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Linearization of Multi-Output Logic Functions by
Ordering of the Autocorrelation Values

Osnat Keren and llya Levin

Abstract: The paper deals with the problem of linear decomposition ®fsiem of
Boolean functions. A novel analytic method for linearipati by reordering the val-
ues of the autocorrelation function, is presented. The edatfpnal complexity of the
linearization procedure is reduced by performing caldatet directly on a subset of
autocorrelation values rather than by manipulating thel@mofunction in its initial
domain. It is proved that unlike other greedy methods, the teehnique does not
increase the implementation cost. That s, it provideslirzed functions with a com-
plexity that is not greater than the complexity of the idiB@olean functions. Exper-
imental results over standard benchmarks and random Bo&l@ations demonstrate
the efficiency of the proposed procedure in terms of the cerityl measure and the
execution time.

Keywords: Logic synthesis, spectral technique, autocorrelatioation, linear trans-
form, disjoint cubes.

1 Introduction

The linear decomposition approach is a well known techniguefficient imple-
mentation of Boolean functions. The linearly decomposesiesy, see Figure 1,
consists of a linear functioa followed by a linearized functiori, such that

z=0(x) andy= fs(2).

Reduction in realization cost is obtained by replacing theiiwal set of input vari-
ables by another set of linearly independent variables lwhie linear combina-
tions of the input variables. The defines a linear transformation of variables that
minimizes the complexity of the corresponding linearizeddtion.
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The linear part of a Boolean function ofinputs is implemented by two-input
XOR gates with complexity of ordev/log,(n) and thus has negligible effect on
overall complexity of the decomposed function [13].

x —— f(x) —— y=fkx)

z
x —+ o Pl fol2) [ y=folo(x)

Fig. 1. Realization of a functiofi: direct realization (top) and realization
by using the linear decompositidi{x) = fs(o(x)) (bottom)

In [13] the complexity of the realization is measured by tenberpu of adja-
cent minterms carrying the same output value. For Booleactions of large num-
ber of input variables the realization cost in terms of 2dihgates almost always
decreases as theincreases [22, 25]. The complexity measpres the sum of the
values of the autocorrelation function of at positionsi 2= 0,...n— 1. Therefore,
it is possible to reduce the implementation cost by chooailigear transformation
o that reorders the autocorrelation valuesfado thatfs has high autocorrelation
values at those positions [13].

A Binary Decision Diagram (BDD) represents a Boolean fustts an acyclic
directed graph. This form of representation is suitableBoolean functions of
large number of input variables and is used by CAD tools fgidsynthesis and
simulations. The characteristics of the BDD, i.e. the sizthe BDD, the number
of paths and the average path length, are sensitive to thezingdof the nodes
variables [6, 10, 18, 21].

Considerable research has been made for developingdyoiiimic (algorith-
mic) andstatic (analytic) procedures for minimizing these parametersdoyder-
ing variables or by replacing them by a linear combinatiompiut variables. The
algorithmic approach involves an heuristic search alponit[4, 5, 7, 19, 24] and
references therein. In some cases, the dynamic approacHarih&y find a better
set of variables within a given time limitation. The anatytipproach defines a
new ordered set of variables by considering the Booleantimm@roperties like
the values of the Walsh coefficients [26], the autocorretatralues [14, 17, 23]
or the ambiguity of the variables [12]. This paper deals aitstatic linearization
based on ordering the autocorrelation values for functafriarge number of input
variable for which the known linearization procedures magdime impractical due
to their high computational complexity.

The autocorrelation function, denoted Byt ), can be calculated either accord-
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ing to its definition or by using the Wiener-Khinchin theorem

The efficiency of methods for computing the autocorrelafiamction depends
on the way the functiorf is specified. In this paper we are interested in functions
of large number of inputs which are often represented as afseibes. Since any
set of cubes can be expanded to a set of disjoint cubes, weadkat the function
to be linearized is already given as a set of disjoint cubezte khat a BDD can be
interpreted as a compact disjoint cubes representatiomenthe number of paths
in a BDD equals to the number of disjoint cubes. In some cdkespumber of
disjoint cubesN, may be exponential in the number of inputs. The technique for
manipulating disjoint cubes discussed herein is efficieteims of processing time
and memory consumption only for functions represented bydearate number of
disjoint cubes, namely whed << 2".

