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Abstract This paper presents a number of the tree-like networks that grow accord-
ing to the following newly studied principles: i) each new vertex can be connected
to at most one existing vertex; ii) any connection event is realized with the same
probability p; iii) the probability Π that a new vertex will be connected to vertex i
depends not directly on its degree di but on the place of di in the sorted list of ver-
tex degrees. The paper proposes a number of models for such networks, which are
called one-max constant-probability models. In the frame of these models, structure
and behavior of the corresponding tree-like networks are studied both analytically,
and by using computer simulations.

1 Introduction

According to the well-known Barabási-Albert model [1], scale-free networks are
characterized by two main mechanisms: continuous growth and preferential attach-
ment. That is, a) the networks expand continuously by addition of new vertices, and
b) there is a higher probability that a new vertex will be linked to a vertex already
having many connections (high-degree vertex). Most vertices have only a few con-
nections while there are a few highly connected hubs. Vertices of a scale-free net-
work are the elements of any system and its edges represent the interaction between
them.
The Barabási-Albert random graph model is described as follows:
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Starting with a small number m0 of vertices, at every time step we add a new
vertex with m ≤ m0 edges that link the new vertex to m different vertices already
present in the system. To incorporate preferential attachment, we assume that the
probabilityΠ that a new vertex will be connected to vertex i depends on the degree
di of that vertex.
The mechanism of preferential attachment is assumed to be linear in the model,

i.e., Π(di) is proportional to di [1]. However, as noted in the same work, in gen-
eral relationship between Π(di) and di could have an arbitrary form and, therefore,
different types of preferential attachment may be considered.
It is of interest to consider a special case when in every step a new vertex is

connected to only one of the old vertices (m = 1). In this case the resulting graph
is a tree known as a nonuniform random recursive tree. The probability of linking
to its vertex depends on its degree. The structure and properties of such trees are
investigated in [2], [5], [6], and many other works. When the probability of linking
to a vertex is proportional to its degree, this gives a random plane-oriented recursive
tree.
Nonuniform random recursive trees have a number of applications. They may

serve for modeling pyramidal structures based on the principle ”success breeds suc-
cess”. In a pyramid scheme where each entrant competes with those already par-
ticipating, the experience gained in successful recruiting enhances the prospects for
further success as captured by the growth rule of these trees [6]. The example of
simulation of stock markets with these trees is given in [4].
In our paper we introduce a number of new networkmodels based on nonuniform

random recursive trees, so called one-max constant-probability models. These mod-
els are characterized by the following features: i) each new vertex may be connected
to at most one old vertex, i.e., in every time step at most one new edge appears in
the network; ii) any connection event is realized with the same probability p due to
external factors; iii) the probabilityΠ that a new vertex will be connected to vertex i
depends not directly on its degree di but on the place of di in the sorted list of vertex
degrees.
The proposed network model is rather realistic because in real life the choice of

an object may be determined not by an absolute characteristic of the object but by
a relative status of this object among other objects. The status itself depends, in its
turn, on the objects’ characteristics. Besides, this model explicitly defines the order
of priorities in the search of appropriate connection and, therefore, it allows not
just to analyze the topology of networks, but also to examine the network dynamics
step-by-step.

2 Constant-Probability Search Model

The first model (we call it Constant-Probability Search Model or CPSM) is based
on a regular linear search of a vertex with a maximum degree realized by consec-
utive comparisons of a current maximum degree with a degree’s value of a cur-
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rent checked vertex. If this value is greater than a current maximum, the maximum
is updated. For vertices with equal degrees, an earlier arrived vertex is preferable.
However, in contrast to the standard search, every comparison is performed not al-
ways but with probability p. A new vertex is connected to a vertex v with a found
maximum degree which, correspondingly, is equal to a true maximum degree with
probability p. The degree of vertex v is incremented by 1 and the new vertex’s de-
gree is assigned to 1 if it has been connected to any vertex.
Therefore, the vertex with the 1-st largest degree will be chosen for connection

by a new vertex with probability p, the vertex with the 2-nd largest degree – with
probability (1− p)p, . . . , the vertex with the i-th largest degree – with probability
(1− p)i−1p (for equal degrees, the degree of a vertex checked earlier is quasi larger).
For n existing vertices, the probability that the new vertex will connect to no vertex
is equal to (1− p)n.
Proposition 1. Given an n-vertex network which starts with a single vertex and is
based on CPSM, the lower bound of the expected numberMn of the maximum degree
in the network is equal to p(n− 1).
Below, one can see that Proposition 1 holds not only for CPSM but also for all

other one-max constant-probability models.
It is clear that the higher is p, the larger is degree of the first vertex in the network

and the rather this degree is maximum. That is, older vertices increase their connec-
tivity at the expense of the younger ones and a “rich-get-richer” phenomenon [1] is
detected for high p.
Diagrams of two 100-vertex networks simulated for different values of p are

presented in Fig. 1. Three the largest degrees in a network are indicated (degree of
a vertex arrived in time step t is denoted by dt).

