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Linearization of Multi-Output Logic Functions by
Ordering of the Autocorrelation Values

Osnat Keren and Ilya Levin

Abstract: The paper deals with the problem of linear decomposition of asystem of
Boolean functions. A novel analytic method for linearization, by reordering the val-
ues of the autocorrelation function, is presented. The computational complexity of the
linearization procedure is reduced by performing calculations directly on a subset of
autocorrelation values rather than by manipulating the Boolean function in its initial
domain. It is proved that unlike other greedy methods, the new technique does not
increase the implementation cost. That is, it provides linearized functions with a com-
plexity that is not greater than the complexity of the initial Boolean functions. Exper-
imental results over standard benchmarks and random Boolean functions demonstrate
the efficiency of the proposed procedure in terms of the complexity measure and the
execution time.

Keywords: Logic synthesis, spectral technique, autocorrelation function, linear trans-
form, disjoint cubes.

1 Introduction

The linear decomposition approach is a well known techniquefor efficient imple-
mentation of Boolean functions. The linearly decomposed system, see Figure 1,
consists of a linear functionσ followed by a linearized functionfσ , such that

z= σ(x) and y = fσ (z).

Reduction in realization cost is obtained by replacing the original set of input vari-
ables by another set of linearly independent variables which are linear combina-
tions of the input variables. Theσ defines a linear transformation of variables that
minimizes the complexity of the corresponding linearized function.
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The linear part of a Boolean function ofn inputs is implemented by two-input
XOR gates with complexity of ordern2/log2(n) and thus has negligible effect on
overall complexity of the decomposed function [13].

Fig. 1. Realization of a functionf : direct realization (top) and realization
by using the linear decompositionf (x) = fσ (σ(x)) (bottom)

In [13] the complexity of the realization is measured by the numberµ of adja-
cent minterms carrying the same output value. For Boolean functions of large num-
ber of input variables the realization cost in terms of 2-input gates almost always
decreases as theµ increases [22, 25]. The complexity measureµ is the sum of the
values of the autocorrelation function of at positions 2i , i = 0, . . .n−1. Therefore,
it is possible to reduce the implementation cost by choosinga linear transformation
σ that reorders the autocorrelation values off so that fσ has high autocorrelation
values at those positions [13].

A Binary Decision Diagram (BDD) represents a Boolean function as an acyclic
directed graph. This form of representation is suitable forBoolean functions of
large number of input variables and is used by CAD tools for logic synthesis and
simulations. The characteristics of the BDD, i.e. the size of the BDD, the number
of paths and the average path length, are sensitive to the ordering of the nodes
variables [6, 10, 18, 21].

Considerable research has been made for developing bothdynamic (algorith-
mic) andstatic (analytic) procedures for minimizing these parameters by reorder-
ing variables or by replacing them by a linear combination ofinput variables. The
algorithmic approach involves an heuristic search algorithm, [4, 5, 7, 19, 24] and
references therein. In some cases, the dynamic approach mayfail to find a better
set of variables within a given time limitation. The analytic approach defines a
new ordered set of variables by considering the Boolean function properties like
the values of the Walsh coefficients [26], the autocorrelation values [14, 17, 23]
or the ambiguity of the variables [12]. This paper deals witha static linearization
based on ordering the autocorrelation values for functionsof large number of input
variable for which the known linearization procedures may become impractical due
to their high computational complexity.

The autocorrelation function, denoted byR(τ), can be calculated either accord-
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ing to its definition or by using the Wiener-Khinchin theorem.
The efficiency of methods for computing the autocorrelationfunction depends

on the way the functionf is specified. In this paper we are interested in functions
of large number of inputs which are often represented as a setof cubes. Since any
set of cubes can be expanded to a set of disjoint cubes, we assume that the function
to be linearized is already given as a set of disjoint cubes. Note that a BDD can be
interpreted as a compact disjoint cubes representation where the number of paths
in a BDD equals to the number of disjoint cubes. In some cases,the number of
disjoint cubes,N, may be exponential in the number of inputs. The technique for
manipulating disjoint cubes discussed herein is efficient in terms of processing time
and memory consumption only for functions represented by a moderate number of
disjoint cubes, namely whenN << 2n.