An extensive work has been done in developing efficient nustHor calcu-
lations of various discrete spectral transforms, inclgdihe Walsh transform, of
Boolean functions defined by disjoint cubes, see, for it&af8, 9] and references
therein. These methods can be employed to calculate thearetation function
following the Wiener-Khinchin theorem. However, the corgtional complexity
of the calculation oR(7) based on these methods depends not only on the num-
ber of cubes representing the function but also on the nurobdisjoint cubes
representing its spectrum.

Another method for the calculation &{(1) for functions represented by dis-
joint cubes is the tabular technique [1, 2, 20, 29]. The cexip}l of the method
depends on the number of minterms and hence may become toplac terms
of computation time or memory space for function of large bemof ON-SET
values. In [30] the complexity of the calculation of the awdwelation values is
reduced by performing the calculation entirely in the digjacubes domain. A
single autocorrelation value is calculated at a time by caning pairs of disjoint
cubes. The computational complexity depends on the numibdisjpint cubes
and is of orderg’(N?) per autocorrelation value. In [15] the autocorrelatR{(T)
is also calculated by manipulating the initial set of disjotubes. However, the
calculation there is performed simultaneously for cubeg sf(rather for a sin-
gle ). The autocorrelation function in [15] has a compact repmégtion as a so
called arithmetic-SOP. In this paper we use this form of @spntation to reduce
the computational complexity of the proposed linearizapoocedure.

Due to their high computational complexity [3], static larzation procedures
tend to be greedy. The majority of known static linearizatinethods provide an
improvement onlyon average Namely, at each step a single vector is added to the
current set of vectors regardless how it may delimit the $etadidate vectors of
future steps.

In [14] a linearization algorithm, called th€-procedure, for the reduction of
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the size of Binary Decision Diagrams (BDD) was introduced.

At each level, starting from the bottom of the BDD, a lineatian is performed
by determining the basis of the inertia group for the functiepresented by the
nodes at the upper levels, and then the BDD is paired.

The pairing of the BDD's terminal nodes is an essential siéjpeoK-procedure.
This guaranties that the chosen vector is linearly indepehaoh previous vectors.
However the complexity of the pairing is exponential witle thumber of inputs,
and therefore the K-procedure may not be applicable fortfons of large number
of inputs.

A linearizarion algorithm for efficient minimization of Bégan functions repre-
sented as a set of disjoint cubes was presented in [30]. Thegure there reduces
the computational complexity by: a) use of an heuristic adgm to define a candi-
date vector, and b) calculation of the autocorrelation efdchosen candidate vector
according to the definition of the autocorrelation function

Consequently, the procedure can handle functions of langeber of inputs.
However, the complexity of the linearized function depeondsthe order of pro-
cessing the initial set of cubes.

Another linearization algorithm, that works on multi-outpfunctions repre-
sented as a set of disjoint cubes, was presented in [15].

The computational complexity of the procedure is polyndnmahe number of
inputs and in the maximal number of cubes processed petidens, .

The drawback of this approach is the valueNafay, Which may be larger than
the initial number of cubeBl since a linear transformation of a cube may break it
into a number of cubes of a smaller order.

In this paper we introduce a linearization procedure, wisdtased on ordering
the autocorrelation values. The suggested method differs bther known static
linearization procedures in:

1. It works directly on a small predefined subset of autodatien values and
thus has a smaller computational complexity in comparisdih @existing
linearization techniques.

2. Unlike other static greedy algorithms, this proceduegerincreases the im-
plementation cost of the decomposed system of logic funstio

The paper is organized as follows: Section 2 provides madlieal back-
ground. The linear decomposition problem and the suggéistearization proce-
dure are presented in Section 3. In section 4 we show thautigested procedure
cannot produce a linearized function of degraded complaritasure. Section 5
includes simulation result of standard benchmarks andoandinctions. The con-
clusions summarizing the results are presented in Section 6
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2 Preliminaries

This section provides basic definitions and briefly presartechnique for the cal-
culation of autocorrelation function over disjoint cubes.

2.1 Definitions

A logic unit of ninputs andk outputs can be represented either by a sé&tsingle-
output Boolean function$ : GF(2") — GF(2)X or by a single multi-output func-
tion f : GF(2") — GF(2X). In this paper we refer to the function as a multi-output

function.
Let¥ ={0,1,%}, and,p € ¢. Leta be a Boolean variable we defia€ as

a if p=1
aP=¢{ a if p=0 .
1 if p==«

Letx = (Xp_1,..-,%) € GF(2"). A cubeP = (pn_1,...,pPo0) € 4", of orderr is
a coset comprising the’ Zassignments ok for which the corresponding Boolean
productfp(x) = NJx" equals "1".