Fig. 1 100-vertex networks based on CPSM

3 Constant-Probability Ordered Model

The second model, so called Constant-Probability Ordered Model (CPOM) is sim-
ilar to CPSM. However, in contrast to CPSM, the list of existing vertices is kept
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sorted in decreasing order of their degrees so that the vertex with a maximum de-
gree is in the top of the list. The list is scanned from the top and a new vertex is
connected to the first vertex v which “is allowed to be connected by the probability
p”. The degree of vertex v is incremented by 1 and this vertex is moved toward the
top of the list to find a proper new place for it. The new vertex’s degree is assigned
to 1 and this vertex is inserted into the list above vertices with degrees 0 (isolated
vertices) if it has been connected to any vertex.
The running time of the search of appropriate connection in an n-vertex CPSM

network is O(n) for any p since always all existing vertices of the network have to
be checked. At the same time, CPOM gives O(n) running time in the average case
only, while in the best case its running time is O(1). Besides, CPOM exhibits a real
network that has a mechanism which keeps most referred sites in the top of the list
and makes them, correspondingly, more reachable than others.
Despite the different algorithms used by CPSM and CPOM, both models provide

identical network topologies and diagrams illustrated in Fig. 1 are appropriate to
CPOM as well.
CPOM (as CPSM) is characterized by the following phenomenon that becomes

apparent for low p. Some vertices which come first may remain isolated since while
a network is not large, a new vertex may rather connect to no existing vertices and
find oneself at the bottom of the list. Next later vertices will find more vertices in the
network and the probability of their connecting to one of existing vertices will be
higher. At that, they will be linked with a higher probability to vertices with larger
degrees and their degrees after connection will be 1. Therefore, as the size of the
network increases, the chance of vertices with zero degrees “to be found” by new
vertices decreases.
Fig. 2 illustrates the above phenomenon for p = 0.1. A network after 100 time

steps (Fig. 2 (a)) and the same network after 1000 time steps (Fig. 2 (b)) have the
same 6 isolated vertices with order numbers 1, 5, 11, 15, 23, 27.

Fig. 2 The phenomenon of first isolated vertices for CPOM
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Proposition 2. Given an n-vertex network based on CPSM or CPOM, the expected
number In of isolated vertices in the network is defined recursively as follows: I1= 1;
In+1 = In+ 2(1− p)n− (1− p)n−In .
The result is well-reasoned. For p = 0, In+1 = In+ 1 (the number of isolated

vertices increases in every time step). For p = 1, In+1 = In (all new vertices are
connected to the first one and the number of isolated vertices does not increase at
all). For large n, In+1 tends to In (probabilities of appearance of new isolated vertices
and of connecting new vertices to old isolated vertices decrease).
Corresponding computational results for p from 0 to 1 are presented in Fig. 3.

One can see that for p < 0.5, the higher is p, the smaller is n for which In reaches
saturation and the smaller is In in saturation itself. For p> 0.5, the expected number
of isolated vertices is less than 1.

Fig. 3 Expected numbers of isolated vertices in CPOM and CPSM networks

4 Constant-Probability Ordered Non-0 Model (CPOM-N0)

In order to neutralize the negative effect described in the previous section, when
some vertices which come first may remain isolated, we slightly modify CPOM. A
new vertex connected to one of existing vertices is not inserted above isolated ver-
tices and remains at the bottom of the list. Thus old vertices with zero degrees will
not be at the bottom and the list will be sorted only concerning degrees exceeding
1. Such a model is appropriate to be called Constant-Probability Ordered Non-0
Model (CPOM-N0).
The example of this model’s behavior for p = 0.1 is shown in Fig. 4. In Fig. 4

(a) one can see a network after 100 time steps. This network has 3 isolated vertices:
5, 12, and 17. The same network after 300 time steps is presented in Fig. 4 (b). It
has the only isolated vertex 5. At last, after 1200 time steps, there are no isolated
vertices in this network (Fig. 4 (c)).
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Fig. 4 A network based on CPOM-N0 (p= 0.1)

CPOM-N0 is evidence that the additional advantage of CPOM in contrast with
CPSM is its flexibility. The list of existing vertices in CPOM is actually the priority
list. While in CPSM a vertex’s degree directly determines the vertex’ priority, in
CPOM the vertex’s place in the list is this criterion. One can define this place not
only as a function of a degree but as a function of additional parameters as well.
There are also other differences in behavior of CPOM and CPOM-N0. Isolated

vertices not only disappear in networks based on CPOM-N0 for large n. For the
same small n, the expected number of vertices with zero degree in a CPOM-N0
network is less than in a CPOM network. On the other hand, the expected number of
connected components (collections of connected vertices which have no connections
to one another) consisting of more than one vertex in a CPOM-N0 network is greater
than in a CPOM network of the same size. The explanation of this phenomenon is
the following. An isolated vertex of a CPOM network may rather remain isolated in
the next time steps than in a CPOM-N0 network in which this vertex has a higher
probability to become a start vertex of a new autonomous part of the network. In any
case, both networks are characterized by the same expected number of connected
components including isolated vertices that is equal to the number of vertices which
were isolated some time, i.e., to the number of appearances of isolated vertices.