An extensive work has been done in developing efficient methods for calcu-
lations of various discrete spectral transforms, including the Walsh transform, of
Boolean functions defined by disjoint cubes, see, for instance, [8, 9] and references
therein. These methods can be employed to calculate the autocorrelation function
following the Wiener-Khinchin theorem. However, the computational complexity
of the calculation ofR(τ) based on these methods depends not only on the num-
ber of cubes representing the function but also on the numberof disjoint cubes
representing its spectrum.

Another method for the calculation ofR(τ) for functions represented by dis-
joint cubes is the tabular technique [1, 2, 20, 29]. The complexity of the method
depends on the number of minterms and hence may become impractical in terms
of computation time or memory space for function of large number of ON-SET
values. In [30] the complexity of the calculation of the autocorrelation values is
reduced by performing the calculation entirely in the disjoint cubes domain. A
single autocorrelation value is calculated at a time by comparing pairs of disjoint
cubes. The computational complexity depends on the number of disjoint cubes
and is of orderO(N2) per autocorrelation value. In [15] the autocorrelationR(τ)
is also calculated by manipulating the initial set of disjoint cubes. However, the
calculation there is performed simultaneously for cubes ofτ ’s (rather for a sin-
gle τ). The autocorrelation function in [15] has a compact representation as a so
called arithmetic-SOP. In this paper we use this form of representation to reduce
the computational complexity of the proposed linearization procedure.

Due to their high computational complexity [3], static linearization procedures
tend to be greedy. The majority of known static linearization methods provide an
improvement onlyon average. Namely, at each step a single vector is added to the
current set of vectors regardless how it may delimit the set of candidate vectors of
future steps.

In [14] a linearization algorithm, called theK-procedure, for the reduction of
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the size of Binary Decision Diagrams (BDD) was introduced.
At each level, starting from the bottom of the BDD, a linearization is performed

by determining the basis of the inertia group for the function represented by the
nodes at the upper levels, and then the BDD is paired.

The pairing of the BDD’s terminal nodes is an essential step of the K-procedure.
This guaranties that the chosen vector is linearly independent in previous vectors.
However the complexity of the pairing is exponential with the number of inputs,
and therefore the K-procedure may not be applicable for functions of large number
of inputs.

A linearizarion algorithm for efficient minimization of Boolean functions repre-
sented as a set of disjoint cubes was presented in [30]. The procedure there reduces
the computational complexity by: a) use of an heuristic algorithm to define a candi-
date vector, and b) calculation of the autocorrelation of the chosen candidate vector
according to the definition of the autocorrelation function.

Consequently, the procedure can handle functions of large number of inputs.
However, the complexity of the linearized function dependson the order of pro-
cessing the initial set of cubes.

Another linearization algorithm, that works on multi-output functions repre-
sented as a set of disjoint cubes, was presented in [15].

The computational complexity of the procedure is polynomial in the number of
inputs and in the maximal number of cubes processed per iteration Nmax.

The drawback of this approach is the value ofNmax, which may be larger than
the initial number of cubesN since a linear transformation of a cube may break it
into a number of cubes of a smaller order.

In this paper we introduce a linearization procedure, whichis based on ordering
the autocorrelation values. The suggested method differs from other known static
linearization procedures in:

1. It works directly on a small predefined subset of autocorrelation values and
thus has a smaller computational complexity in comparison with existing
linearization techniques.

2. Unlike other static greedy algorithms, this procedurenever increases the im-
plementation cost of the decomposed system of logic functions.

The paper is organized as follows: Section 2 provides mathematical back-
ground. The linear decomposition problem and the suggestedlinearization proce-
dure are presented in Section 3. In section 4 we show that the suggested procedure
cannot produce a linearized function of degraded complexity measure. Section 5
includes simulation result of standard benchmarks and random functions. The con-
clusions summarizing the results are presented in Section 6.
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2 Preliminaries

This section provides basic definitions and briefly presentsa technique for the cal-
culation of autocorrelation function over disjoint cubes.

2.1 Definitions

A logic unit of n inputs andk outputs can be represented either by a set ofk single-
output Boolean functionsf : GF(2n) → GF(2)k or by a single multi-output func-
tion f : GF(2n) → GF(2k). In this paper we refer to the function as a multi-output
function.

Let G = {0,1,∗}, and,p∈ G . Let a be a Boolean variable we defineap as

ap =







a i f p = 1
ā i f p = 0
1 i f p = ∗

.