The intersection between two cubBsand P; comprises the elements in the
intersection of the cosets. Equivalently, the the assignstefor which fp(X) -
fp (X) = 1. Two cubes are called disjoint if their intersection is empty

The representation of a multi-output functidnin the cubes domain is a set
of N pairsF = {(F’,,Yi)}i'\‘:1 whereP, € 4" is a cube and; € GF(2¥) is the corre-
sponding output. A function is represented as a set of disjnibes if any pair of
cubes is disjoint. Clearly any non-disjoint set can be egpdrinto a disjoint set,
and therefore without loss of generality, we assume thasyiséem consists dfl
disjoint (orthogonal) cubes.

The cubes of a multi-output Boolean function can be part#@into sets hav-
ing identical output vectors, called characteristic s@tse characteristic seE (W,
uc GF(2Y), is the set

FYW={(R,Y)I(R,Y) € F.Y; = u} (1)
The Boolean function defined by a characteristicét is called a characteristic

function f(¥(x),
W J 1 f(x)=u
0 = { 0 otherwise

Let N be the number of productﬁ%}i’\‘:(”f associated with the characteristic set
FU, S uear(2 N = N. SinceF is an orthogonal set of products, so dé¢¥ and
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thus
N

V(%) = VY fr (x) = 3 fa)

whereV stands for OR operation argis an arithmetic summation.

LetR = (pg'll,..., 8)) ande(pS][)l,..., é’)) € ¢" be disjoint cubes. Denote
by n. the number places wher;a;&') = pl(j) = %, for 0 < k < n. The intersection
betweenP, and P; (equivalently, fp(x) and fp, (x)) is empty. However, there are
T's in GF(2") for which the intersection betweefp (x) and the shifted function

fp (Xx® 1) is not empty. In [15] it was shown that the set of theseforms a cube
Cj= (.. by e M where

Gl
0o (p.p)€{(0,0),(1.1)}
(i) _ ) D 2
& =491 (p)p))€{(0,1),(2,0)} (2
* otherwise

and 0< k < n. The number of common elements in the intersectiorfpdi) and
fp, (XD T) ISV j = 2™,

Example 1 Let R = (01xx1) and B = (00x11) be disjoint cubes. The cor-
responding functions arepf= xaXsXo and f, = X4XzX1xo. The elements in the
cosets defined by the cubesdhd B are {(01001), (01011, (01107, (01111}
and{(00011), (00111}, respectively.

The intersection between the cubes is empty. However, duibe B is being
shifted byr = (01110, then,

P, & (01110 = (01x01)

and the intersection between the shifted cube anda8 \{ » = 21 elements. Fol-
lowing Eq. 2, ther’s for which the intersection is not empty are elements of the
following cube:

Ci2=Cp1=(01%%0) and V2=Vo1= 2L
Similarly,
Cl,l = (00* *0) and VL.l = 22,
Cop = (00+x00) and oo = 2L
2.2 Autocorrelation function and complexity measure
The autocorrelation function of a single output Boolearcfion is defined as

R(1) = Z f(X)f(x®1).
xeGF(2n)
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The definition of the autocorrelation function correspagdio ak-output logic
unit depends on how the function is addressed. When theifumist referred as a
multi-output functionf : GF(2") — GF(2X), the autocorrelation function is called
Total autocorrelation function [13]. The Total autocoatedn function is defined as
R(T) = Yuecr2v RY (1) whereRY is the autocorrelation function corresponding
to the characteristic functiof™.

This paper is focused on multi-output functions represttatea set of disjoint
cubes. In this case the valueR#) (1) equals to

N N N N

0702 B Wl 0D = 3 S RIC

The autocorrelation function has a compact representatianPLA-like form
[15], i.e. as a set d¥ pairs

R={(C,V)},, 3)

whereM < 3, (N + (")) < N2, G is a cube and £ V; < 2". Equivalently, the
autocorrelation function can be represented by the folgvairithmetic sum

M
=3 fa(® V. (4)

Example 2 Consider a 4-input 3-output Boolean function GF(2*) — GF(2%)
specified by the following set of cubes :

WINNDNNPFP PP OO

(1%1x)

2

7

where a symbol of GR3) is addressed by its integer value, e(@11) = 3. There
are five characteristic functions. The autocorrelationdtion of F© is