Fig. 5 100-vertex networks
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Two corresponding examples are illustrated in Fig. 5. In Fig. 5 (a) one can see the
CPOM network after 100 time steps. This network has 11 connected components, 5
of which are isolated vertices (5, 12, 14, 30, 57). The CPOM-N0 network after 100
time steps presented in Fig. 5 (b) has also 11 connected components and only 3 of
them are isolated vertices (25, 33, 40). With increase of the network in Fig. 5 (b),
new vertices will connect to these 3 vertices sooner or later, while the probability
of connecting new vertices to 5 isolated vertices in Fig. 5 (a) will decrease in every
time step. Herewith, both networkswill consist of 11 connected components, and the
probability of appearance of new connected components will decrease with increase
of the networks.
The expected numbers of connected components including isolated vertices are

equal in networks of the same size based on all one-max constant-probability mod-
els. This fact allows to formulate and to prove the following proposition:

Proposition 3. Given an n-vertex network based on a one-max constant-
probability model, the expected numberCn of connected components in the network
is defined recursively as follows: C1 = 1; Cn+1 =Cn+(1− p)n.

Corollary 1. Given a network discussed in Proposition 3, the expected number Cn
of connected components in the network is expressed explicitly as follows: Cn =
1+(1− p) 1−(1−p)n−1

p . With increase of n, Cn tends to 1
p .

5 Constant-Probability Ordered Directed Model

Previous models assume that connecting a new vertex to an old one leads to increase
of a number of connections both of the old and the new vertices. However, not al-
ways a subject that initiates a connection is considered as acquiring this connection.
At the same time, a referred object is regarded as a possessor of this connection in
any case. Thus while most networks (from social to biological ones) are undirected,
there are systems that should be simulated by directed networks. For example, Web
pages are connected by directed links [3], [7], software modules are taken as vertices
of a directed graph with links according to their interaction [3].
We slightly modify CPOM and introduce a Constant-Probability Ordered Di-

rected Model (CPODM). An edge corresponding to a new connection leaves the
new vertex and enters the old one. The list of vertices is sorted by their in-degrees.
It is clear that the in-degree of a new vertex is 0 even if it has been connected to any
existing vertex and, therefore, a new vertex is always in the bottom of the list.
Out-degree of any vertex in a network based on CPODM is 1 (if the vertex has

been connected to any vertex when arriving) or 0 (if the vertex has been connected
to no vertex when arriving). As follows from the model’s description, the list of
vertices does not distinguish between vertices with zero and non-zero out-degrees.
For two vertices with zero in-degrees, the older vertex will be nearer to the top. Thus
old isolated vertices (with zero in-degrees and out-degrees) will not be at the bottom
of the list.
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One can see that CPODM is similar to CPOM-N0. Although CPOM-N0 de-
scribes an undirected network, it distinguishes in special cases between a vertex that
is connected to another one and a vertex to which another vertex is connected. In
fact, both CPOM-N0 and CPODM identically process new vertices. For this rea-
son, the same characteristic features inherent in both models. Like in CPOM-N0
networks, isolated vertices disappear in networks based on CPODM for large n.
For small n, expected numbers of isolated vertices and of connected components
consisting of more than one vertex for CPODM are the same as for CPOM-N0.

6 Conclusion

In this paper we proposed a number of new models of tree-like networks and stud-
ied genesis and evolution of these networks’ topology. Some remarkable network
effects were observed. We provided the interpretation of the network behavior on
the base of analysis of simulation results.
Specifically, we have discovered the phenomenon of the existence of isolated

vertices when subjects that were at the origins of a complex network creation may
ultimately find oneself out of the network. We have interpreted the cause of this
phenomenon and have shown how it can be prevented. The absence of isolated ver-
tices in a large network, in turn, does not prevent it from splitting on unlinked au-
tonomous parts (connected components) whose number tends to 1

p with increase of
the network.
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6. Mahmoud, H. M., Smythe, R. T., Szymański, J.: On the structure of random plane-oriented
recursive trees and their branches, Random Structures and Algorithms 4 (2), 151–176 (1993).

7. Raigorodski, A. M.: Models of random graphs and their use (in Russian), Trudy MFTI 2 (4),
130–140 (2010).


