
Levin, Levit and Salzer - 1 (9) -

Atomic Specifications and Controlware Design

ILYA LEVIN1, VADIM E. LEVIT2 and HANANIA T. SALZER1
1School of Education, Tel-Aviv University, Tel-Aviv, Ramat-Aviv 69978, ISRAEL
2Computer Science Department, Holon Academic Institute of Technology, Holon,

ISRAEL
i.levin@ieee.org http://muse.tau.ac.il/ilya/, levitv@hait.ac.il, salzerha@post.tau.ac.il

Abstract: - In this paper we introduce Atomic Requirements (ATR) based specifications for
designing logic controllers. We use the concept of Controlware, which is a toolkit introduced
earlier for designing controllers.

A set of ATRs specifies a controller’s functionality. Each ATR is translated into one transition
formula. A controller is described as a set of transition formulae.

With Controlware, intelligent behavior of controlled systems is created through the composition
of component subcontrollers. The composition of the subcontrollers’ behaviors may result in
conflicts among their actions. A second set of ATRs is used to specify the priority arbitration on
this set of actions. The action-priority ATRs too are translated into transition formulae.

The proposed ATR based approach allows specifying both the basic functionality of controllers
and the action-priority arbitration in a framework of unified design methodology.

An example of the ATR based design for a specific mobile robot is presented.

Key-Words: - Atomic requirement; controlled system; Controlware; decision table; natural
language; specification.

1 Introduction
Controlware [1] is specified as a combination
of formal models of individual control
specifications and a formal model of the
controller composition. According to our
approach, the formal model of a control
specification is a transition formula; and the
formal model of a controller’s composition is
a partially ordered layer-architecture.
Controlware includes: a decision table based
language for defining controllers’ and
subcontrollers’ behavior; a transition
formulae based notation enabling
transformation of corresponding
subcontrollers’ descriptions; subcontrollers’
composition rules and a priority arbitration
mechanism for resolving the conflicts
between subcontrollers.

In this paper we propose to use natural
language atomic requirements (ATRs) [2,3]
for providing an appropriate Controlware
design style. The atomic requirements can be
considered as a universal, non-formal
language for specifying the controller’s
behavior. We investigate ATRs properties,
and emphasize the correspondence between

the ATRs and transition formulae. We
describe a specific subclass of transition
formulae being in one-to-one correspondence
with a set of ATRs. Each ATR can be
considered as a verbal equivalent of the
corresponding transition formula of this
subclass.

This work is intended as an attempt to
provide a unified methodology of designing
controlled systems. This methodology is built
on the ATR based description of controllers,
on the transition formulae formal notation
and on the partial ordering priority arbitration
on the set of microoperations.

In this paper we present a spreadsheet-
based working implementation of the method
for control automata realization by decision
tables to demonstrate this kind of control
system [1].

The rest of the paper is organized as
follows. The formal model of a controller is
discussed in section 2. ATR based
specification is introduced in section 3. The
formal composition of controllers and
subcontrollers is presented in section 4. A

Levin, Levit and Salzer - 2 (9) -

case study is provided in section 5 and
conclusions – in section 6.

2 Formal Model of the
Controller

A broad spectrum of controlled systems can
be represented as compositions of control and
operation units [4]. The controller (control
unit) is the part of the system responsible for
taking the timely decisions that control the
system’s behavior. The operation unit is
defined as all system components, except the
controller. The set X=x1,x2,…,xL of binary
input signals is transferred from the operation
unit to the controller. The set of binary output
signals Y=y1,y2,…,yN is the set of control
microoperations, transferred from the
controller of the system to its operation unit.
The controller generates control
microinstructions that are subsets of the
microoperations set Y. The operation unit
performs microoperations in one-to-one
correspondence with the set Y.

2.1 Transition Formulae
We use a special language of transition
formulae [1] as a formal model within
Controlware. A controller (which is not
divided into several subcontrollers, as
described below) is associated with one
transition formula. A transition formula is
constructed as follows [1,3]. Each product
term αi, depending on a set of variables
X=x1,x2,…,xL, is put into correspondence with
a control microinstruction Yi, which is a
subset of the microoperations set Y. Product
term αi is assumed to be equal to 1 if and
only if control microinstruction Yi should be
performed. Transition formula F associated
with a controller is defined as:

F = αiYi
i=1

n
∑ (1)

where





=
=

=
00
1

i

ii
ii if

ifY
Y

α
α

α (2)

Assume the following example:

321112121

332211

yxxyxyyxx
YYYF

++
=++= ααα

 (3)

where α1 = x1x2 , α2 = x 1 , α3 = x1x 2 ,
Y1 = y1y2 , Y2 = y1 and Y3 = y3 .