(0000 , 29,
RO ={ (o009 , 29, }.
(011 , 229
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Notice that ®) comprises two identical cubg8000). In a conventional PLA, the
cubes can be merged by ORing their values, here the cubes agednsy adding

their values. Namely,
R<o>:{ (0000, 2, }

(0111 , 2
The total autocorrelation function consists of the follog/ipairs
((000Q , 4),
(0111 , 2),
((0x00) , 6),
_ _J) ((1x10 , 4),
R={ RO.RO.RARIRY } = ((000<) , 2),
((0x0+) , 4),
((010¢) , 2),
(1x1+) , 6)

The value of the autocorrelation functiof®R for = (0100 is
8

R(0100 = qu(OlOO)\/i =0-4+0-2+1.64+0-4+0-24+1-4+1-24+0-6=12
i=

Note that in some cases (such as reordering or sub-optimedrization pro-
cedure) only a subset of autocorrelation values is consiletn such cases the
storage size can be farther reduced by deleting cubes frerseth

As shown in [13], the complexity measutg f) can be written in terms of the
autocorrelation function valuesp(f) = s+ RY (&) where § stands for the
representation of' s a binary vector of lengthin base 2, and

n—1
H(f) = u<f<“>>=_;R<d>. (5)

>
UeGF(2K)

Example 3 The complexity measure of the function from Examplg24dR(0001) +
R(0010 + R(0100 + R(1000 = 6+0+124+0=18

3 Linear Decomposition

3.1 The problem of linearization

As it was mentioned above, the linear decomposition of a @mofunction is su-
perposition of a linear transformation functianimplemented by XOR operations
and a non-linear part.

The linear transformation functioo can be represented by a nonsingulau
n) matrix and thusf (x) = f5(0 ©X) where® stands for matrix multiplication over
GF(2).
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The optimization problem is to find for a given functidna nonsingular matrix
o that permutes the function’s values, such théf,) is maximal.

In this paper, we interpret the linearization problem a®fes:
Determine a nonsingular linear transformation mataxthat reorders the values
of the initial R such that high autocorrelation values areqed at position',
i=01,....n—1inRy.

Recall that the autocorrelation functions fafx) and f4(x) carry the same val-
ues but in a different positions [13], i.e.

R(1) =Rs(0®1), or, Ry(T)=R(c 1o ). (6)

Leto =T 1 T =(1,_1,...T1,T0), then, the complexity measure of the linearized
function is

u(fs) = 3 Ro(8) = ¥ R(m). )

The matrixo defines the permutation of the autocorrelation values,adreauto-
correlation value at positiorin Ris relocated to positiow ® x in R;. Hence, the
autocorrelation values associated with the original wseloare moved to positions
o ® & and vectorg; of high autocorrelation values are movedd® 1; = §.

Clearly, the problem of the construction of a nonsingulatriras, and hence
nonsingularT is equivalent to the problem of the construction of a seh biase
vectors. That is, the initial set of base vecto{ré,}ir‘;ol, that spans the domain of
the function is being replaced by another set of base ve@(p}S;ol that allows a
more compact representation of the function [15].

Example 4 Consider the function from Example 2. The autocorrelatialues of
the function are

R=[16,6,0,0,12,6,0,2,0,0,10,6,0,0,10,6].

The sum of the autocorrelation values at positions corragjpg to positions?
is u(f) =18 The value ofu(fy) is upper bounded b2+ 10+ 10+ 6 = 38.
However, this value is not achievable by a linear transfaioraof the input vari-
ables. A set of four linearly independent vectors that meesy(fy) is the
following,To = (0100 =4, 11 = (1010 = 10,7, = (0001) = 1and13 = (0111 =7.
This set oft’s defines a non-singular matrix ¥ (13, 2, 71, Tp) and the optimal lin-
ear transformation matrix

O':Tilz

e N
mrOoOoo

R OR R
oor o
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The permuted autocorrelation function defineddis
Ry, =[16,12,10,10,6,6,6,6,2,0,0,0,0,0,0,0].

and u(fy) =12+10+6+2 = 30. Sinceu(fy) > p(f) the linearized function is
of a lower complexity than the original function. Table 1wisahe Karnaugh-like
maps of the multi-output function and the correspondingditized function.

Table 1. Karnaugh-like maps dfandfs

X3Xp || 00| 01 | 11 | 10 z3Zp || 00| 01| 11| 10
X1Xo 217y
00 2 0 1 1 00 2 2 1 4
01 2 2 3 3 01 0 2 1 0
11 0 4 2 2 11 2 2 1 3
10 1 1 2 2 10 2 2 1 3
f(XaX2X1X0) fo(z3222120)

3.2 Linearization algorithm

Known linear decomposition algorithms for Boolean funeticof a large number
of inputs are greedy and do not guarantee an improvementiitplementation
cost.