Let x = (xn−1, . . . ,x0) ∈ GF(2n). A cubeP = (pn−1, . . . , p0) ∈ G n, of order r is
a coset comprising the 2r assignments ofx for which the corresponding Boolean
product fP(x) = Πn−1

i=0 xpi
i equals ”1”.

The intersection between two cubesPi and Pj comprises the elements in the
intersection of the cosets. Equivalently, the the assignments x for which fPi(x) ·
fPj (x) = 1. Two cubes are called disjoint if their intersection is empty.

The representation of a multi-output functionf in the cubes domain is a set
of N pairsF = {(Pi,Yi)}

N
i=1 wherePi ∈ G n is a cube andYi ∈ GF(2k) is the corre-

sponding output. A function is represented as a set of disjoint cubes if any pair of
cubes is disjoint. Clearly any non-disjoint set can be expanded into a disjoint set,
and therefore without loss of generality, we assume that thesystem consists ofN
disjoint (orthogonal) cubes.

The cubes of a multi-output Boolean function can be partitioned into sets hav-
ing identical output vectors, called characteristic sets.The characteristic set,F(u),
u∈ GF(2k), is the set

F(u) = {(Pi,Yi)|(Pi,Yi) ∈ F,Yi = u} (1)

The Boolean function defined by a characteristic setF(u) is called a characteristic
function f (u)(x),

f (u)(x) =

{

1 f (x) = u
0 otherwise

.

Let N(u) be the number of products{Pi}
N(u)

i=1 associated with the characteristic set
F(u), ∑u∈GF(2k) N(u) = N. SinceF is an orthogonal set of products, so doesF(u) and
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thus

f (u)(x) = ∨N(u)

i=1 fPi(x) =
N(u)

∑
i=1

fPi(x)

where∨ stands for OR operation and∑ is an arithmetic summation.
Let Pi = (p(i)

n−1, . . . , p(i)
0 ) andPj(p( j)

n−1, . . . , p( j)
0 ) ∈ G n be disjoint cubes. Denote

by n∗ the number places wherep(i)
k = p( j)

k = ∗, for 0 ≤ k < n. The intersection
betweenPi andPj (equivalently, fPi (x) and fPj (x)) is empty. However, there are
τ ’s in GF(2n) for which the intersection betweenfPi (x) and the shifted function
fPj (x⊕ τ) is not empty. In [15] it was shown that the set of theseτ ’s forms a cube

Ci, j = (c(i, j)
n−1, . . . ,c

(i, j)
0 ) ∈ G n where

c(i, j)
k =











0 (p(i)
k , p( j)

k ) ∈ {(0,0),(1,1)}

1 (p(i)
k , p( j)

k ) ∈ {(0,1),(1,0)}
∗ otherwise

(2)

and 0≤ k < n. The number of common elements in the intersection offPi (x) and
fPj (x⊕ τ) isVi, j = 2n∗ .

Example 1 Let P1 = (01∗ ∗1) and P2 = (00∗ 11) be disjoint cubes. The cor-
responding functions are fP1 = x̄4x3x0 and fP2 = x̄4x̄3x1x0. The elements in the
cosets defined by the cubes P1 and P2 are {(01001),(01011), (01101),(01111)}
and{(00011),(00111)}, respectively.

The intersection between the cubes is empty. However, if thecube P2 is being
shifted byτ = (01110), then,

P2⊕ (01110) = (01∗01)

and the intersection between the shifted cube and P1 has V1,2 = 21 elements. Fol-
lowing Eq. 2, theτ ’s for which the intersection is not empty are elements of the
following cube:

C1,2 = C2,1 = (01∗ ∗0) and V1,2 = V2,1 = 21.

Similarly,
C1,1 = (00∗ ∗0) and V1,1 = 22,
C2,2 = (00∗00) and V2,2 = 21.

2.2 Autocorrelation function and complexity measure

The autocorrelation function of a single output Boolean function is defined as

R(τ) = ∑
x∈GF(2n)

f (x) f (x⊕ τ).
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The definition of the autocorrelation function corresponding to ak-output logic
unit depends on how the function is addressed. When the function is referred as a
multi-output functionf : GF(2n) → GF(2k), the autocorrelation function is called
Total autocorrelation function [13]. The Total autocorrelation function is defined as
R(τ) = ∑u∈GF(2k) R(u)(τ) whereR(u) is the autocorrelation function corresponding

to the characteristic functionf (u).