In this example, when x1x2=1 then the
microoperations y1y2 are transferred from the
controller to the operation unit. When x 1 = 1
or when x1x 2 = 1 then the microoperation y1
or y3 is transferred, respectively.

2.2 Subcontrollers
A system’s controller may be composed

of several subcontrollers. It is possible to
represent simultaneous functioning of several
different subcontrollers. To represent
simultaneous functioning of n subcontrollers
described by the corresponding formulae F1
through Fn, we define a product operation on
the set of transition formulae as follows:

{ }{ }∑

∑ =

=××=

n
NM

n

n

nn

ii
iiiiiiii

ii
iiii

def

ncontroller

yyyyyy

YY

FFF

,,

,,

1

1

22
2

2
1

11
2

1
1

1

1

11

K

K

KKK

KK

K

αα

αα (4)

This formula exploits the usual approach
to the idea of priority based on the
supposition that the pair-wise priorities are
organized as an order on the set of
microoperations Y. This means that for every
pair of microoperations {yk, yl} there exist
three options, shown as follows:

{ }








=
<
>

=

lklk

lkl

lkk

lk

yyifyy
yyify
yyify

yy , (5)

Assume that the three following formulae
describe three subcontrollers of a controller:
F1 = x1y1 + x 1x 2y2 + x 1x2y3
F2 = x1y2 + x 1y3
F3 = x2y3 + x 2y2,

 (6)
and that the following partial order [5] exists
on the set of microoperations:

2313 , yyyy >>
 (7)

The product 321 FFFF ××= describes
the mutual functioning of the subcontrollers
corresponding to the formulae F1, F2 and F3
as well as to the order on the set of
microoperations:

Levin, Levit and Salzer - 3 (9) -

() () ()
{ } { }()

32122111

3213221211

2232312132122111

321

,,
yxxyxxyx

yxxyyxxyyx
yxyxyxyxyxxyxxyx

FFFF

++
=++

=+×+×++
=××=

 (8)

2.3 Decision Tables
Each transition formula can be presented in a
decision table [7]. Columns appearing in
decision tables are marked by inputs
x1,x2,…,xL, and by microoperations
y1,y2,…,yN. Fig.1 illustrates this decision table
for a subcontroller containing the transition
formula 321112121 yxxyxyyxxF ++= .

In
pu
t

Out
put

x
1

x
2

y
1

y
2

y
3

1 1 1 1
0 1
1 0 1

Fig. 1: The decision table presenting the transition
formula 321112121 yxxyxyyxxF ++=

A controller defined by a set of transition
formulae can be presented using a two level
structure of decision tables, as described
earlier [1]. The “Formal Model of Controller
Composition” section presents the two-level
structure in detail.

3 Atomic Requirement
Specifications of a
Subcontroller

It is possible to specify a system component
completely by a list of specifications. A
controlled system’s controller is no
exception. We use specifications of atomic
requirements, or ATRs [2,3], to specify
control functionality. Then, we convert each
ATR into a transition formula. Consequently,
each natural language specification (ATR) is
associated with the respective formal
specification (transition formula).

This paper uses the term requirement to
denote any specification that a system, or a
component thereof, such as a controller, must
accomplish [8]. ATRs are, primarily, “well-
formed requirements” à la ANSI/IEEE
Standard 1233-1996 [9]. “Well-formed
requirements” are abstract, unambiguous,

traceable and validateable (testable). In
addition to being well-formed requirements,
ATRs are also the result of splitting complex,
evolving requirements into elementary
requirements that are indivisible at the
abstraction level in which they are being
considered. ATRs at different abstraction
levels of controller design are discussed in
[*9]. In this paper we concentrate on the
description of a controller at two abstraction
levels – ATRs and transition formulae. The
significance of these particular two
abstraction levels is that we show a
straightforward translation between natural
language and formal language. ATRs at the
lowest non-formal abstraction level are
translated into transition formulae, which
represent a formal implementation language.