The linearization procedure described below is still gyedabwever it has an
inherent property that the linearized function hag greater or equal to thg of
the original function (see the performance analysis oniGed).

Denote byFy and Rg, the initial set of disjoint cubes and its corresponding
autocorrelation function respectivly.

LetF, 1<i<n, bealocal linearly transformed set obtained by applying-allo
linear transformation matrig; onF_1, [15], K = gi(F_1). Equivalently, fi_1(X) =
fi(gi ©X), or fi(x) = fi_1(T, ©x) whereT; = afl. The linearized function obtained
by applying iterativelyn local transformations i, = oy(:-- (02(01(Fp)))---) =
(On® 020 01)(Fy) = o(F).

Let R be the autocorrelation function correspondingoFrom Eq. 6 we
have,

R (1) =Re_,(T O T). (8)
Clearly,R (1) can be computed by applying the local linear transformatiarix
a; directly on the autocorrelation functid®: ,. Namely, letRs = {C}'),Vj(')}'}";l
be the set oM; cubes that represent the autocorrelation funcRgnthen,

Re = 0(Re,) = {o(C] ),y V)i ©)
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whereR= Ry, = {C}o),vj(o)}?"zol andR; =Rg, |, = {C}”_l),vj(”_l)}'}/':”f. Note that
in suboptimal linearization procedureRz, may be calculated for a smaller set of
Ts,i.e.Rg, CR

Example 5 Assume that the predefined setafdefined for the function in Exam-
ple 2 consists of all binary cubes of Hamming weight less aaktp two, i.e.

0 0 [ 0016
Re, = {CI”V/¥§ ;= { (1010,10 { CR

(0100),12
1010
(o001 oy [ (91998
Leto=1| o o 1 o | then,o(Rg)={0(C;”),V;"}j_1 =4 (0010,10 ».
010 0 (0001),12

The linearization procedure described in Table 2 works oredegfined set of
autocorrelation values correspondingtts of Hamming weight smaller or equal
to w. The procedure constructs the linear transformation mairiand a set of
linearized disjoint cubes representing the linearizecttiom f.

In order to simplify the calculation of;, the matrixT; is decompose into a
permutation matriP; and a linearization matrik;, T, =P;®L; andg; =L; © P;.
The matriced?; andL; are defined in Appendix A.

Table 2.Linearization procedure

Seti=1

ForallT € GF(2"), ||7|| < w calculateR(T).
Seto = |

Whilei <n

1) If R(1) = O for all candidater’s then break.

2) Determiner, T > 2~ that maximize®R(1).

In case there is more than onehoose one randomly.

3) Construct the local linear transformation matoix

(see Appendix A)

4) Apply the local linear transformation d®

5) Apply the local linear transformation on the set of pragu
6) Updateo, 0 = gi© 0

7) Incremeni

)

Note that the local linear transformation may break a cGliato two cubes
of a smaller order. However the number of distinct cubes ithestep is upper
bounded by the restriction on the Hamming weight of the ahisiet of 7’s, i.e.

M; = [{CO, VM | <5, (7). Thereby, the complexity of the computation and
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Table 3. The autocorrelation function and optimigber step without restriction on the Hamming
weight of T.

i Re(0,1,...15) T | U
0-original | [16,6,0,0,12,6,0,2,0,0,10,6,0,0,10,6]4 | 18
1 [16,12,0,0,6,6,0,2,0,0,10,10,0,0, 6, 6]10 | 18

2 [16, 12, 10, 10, 6, 6,6,6,0,0,0,0,0,0,0,2]4 | 28

3 [16, 12, 10, 10, 6,6,6,6,0,0,0,0,0,0, 0, 2]15 | 28
final [16, 12, 10, 10, 6,6,6,6,2,0,0,0,0,0,0,0] - | 30

representation of the autocorrelation function in a PLi&eiorm is of ordeN? and
the computational complexity of the ordering for= 3 is of ordem®.

Example 6 Table 3 shows the linearization process of the function feo@mmple

2. It relates to the case where there is no restriction on tlaenihing weight of the
initial set of T’s, i.e. w= 4. The first column is the step number, the second column
shows the permuted autocorrelation values and the third fandth columns are
the chosertr and theu. Note that the chosenwritten in the i'th row is greater or
equal to2'.

