, and thus identify the
pure logic control ATRs.

2. Separate the control ATRs from the opera-
tional ATRs.

3. The control ATRs dictate explicitly the binary
input signals to the CU and the binary output
signals (micro-instructions). List these signals.

4. List and design the software components that
generate the input signals necessary for the CU,
and the software components that act in
response to the micro-instructions.

If complexity of student-invented systems may be
unsuitable for the course goals, assess the complex-
ity of the CU compared to the operational compo-
nents as reflected by their respective ATRs. We
would like to encourage the use of ATRs to specify
also the rest of the system.

CONCLUSIONS

This paper suggests incorporating the use of
atomic requirement (ATR) specifications [19] into
the teaching of logic control design. It presents an
example in the context of mobile, student-built
robots.

A control related ATR is defined as a require-
ment or design specification that is associated with
the system’s control functionality, is well-formed,
consists of a condition and of a corresponding
operation, and the condition and the operation
are indivisible at the abstraction level where the
specification is being considered.

The control unit (CU) is defined as the system
component whose sole role is to decide what
actions the operational unit (OU) takes at any
moment. For this effect the CU sends the OU

50

signals called micro-operations and receives signals
about the OU’s state. The micro-operation is a
binary signal that tells the OU whether to do
something or not to do it. Similarly, the messages
from the OU to the CU are also binary.

An ATR carries the specification of the smallest
meaningful quantum of functionality. From this fact
stems the conclusion that after atomizing a
sufficiently detailed set of system specifications,
each one of the resulting ATRs can be unambigu-
ously allocated to either the CU or to the OU.

Segregation between the CU and the OU should
lead students to discover the need for a commun-
ication between the two components, and hence, to
the need for some kinds of signal. Not only that,
but also the abstract nature of control-related
ATR’s text explicitly suggest what messages the
binary signals carry.

H. Salzer and I. Levin

This paper argues that ATRs will help students
to design CUs that feature functional cohesion and
that are connected to the system’s OU through
data coupling.

This paper tackled a few, known problems in
the teaching of logic control. It tailored the
suggested solution to the mechanism of those
problems by capitalizing on the ATR’s unique
properties, and by recruiting ATRs to play a key
role in implementing well-established system en-
gineering practices. The authors are on the way of
performing the appropriate experiments focused
on the potential of ATR-based logic control
design by students.

Acknowledgment—We are thankful to Eli Kolberg for provid-
ing valuable information from his experience in leading robot-
building student projects.

1
2

10.

1.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.

REFERENCES

. S. Baranov, Logic Synthesis for Control Automata, Kluwer Academic Press (1994).

. J. de Kleer, and J. S. Brown, Assumptions and ambiguities in mechanistic mental models, in
Mental Models, Gentner, D. and Stevens, A. L. (eds.), Lawrence Erlbaum Associates, Hillsdale,
New Jersey (1983) pp. 155-190.

. C. Hancock, Children’s understanding of process in the construction of robot behaviors, Varieties
of Programming Experience, AERA Seattle (2001).

. C. G. Harrison and P. L. Jones, A creative class project based on VHDL, synthesis and FPGA
Design., Int. J. Elect. Enging. Educ., 34, 1997, pp. 370-375.

. R. Harwell, E. Aslaksen, I. Hooks, R. Mengot and K. Ptack, What is a requirement? Proc. Third
Int. Symp. NCOSE INCOSE (1993).

. C. L. Heitmeyer, R. D. Jeffords and B. G. Labaw, Automated consistency checking of
requirements specifications, ACM Trans. Software Eng. Methodol., 5(3) 1996, pp. 231-261.

. J. Hughes, Why functional programming matters, Comput. J., 32(2), 1989, pp. 98-107.

. IEEE, Guide for developing system requirements specifications, in IEEE Standards, Software
Engineering, Volume One, Customer and Terminology Standards, 1EEE-Std-1233, Computer
Society (1998).

. H. Kilov and J. Ross, Information Modeling: An Object-oriented Approach, Prentice-Hall (1994)

pp. 28-32.

I. Levin and V. E. Levit, Controlware for Learning with Mobile Robots, Computer Science

Education, 8(3), 1998, pp. 181-196.

1. Levin and D. Mioduser, A Multiple-Constructs Framework for Teaching Control Concepts,

IEEE Trans. Edu., 39(4), 1996, pp. 488-496.

P. H. Lewis, Introducing discrete-event control concepts and state-transition methodology into

control curricula, IEEE Trans. Education, 37(1), 1994, pp. 65-70.

F. G. Martin. Ideal and real systems: a study of notions of control in undergraduates who design

robots, in Constructionism in Practice: Rethinking the Roles of Technology in Learning, Y. Kafai

and M. Resnick (eds.), Mahwah, NJ: Lawrence Erlbaum (1996) pp. 297-322.

D. Mioduser, R. L. Venezky and B. Gong, Students’ perceptions and designs of simple control

systems, Computers in Human Behavior, 12(3), 1996, pp. 363-388.

G. J. Myers, Reliable Software Through Composite Design, Petrocelli/Charter, New-York (1975).

D. L. Parnas, Information distribution aspects of design methodology, Proc. 1971 IFIP Congress,

pp. 339-344.

D. L. Parnas, On the criteria to be used in decomposing systems into modules, Commun. ACM,

15(12), 1972, pp. 1053-1058.

D. L. Parnas, Functional documentation for computer systems, Sci. Comput. Program., 25(1) 1995,

pp. 41-61.

H. Salzer, ATRs (atomic requirements) used throughout development lifecycle, 12th Int. Software

Quality Week (QW99), (6S1), San Jose, CA (1999).

H. T. Salzer, ATRs (Atomic Requirements) Writing Workshop at the 3rd International Software

Quality Week Europe 1999, Brussels, Belgium (1999).

Trinity College Fire Fighting Home Robot Contest website: http://www.trincoll.edu/events/robot

M. D. Williams, J. D. Hollan, and A. L. Stevens, Human reasoning about a simple physical system,

in D. Gentner and A. L. Stevens (eds.) Mental Models, Lawrence Erlbaum Associates, Hillsdale,

New Jersey, (1983) pp. 131-154.

Dr. Ilya Levin received the M.Sc. Degree in Electrical Engineering (Cum Laude) in
Leningrad Transport Engineering University and Ph.D. degree in Computer Engineering

Atomic Requirements in Teaching Logic Control Implementation

from the Latvian Academy of Science in 1976 and 1987 respectively. During 1985-1990 he
was the Head of the Computer Science Department in the Leningrad Institute of New
Technologies (Russia). During 1993-1996 he was the Head of the Computer Systems
Department of the Center for Technological Education, Holon (Israel). Being presently a
faculty of the School of Education of Tel Aviv University, he is a supervisor of Engineering
Education program. He is an author of more then 50 papers both in Design Automation
and in Engineering Education fields.

Hanania Salzer is a PhD student at the School of Education in the Tel-Aviv University. For
the last 20 years he worked in the software industry. He earned his MSc in Zoology and BSc
in Biology at the Tel-Aviv University.

51