Usually, an ATR takes the form of a
single sentence using non-formal language,
nevertheless precisely defining a
specification. Every ATR deals with only a
single functionality. Therefore, chances are
considerably better to achieve unambiguity
with a set of ATRs than with an equivalent
non-atomic specification [2].

We define an ATR as a requirement
specification having an indivisible condition
and resulting in some microoperations.
Therefore we suggest that each ATR can be
formally expressed as a transition formula
having the following general format:

0YYF iiii αα += (9)
where the α i is a product term on the subset
of the input variables X = x1,x2,K, xL , Yi is
a subset of the set Y = y1,y2,K, yN of
microoperations, and Y0 is the empty
microinstruction. Thus:

() ,0
11

0

1

121
1

1

1

121
1

1

Yxxyyyxx

Yxxyyyxx

F

n

nm
n

n

n

nm
n

n

e
i

e
iiii

e
i

e
i

e
i

e
iiii

e
i

e
i

i

−− +++

=+

=

KKK

KKK

 (10)
where





=
=

=
.0,

1,
eifx
eifx

x
i

ie
i (11)

The expression αiY0 in this formula tells
explicitly that the ATR specifies only the
actions that should be taken when the
condition expressed by the product term αi

Levin, Levit and Salzer - 4 (9) -

materializes, but refrains from explicating
what should happen otherwise. When the
product term in one ATR does not realize,
then the action specified in that ATR does
not take place. The transition formula
conveys this information by stating that the
empty microinstruction (Y0) is executed.

Usually, the specifications at the
abstraction level of a subcontroller include
several ATRs. Therefore, a subcontroller can
be represented by a transition formula that is
the sum of the transition formulae
corresponding to all ATRs of the
subcontroller:

∑ ∑ 







+=

i i
iii YYF 0αα (13)

4 Formal Model of
Controller Composition

Representation of a controller could be too
involved to comprehend all details at the
same time. Furthermore, different subject
mater experts (SMEs), responsible for
separate portions of the requirements, may
have a hard time coordinating conflicting
requirements. It is possible to check
requirement specifications post factum for
self-consistency using formal methods,
however the technique that we suggest here
addresses during requirements elicitation the
possible conflicts among microoperations
(output). The suggested technique simplifies
this aspect of the requirements specification
process for a controller with n input signals
reducing complexity from O(2n) to only
O(n2) [1].

4.1 Conflict Resolution
A conflict between microoperations is
defined as microoperations that should never
be performed simultaneously. For example,
an SME may determine that the
microoperations “stop” and “turn left” should
never be performed simultaneously. We do
not deal, in this paper, with the conflicts that
are defined for specific conditions only.

In this section we compare three
alternative approaches to resolve such
conflicts: no priority, layer-driven priority
and microoperation-driven priority.

With the no priority architecture all 2n
possible input vector combinations are
examined at design time. SMEs must agree
among them, and explicitly tell for all
combinations what the corresponding output
microoperations should be. This architecture
may not be practical for a controller with a
large set of input signals (a large n), or when
different input or output subsets are defined
by different SMEs.

The layer-driven priority architecture
comprises a family of basic independent
controllers, organized in layers [10]. Each
such controller, or layer, is capable of
creating a sub-system behavior. Since
different layers’ microoperation outputs may
be in conflict with each other, the relative
level of each layer defines its priority; a
higher layer’s microoperation output
overrides any conflicting output made by all
lower layers. The layered design is intended
for evolutionary development of the control
logic, that is, a new, higher priority layer is
added on top of older layers, without
modifying the latter [10]. A limitation of this
architecture is that all microoperations of a
layer are in the same priority relative to the
other layers’ microoperations.

The first of the two levels in the
microoperation-driven priority architecture
is constructed of independent subcontrollers.
The second level is a single-component
arbitrator that resolves conflicts among the
microoperations generated in the first level.
The two levels, combined, comprise the
controller. This architecture is convenient
from a requirements engineering point of
view, because the subcontrollers of the first
level can be defined fairly independently, and
the individual components, which deal with
only a few inputs each one, have a reasonable
complexity. Arbitration over potentially
conflicting microoperations is defined as a
partial order among the first-level
subcontrollers’ output signals; hence each
control output has its own priority. The
complexity of a partial order is manageable
even with a relatively large number of
microoperations and with several SMEs
having independent concerns. This
architecture is described below.