Example 7 The linearization process of Wvhen the Hamming weight of the initial
set oft’s is restricted by w= 2, is shown in Figure 2. To simplify the presentation,
the set of cubes in Example 5 is expanded into minterms andititerms in each
column are ordered by their corresponding integer valuguré 2 shows how the
autocorrelation values are permuted by applying local sfimmations on the set
of cubes. Each column represents a step. Only the cubesdhatihteger value

> 21 are considered and may proceed to the next step. The chostm aeeach
step is bolded. Due to the restriction=w2 the process stops after three steps. The
linearized function hagt = 12+ 10+ 6+ 0 = 28 which is smaller than the maximal
possibley.

m2

0oom .6 0o 12

>< 0010,10
010012 01006 0100, ————— - 01006
MM,—01015 MM — 01016

101010—>1010,10

Ro

Fig. 2. Local transformations on a subset of cul{)@%. V } , that represent the autocorrelation
functionsR; in Example 7. The initial subset corresponth@ Ro and comprises cubes of Hamming
weight< 2.
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4 Performance Analysis

In this section we prove that although the suggested algoris sub-optimal and
greedy, it cannot derive a linearized function with a comiiemeasureu that is
smaller than theu of the original function.

The linearization procedure produces a non-singular fit@asformation ma-
trix 0 = T—1, which is a product ofY matrices)Y <n, g =0y ®---® 02 ® 01. At
thei'th step, {=0,...n—1), the(i+ 1)’'th base vector is determined. By restricting
the decimal value of the candidat& to be greater or equal td & is guaranteed
that the chosen vector is linearly independent of previobase vectoré[d(}}(‘:%.
Therefore the chosen base vector has to replace one of therséé i Let
T = (bn-1,...,bo) be the chosen vector. If théh bit of 7, bj_1, is set to "1” then
&1 is replaced byr. Otherwise,dy, W > i, is replaced byr. The indexw is deter-
mined as follows;

LetJ stand for the sel = {j|i+1< j <n-1, b; =1}, the value ofwis

w = arg(minjcgRi(9j))- (10)

In other words, the vector of the smallest autocorrelatiafue is replaced. For
example,

Example 8 Fori =4 and t = (0010101} the base vectod; is replaced byr. If
i =4andt = (0010001} thends is replaced byr.

When the'th bit of 7 is set to "1” then the matri¥; is of the form

TR 0
T — (n—i)x(n—i) )
' < 0 l(i-1)x(i-1)

and if thei'th bit of 1, is O, then

0
0
0
0

i |

Il
OO oo —
oOr OO0
OO0~ oo

~

li-1)x(i-1)
In both cases, thith column of T is the vectorr that has larger correlation value
than any vector in the seid};_*. The matrixT is the product of the local;
matrices,T =T1 O T, O ---OTy.

Let i; stands for the complexity measuref®f and letuy and i, stand for the
complexity measure of the original and transformed fumdicespectively. Since

Re (1) =Rq ,(TiOT),
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Non candidate vectors
>

Candidate vectors

Step i+1

Fig. 3. Behavior of the elements &F(2") in two sequential steps of the procedure

thenp; = Y" 5 Rr (8)) = 3]-5Re_,(1i). The following theorems state that the sug-
gested algorithm cannot decrease fthef the linearized function.

Theorem 1 For all 1 <i < n, the suggested linearization procedure constructs a
local matrix T for which i > 1.

Proof The proof is by induction.
At the first step, one of the original base vectors, &gyk € {0,...n— 1} is re-
placed by a vector carrying the maximal autocorrelatiomeall hereforeRg, (1) >

Re, (&) and
=3 Re(8) = 3 Re(1) = 3 Re(8) + R (1)
J ] i

=Ho+ (R (T) = Ry (&) > Ho-

Assume that the inequality holds for the fifst- 1) steps. Consider the =
(bn-1,...,bp) of thei’th step. There are two cases: case |, wheni'thebit of T is
equal to "1”, and case Il, when it equals "0".

Figure 3 illustrates the behavior of the element$SiR(2") in two sequential
steps of the procedure. The vectors are classified as caadidanon candidate
vectors. The non candidate vectors at title step (i + 1)'th step ) are vectors
of integer value< 21 (< 2)). The left figure illustrates case |. For this case, it
is shown below, that the linearly transformed chosen vettand &_; become
non candidate vectors for tife+ 1)'th step while the linearly transformef }i—
proceed to the next step as candidates. The right figurardkes case Il. In this
case, the linearly transformesl_; and{d(}ﬂ;ﬁk . 'emain candidates for the+
1)'th step.

Case I.Thei'th bit of 7, bj_1, is equal to "1”. When thé&th bit is setto "1” then
the P; matrix is the identity matrix, i.ec; =Ty = L, and = pi—1+ (Re_,(T) —
Rr . (&-1)) > Hi-1.

(11)
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To complete the proof we show that the subset of (the renmgliririginal base
vectors,{ék}ﬂ;il, that were not replaced by vectors of higher autocorrelateloes
will be considered as candidates in the next step. In othedsyave show that
these vectors are transformed to binary vectors of deciraklevthat fulfills the
restriction.

The linearly transformed set of the original base vectothésset{g; © &} _1.
From the structure of; we have,g; ©® & = L; ® & = & for k > i. Clearly, the
decimal values of the elements of the transformed set a@teagrer equal to 2
Hence they remain as candidates for the next step.

Case Il. Thei'th bit of 1, b_1, is equal to "0".

In case thé’th bit of 7 is zero therdy, is replaced byr, i.e. 1 = i1+ (Re_,(T) —
Re_,(dw)) Sincew > i then the base vectaX, has decimal value greater or equal
to 2 has been considered as a candidate. Moreover, it was chogenréplaced
by 1. Namely,Re ,(7) > Re_,(dw) and thereforeu; > pi_1.

In this case the original vector{@}ﬂ;i{l excluding the vectod, which was
replaced byr are linearly transformed into the vectofs; © @}E;il_l’k - INdeed,
for k # w we have,

Li® & k>i & k>i
ai®5k:Li®Pi®5k={ Lod, kei_1 :{ 5, k=i_1

Since the transformed set has decimal values greater ot egRathey are avail-
able for future use. Moreover, since for @le J, Rr (dw) < Rr(9;) the suggested
structure ofT; keeps the base vectors of the higher correlation valuesrasdzdes.

O
Based on the above,

Theorem 2 The suggested linearization procedure constructs a limearsforma-
tion matrixo and its corresponding linearized functiop fior whichp(fg) > u(f).

5 Experimental Results

In this section we provide simulation results on severalchemarks. The perfor-
mance of the suggested linearization algorithm is examingdrms of the cost
function and the execution time.

Table 4 shows that restricting the Hamming weight of thdahiet of 7's to
be less or equal ta, does not effect the performance significantly. This justifie
the use oiv = 3.

Table 5 shows for standard benchmark functions the costibmg: of the
original and linearized functions. The value of the origifumction is denoted by
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Table 4. Values of the cost functignas a function of the restriction

w on the Hamming weight of.

benchmark| nk | w=1 2 3 5 7
sqrt8.pla | 8,4 | 1164 1284 1268 1286 128
radd.pla | 85| 824 1304 1304 1304 1304
root.pla | 8,5| 868 932 940 958 958
average 952 1173 1170 1182 1182

2

Horig- The Lia g of the linearized function provided by the suggested lizedion
procedure is compared to thes obtained by [14] and [15]. typp iS an upper
bound on cost function. It is defined as the sum of th@aximal values of the
autocorrelation values. This bound is not always achievabl

Table 5. Benchmark results for the complexity measud the orig-
inal and linearized functions and upper boundion
Benchmark| n,k || Horig | [14] | [15] | HaLG | Hupb
w=3
rd53.pla 5,3 50 66 82 82 104
sqré.pla 6,12 || 114 | 114 | 124 124 196
z4.pla 7,4 320 | 412 | 476 476 588
sqn.pla 7,3 292 | 310 | 348 346 504
rd73.pla 7,3 308 | 476 | 566 566 644
conl.pla 7,2 520 | 520 | 524 524 704
5xpl.pla 7,10 || 512 | 520 | 578 574 670
inc.pla 7,9 304 | 304 | 324 316 560
misexl.pla | 8,7 || 1472 | 1536 | 1664 | 1664 | 2048
sqrt8.pla 8,4 || 1164 | 1164 | 1268 | 1270 | 1816
radd.pla 8,5 824 | 1112 | 1304 | 1304 | 1556
root.pla 8,5 868 | 870 | 940 948 | 1712
dist.pla 8,5 638 | 638 | 700 690 | 1058
mip4.pla 8,8 664 | 674 | 734 734 | 1034
f51m.pla 8,8 884 | 1076 | 1244 | 1204 | 1536
adr4.pla 8,5 || 1040 | 1212 | 1340 | 1340 | 1492
dc2.pla 8,7 820 | 820 | 888 894 | 1310
average 635 | 695 | 771 768 | 1031

Table 6 refers to the benchmark functied2Q The s420represents a Finite
State Machine (FSM) that has 19 input variables,16 staiahlas and two output
bits. The FSM is defined by a set of 18 Boolean functibfisof 35 variables. In the
table: N is the number of disjoint cubes in the representatiori (Bfand Lorig and
Liin stand for the number of literals in SOP representation ofbifiginal function
and the linearized function as computed by ESPRESSO.