Levin, Levit and Salzer - 5 (9) -

4.2 Controller Specifications
A common approach to designing a complex
system is to decompose it into components
with specific interactions among them, then
to design the details for each component.
This plot is iterative. Only the most detailed
design work products are exhaustive enough
for constructing the actual system
components [8].

A controlled system’s design involves the
identification of the control logic as one of its
components, and the definition of
interactions between the control logic and the
rest of the system. We design the
subcontrollers by following these steps: (i)
Identify the control logic specifications. (ii)
Decompose specifications into ATRs. (iii)
Cluster specifications into groups within
which specifications do not contradict each
other according to SMEs’ claims. The arbiter
will resolve contradictions among clusters.
(iv) Use each cluster of specifications to
synthesize a subcontroller.

4.3 Arbitration Specifications
We propose to complete the ATR based
controller’s specifications by an additional
information concerning competitions
between microoperations that can appear on
different subcontrollers’ output as a result of
particular ATRs’ functioning. Indeed, two or
more ATRs, being defined properly and
specifying different subcontrollers, can cause
different subcontrollers to produce
contradicting microinstructions.
Consequently, arbitration between produced
microoperations is required.

In this paper we develop an approach
based on the ATR paradigm to specify
priorities among microoperations. We
propose to define the ATRs for priority
specifying. We transform the natural
language ATRs comprising the priority
specifications into the rigorous notion of a
partial order on the set of microoperations.

To construct the partial order, let
Y=y1,y2,…,yN be the set of all
microoperations and the pair {Y,<} be the
partial order (poset) formalizing the natural
idea of priority. We represent the {Y,<}
partial order by matrix A of the
corresponding relation (partial order matrix),
where A(i,j)=1 means that yi>yj or yi=yj,

A(i,j)=0 means that yi<yj, and A(i,j)=“-” means
that yi and yj are incomparable, i.e., can be
performed simultaneously (for example, all
microoperations comprising a
microinstruction have to be incomparable).
Below in the “Case Study” section we
present an example of the partial order in a
diagram and in the matrix forms.

Let us assume that a controller generates
the set of microoperations Y=y1,y2,…,yN.
Obviously, any microinstruction performs its
microoperations concurrently. In the case,
when the behavior of the system is described
by a set of subcontrollers, two or more
microinstructions originating from different
subcontrollers can be activated
simultaneously, and consequently, a certain
couple yi, yj of microoperations are able “to
co-exist”. It can result in three ways: execute
yi and suppress yj; execute yj and suppress yi;
and execute both yi and yj in parallel. In
general, all microoperations of a controller
are members of one or more partial orders
(posets) where yi may be covered by one or
more other microoperations yj,yk,…. The
specifications need to specify the posets
representing the controller’s desired
functionality.

Indeed, the specifications include also
action arbitration, or prioritization
information. The definition of priority
between an action yi and several other actions
yj,yk,… means that yi conflicts with the subset
yj,yk,…, and that the conflict is resolved by
explicitly specifying which of the actions will
be executed. This type of specification, called
action-priority ATR, states that action yi is
allowed to execute only when neither of the
actions yj,yk,… have to be executed. Each
action-priority ATR can be expressed as an
inequality that has the following general
format:

ji yy > . (14)
As has been said earlier, we can transform

a priority, hence the action-priority ATR, into
a partial order on the microoperations, where
each of the actions yj,yk,… covers yi:

 y j > yi, yk > yi, K (15)
The set of all action-priority ATRs for a

controller comprises one or more partial
order sets, or posets. This is demonstrated
with an example in the “Case Study” section.

Comment: Kohavi uses the notation
≤ (as opposed to <).

Levin, Levit and Salzer - 6 (9) -

Implicitly, any pair of microoperations
can coexist, unless an action-priority ATR
otherwise specifies.

All action-priority ATRs comprise the
specifications of a subcontroller that takes
care of the microoperation arbitration. The
output of all other subcontrollers is the input
for the arbitration subcontroller, comprising a
two level architecture presented in Fig.2. The
first level implements all regular ATRs in
several subcontrollers. The second level
implements the action-priority ATRs in a
single arbitration subcontroller. At this point
we can construct the actual subcontrollers
from the corresponding sets of “regular”
ATRs and action-priority ATRs.

Sub-
controller

Sub-
controller

Sub-
controller

Arbiter

Controller

Sub-
controller

Sub-
controller

Sub-
controller

Arbiter

Controller

Fig. 2: The two levels of the microoperation-driven
priority architecture. (Arrows indicate control signal

flow.)

5 Case Study
Here we describe the above concepts through
the process of constructing a working (albeit
extremely simple) mobile robot system. The
system consists of a controller composed of
several subcontrollers and an operation unit.
Microsoft Excel spreadsheets implement the
controller [11]. A PC connected via Lego
Interface B to Lego Technique components
implement the operation unit [12]. The
Microsoft Excel workbook is downloadable
from [13].

In this case study we focus on the
controller’s implementation process, which is
comprised of (i) specifications identification,
using ATRs, (ii) ATRs translation into
transition formulae, and (iii) executable
decision tables’ implementation in the Excel
workbook. With a little experience, step (ii)
can be skipped.

5.1 Specifications
We describe a mobile robot moving along a
desk’s surface in the direction of a light
source, or beacon. The robot’s goal is to
reach as close as it can to the light source.

Assume that the robot has five sensors
corresponding to binary signals (input
variables) x1,…,x5. Three of these signals, x1,
x2 and x3, correspond to light sensors
positioned on the robots' front, left and right
sides, respectively. Binary input variable x4
corresponds to a sensor that detects the
approach of the robot to the edge of the desk.
The fifth sensor detecting the robots' arrival
to the light source corresponds to variable x5.
Assume also that the robot is provided with a
transport mechanism, which can be
controlled by the following microoperations:
y1 - to move the robot forward; y2 - to turn the
robot to the left; y3 - to turn the robot to the
right; y4 - to stop the robot; and
microoperation y5 sounds a buzzer mounted
on the robot.

According to the approach suggested in
this paper, the list of ATRs below comprises
the example mobile robot’s control
specifications. Each ATR is followed by a
corresponding transition formula or by a
partial order, as appropriate:

ATR-1. When the beacon light source is
to the left of the robot, the robot turns left.
F1 = x2y2 + x 2Y0

ATR-2. When the beacon light source is
to the right of the robot, the robot turns
right. F2 = x3y3+ x 3Y0

ATR-3. While the robot does not sense
any light source, it keeps turning to the
left. () 032123213 YxxxyxxxF +++=

ATR-4. When the robot senses light from
two opposite directions, left and right, it
stops. () 0322324 YxxyxxF ++=

ATR-5. When the beacon light source is
in front of the robot, the robot moves
forward. 01115 YxyxF +=

ATR-6. The robot does not go beyond the
desk’s edge. 04446 YxyxF +=

ATR-7. When the robot reaches the light
source, it stops and sounds a
buzzer. 055457 YxyyxF +=

ATR-8, ATR-9, ATR-10. Stopping has
priority over any maneuver across the desk.

Levin, Levit and Salzer - 7 (9) -

(In fact, this
non-atomic
specificatio
n statement
encompasse
s three
ATRs).

342414 ;; yyyyyy >>>
.

ATR-
11, ATR-
12. Turning
toward the
light source
has priority
over
moving
forward.
(This non-
atomic
specificatio
n statement
comprises
two ATRs).

1312 ; yyyy >>

.

5.2 Controller Synthesis
The decision tables in Fig.3 represents the
first layer of the mobile robot’s control,
obtained by implementing ATRs number 1
through 7. These decision tables do not need
to be orthogonal relative to each other; the
second, arbiter layer resolves any conflicts,
as described below.

The mobile robot’s control includes, in
addition to the decision tables in Fig.3, also
an arbitration function over the set Y of
microoperations, as implied by ATRs number
8 through 12, above. The arbiter comprises
the controller’s second layer. The
microoperations that are the output values of
the above, first layer decision tables are the
input values for the second layer decision
table corresponding to the partial order
{Y,<}.

From ATRs number 8 through 12, above,
we construct the following partial order on
the set of microoperations:

{ }
.,

,:,,,,

5134

12454321

yyyy
yyyyyyyyY

>>
>>=

 (16)

We can illustrate the above poset with the
partial order (or Hasse) diagram in Fig.4.