Figure 4 shows the average execution time of the lineaamagtrocedures of
[14, 15] and the proposed method with= 3 as a function of the number of inputs.
The execution time was measured on Intel-Centrino, 1.26G%9GB RAM. For
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Table 6. FSM s420

i N Lorig | Lin | % improvement|| sec
1|24 66 49 25.8 7.8

2|24 49 32 34.7 7.4

3|24 32 15 53.1 7.3

4 | 26 32 32 reordering 8.1
18| 69 || 151 | 151 reordering 23.9

the statistics we used random PLA's of four outputs and 5@ycts. The variance
of the measurements was less than R%s clear from Figure 4 that linearization
over disjoint cubes ([15] andLG) is more efficient in terms of execution time than
linearization based on Wiener-Khinchin theorelproc).

Table 7 compares the average execution time of the lingemzprocedure of
[15] and the suggested method (both with= 3) for randomly generated PLAS
having 10 to 40 inputs, four outputs 50 products.

Table 7. Average execution-time in seconds for 4-outputs&hproducts PLAs.

inputs 10 15 20 25 30 35 40
[15] 264 | 769 | 21.87 | 56.38 | 151.42 | 339.95| 738.03
ALG || 0.33| 0.69| 155 | 359 | 837 | 16.97 | 31.62

The average execution time for larger number of inputs ismiwm Figure 5.

)
10 11 12 16 7 18 10 20 30 40 50 60 70 80 90 100

13 14 15
Number of inputs Number of inputs

Fig. 4. The average execution time in sec ofFig. 5. Average execution time as a function
the K-procedure [14] (labeled &proc), [15]  of the number of inputs of a randomly gener-
and the proposed algorithm linearization pro-ated PLAs having 4 outputs and 50 and 100
cedure ALG) as a function of the number of products

inputs of randomly generated PLAs ( 4 out-

puts and 50 products).

6 Conclusion

Linear decomposition is an effective approach for reductibthe implementation
cost of a Boolean function. The linearization goal is to ¢ a linear transfor-
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mation function for which the corresponding linearized dtion is of a minimal
implementation cost. The computational complexity of kndimearization proce-
dures comes from the calculation of the autocorrelatiorction for functions of
large number of input variables. The present work providéschnique having a
small computational complexity. This was achieved by drdga small predefined
set of autocorrelation values. Although the proposed tegienis greedy and hence
suboptimal, it is proved to derive a linearized function ingva u which is not
smaller than theu of the original function.

The proposed technique is checked by using a set of standadhimarks. The
experimental results clearly demonstrate efficiency ofifuposed technique.

Apendix
A Construction of the local linear transformation matrix

The matriced; ando; can be represented as a product of fiwoc n) non-singular
matricesP; andL;, namely,

Ti=P,o L, andgi =L, 0P;,

whereP, is a permutation matri¥,~! = P;7 = P;, andL; has ones on its diagonal
and a single column of Hamming weight greater or equal onearG),L; satisfies
Lt=L.

Let 7 = (by_1,...,bo) be the chosen vector. The permutation maj>and a
linearization matrid.; that are constructed as follows:
Construction of P;:
The structure of the permutation mati of the i'th step depends on the value

of thei’'th bit of t. If it equals "1” thenR is the identity matrix. ElseR is the
following permutation matrix:

n—-1..

o
[N
o

w . -1 A
| 0 0 0
0 0 0 1 0
Pi = 0 0 | 0 0 (12)
0 1 0 0 0
0 0 0 0 |

Construction of L;:
If the i'th bit of T is setto "1”, therw =i — 1, otherwise w is defined according to
Eq. 10. Letl i,k be a(k x k) identity matrix.

[P )
- (n—=i)x(n—i)
L= (s

0
T—06_ .
4 Ha”‘ Li-1)x(i-1) >
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Note that thet and the— are XORs since the calculation is made 0@t (2), we
use the above notation to emphasize that the veyias replaced by the vectar
at thei'th step.
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