For each local conflict the arbiter chooses
one of these alternatives. To dissolve the
global conflict Y under the given family of
priority constraints imposed by the partial
order the arbiter has to choose only maximal
elements of the set Y. Traversing the tree
corresponding to the partial order Y, one can
easily find all the maximal elements needed
by an efficient polynomial algorithm [1].

Li
gh

t c
om

es

fro
m

 th
e

fro
nt

Li
gh

t c
om

es

fro
m

 th
e

le
ft

Li
gh

t c
om

es

fro
m

 th
e

rig
ht

D
es

k
su

rfa
ce

ed

ge
 re

ac
he

d

C
on

ta
ct

 w
ith

lig

ht
 s

ou
rc

e

M
ov

e
fo

rw
ar

d

Tu
rn

 le
ft

Tu
rn

 ri
gh

t

St
op

So
un

d
a

bu
zz

er

ID ATR x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

1 When the beacon light source is to the left of the
robot, the robot turns left.

 1 0 1

2 When the beacon light source is to the right of
the robot, the robot turns right.

 0 1 1

4 When the robot senses light from two opposite
directions (left and right), It stops.

 1 1 1

ID ATR x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

3 While the robot does not sense any light source,
it keeps turning left.

0 0 0 1

5 When the beacon light source is in front of the
robot, the robot moves forward.

1 1

ID ATR x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

6 The robot does not go beyond the desk’s edge. 1 1

ID ATR x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

7 When the robot reaches the light source, it stops
and sounds a buzzer.

 1 1 1

Fig. 3: Four decision tables implementing ATRs number 1 through 7 in four subcontrollers

Levin, Levit and Salzer - 8 (9) -

y4

y1

y2 y3

y5

y4

y1

y2 y3

y5

Fig. 4: The partial order diagram of priority
constraints over the set of microoperations

{y1,y2,y3,y4,y5}

 yj

 y1 y2 y3 y4 y5
Move forward - y1 1 0 0 0 -

Turn left - y2 1 1 - 0 -
Turn right - y3 1 - 1 0 -

Stop - y4 1 1 1 1 -

y i

Sound a buzzer - y5 - - - - 1
Fig. 5: The partial order matrix of the priority
constraints over the set of microoperations

{y1,y2,y3,y4,y5}

The above partial order is presented by its
corresponding partial order matrix in Fig.5,
as has been described in the “Formal Model
of Controller Composition” section. In a
partial order matrix A:









=−

<

>

=

ji

ji

ji

ij

yyif

yyif

yyif

A 0

1

 (17)

Arbiter Input

y1 y2 y3 y4 y5

Arbiter Output

1 0 0 0 - y1 - Move forward

- 1 - 0 - y2 - Turn left

- - 1 0 - y3 - Turn right

- - - 1 - y4 - Stop

- - - - 1 y5 - Sound a buzzer
Fig. 6: The poset decision table of the priority
constraints over the set of microoperations

{y1,y2,y3,y4,y5}

Now our intent is to show a technique for
transforming the above matrix of partial
order on the set Y to the corresponding poset
decision table. Every decision table row
corresponds to an element of the set of

outputs Y. The left part of the decision table
columns (see Fig.6) corresponds to the same
set Y as the partial order matrix (Fig.5), and
is interpreted as a set of inputs to the decision
table. The right part of the decision table
columns corresponds to the set of outputs Y.
To accomplish this transformation task we
assign to the left part of the decision table all
the corresponding values of the partial order
matrix, except any non-diagonal “1”, which
is changed to “–”.

The right part of the poset decision table
(Fig.6) is the output microoperation. This
decision table is an example for an arbitration
subcontroller that comprises the second level
in the microoperation-driven priority
architecture (Fig.2). Note that there is no
need for this decision table to be orthogonal,
as the example below will demonstrate.

We demonstrate the decision table’s use
with an example. Suppose that at a certain
point of time the following intermediate
microoperations’ vector is generated:
{y3,y4,y5}. This vector matches two of the
decision table’s rows: the rows with y4 and

5y in the output column. Hence, the
controllers’ output for this particular
intermediate vector will be the resulting
vector of microoperations {y4,y5}. Indeed,
one would expect the microoperation y4
(“stop”) to override y3 (“turn left”).

6 Conclusions
In this paper we have described a design
methodology for development of the control
part of a system. This approach is based on
the Controlware concept that combines a
verbal system specification, a formal model
of the specification and a method for easy
implementation of the specifications. Since
the control part of a system consists of a
number of component subcontrollers working
concurrently, a problem of their arbitration
becomes essential. We have proposed to
solve this problem by introducing a partial
ordering relation on the set of possible
microoperations, as the arbitration
description. The arbiter depicts SMEs
requirements thus providing a cheaper
solution than explicitly defining operations

Levin, Levit and Salzer - 9 (9) -

for any input conditions that have been left
undefined.

Requirements

“Regular”
ATRs

Action-priority
Decision

Table

Partial Order
Set

Action-priority
Transition
Formulae

Action-priority
ATRs

“Regular”
Transition
Formulae

The Controller

“Regular”
Decision
Tables

Requirements

“Regular”
ATRs

Action-priority
Decision

Table

Partial Order
Set

Action-priority
Transition
Formulae

Action-priority
ATRs

“Regular”
Transition
Formulae

The Controller

“Regular”
Decision
Tables

Fig. 7: The specification flow from requirements to
implementation

Another significant contribution of the
paper is the use of atomic requirements
(ATR) as a high level, non-formal language
of Controlware. Using ATRs as software
specifications has several benefits for
Controlware design. Designers can
conveniently express their mental models’
details in ATR statements. The ATRs, in turn
can be transformed, one-to-one, into
transition formulae. The translation of an
ATR to a transition formula provides the
smallest possible step between a natural
language specification and a formal language
specification, which is ready for direct
implementation.

In the case of priority ATRs, the transition
formulae transform into posets, which
transform into corresponding decision table
rows. In the case of the “regular” ATRs, the
transition formulae transform directly into
the corresponding decision table rows.
Finally, the controller can be synthesized
from the decision tables (see Fig.7).
Obviously, ATRs, as opposed to non-atomic
requirement specifications, smoothly fit into
the controller’s formal model, because their
transformation into transition formulae, and
hence to decision table rows, is one-to-one.

We hope that the proposed approach can
be considered as a universal methodology for
designing logic control of controlled systems.

References:
[1] I. Levin and V. E. Levit, Controlware for

Learning Using Mobile Robots, Comp Sci
Educ, Vol.8, No.3, 1998, pp. 181-196.

[2] H. Salzer, ATRs (Atomic Requirements)
Used Throughout Development Lifecycle,
In: Proceedings of Quality Week 1999,
San Jose, California, USA, 1999

[3] H. Salzer and I. Levin, Atomic
Requirements in Teaching Logic Control
Implementation, International Journal of
Engineering Education, Vol.20, No.1,
2004.

[4] S. Baranov, Logic Synthesis for Control
Automata, Kluwer Academic Press, 1994

[5] Z. Kohavi, Switching and Finite
Automata Theory, McGraw-Hill, New
York, 1970.

[*9] H. Salzer and I. Levin, Spreadsheet-
based Logic Controller for Teaching
Fundamentals of Requirements
Engineering, International Journal of
Engineering Education, (in press).

[7] E. Hamby, Programs from Decision
Tables, MacDonald, London and
American Elsener, New York, 1973

[8] H. Kilov and J. Ross, Contracts and
Layers, In: Information Modeling: An
Object-oriented Approach, Prentice-Hall,
1994, pp. 28-32.

[9] IEEE Std 1233, Guide for Developing
System Requirements Specifications,
IEEE Standards, Software Engineering,
Vol.1, Customer and Terminology
Standards, IEEE, Computer Society, 1998

[10] R. A. Brooks, A Robust Layered Control
System for a Mobile Robot, IEEE J of
Robotics and Automation, Vol.2, No.1,
1986, pp. 14-23.

[11] I. Levin, Matrix Model of Logical
Simulator within Spreadsheet, Int J Elect
Eng Educ, Vol.30, No.3, 1993, pp. 216-
223.

[12] I. Levin, The State Machine Paradigm
and the Spreadsheet Learning
Environment, In: Smith AJ (ed),
Engineering Education, Increasing
Students Participation, Sheffield Hallam
University, Sheffield, UK, 1994, pp. 351-
355.

[13] http://www.tau.ac.il/~salzerha/demos/Ar
biterCaseStudy.xls