This paper is focused on multi-output functions represented as a set of disjoint
cubes. In this case the value ofR(u)(τ) equals to

R(u)(τ) =
N(u)

∑
i=0

N(u)

∑
j=0

∑
x∈GF(2n)

f
P(u)

i
(x) f

P(u)
j

(x⊕ τ) =
N(u)

∑
i=0

N(u)

∑
j=0

R(u)
i, j (τ).

The autocorrelation function has a compact representationin a PLA-like form
[15], i.e. as a set ofM pairs

R= {(Ci ,Vi)}
M
i=1 , (3)

whereM ≤ ∑u(N
(u) +

(N(u)

2

)

) ≤ N2, Ci is a cube and 1≤Vi ≤ 2n. Equivalently, the
autocorrelation function can be represented by the following arithmetic sum

R(τ) =
M

∑
i=1

fCi (τ) ·Vi. (4)

Example 2 Consider a 4-input 3-output Boolean function f: GF(24) → GF(23)
specified by the following set of cubes :

F =











































((0100) , 0),
((0011) , 0),
((1∗00) , 1),
((0∗10) , 1),
((0101) , 2),
((000∗) , 2),
((1∗1∗) , 2),
((1∗01) , 3),
((0111) , 4)











































where a symbol of GF(23) is addressed by its integer value, e.g.(011) = 3. There
are five characteristic functions. The autocorrelation function of F(0) is

R(0) =

{

((0000) , 20),
((0000) , 20),

((0111) , 2·20)

}

.
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Notice that R(0) comprises two identical cubes(0000). In a conventional PLA, the
cubes can be merged by ORing their values, here the cubes are merged by adding
their values. Namely,

R(0) =

{

((0000) , 2),
((0111) , 2)

}

.

The total autocorrelation function consists of the following pairs

R= { R(0),R(1),R(2),R(3),R(4) } =



































((0000) , 4),
((0111) , 2),
((0∗00) , 6),
((1∗10) , 4),
((000∗) , 2),
((0∗0∗) , 4),
((010∗) , 2),
((1∗1∗) , 6)



































.

The value of the autocorrelation function R(τ) for τ = (0100) is

R(0100) =
8

∑
i=1

fCi (0100)Vi = 0·4+0·2+1·6+0·4+0·2+1·4+1·2+0·6= 12

Note that in some cases (such as reordering or sub-optimal linearization pro-
cedure) only a subset of autocorrelation values is considered. In such cases the
storage size can be farther reduced by deleting cubes from the set.

As shown in [13], the complexity measureµ( f ) can be written in terms of the
autocorrelation function values :µ( f (u)) = ∑n−1

i=0 R(u)(δi) whereδi stands for the
representation of 2i as a binary vector of lengthn in base 2, and

µ( f ) = ∑
u∈GF(2k)

µ( f (u)) =
n−1

∑
i=0

R(δi). (5)

Example 3 The complexity measure of the function from Example 2 isµ = R(0001)+
R(0010)+R(0100)+R(1000) = 6+0+12+0= 18

3 Linear Decomposition

3.1 The problem of linearization

As it was mentioned above, the linear decomposition of a Boolean function is su-
perposition of a linear transformation functionσ implemented by XOR operations
and a non-linear part,fσ .

The linear transformation functionσ can be represented by a nonsingular(n×
n) matrix and thus,f (x) = fσ (σ ⊙x) where⊙ stands for matrix multiplication over
GF(2).
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The optimization problem is to find for a given functionf , a nonsingular matrix
σ that permutes the function’s values, such thatµ( fσ ) is maximal.

In this paper, we interpret the linearization problem as follows:
Determine a nonsingular linear transformation matrixσ that reorders the values
of the initial R such that high autocorrelation values are placed at positions2i ,
i = 0,1, . . . ,n−1 in Rσ .

Recall that the autocorrelation functions off (x) and fσ (x) carry the same val-
ues but in a different positions [13], i.e.

R(τ) = Rσ (σ ⊙ τ), or, Rσ (τ) = R(σ−1⊙ τ). (6)

Let σ = T−1, T = (τn−1, . . .τ1,τ0), then, the complexity measure of the linearized
function is

µ( fσ ) = ∑
i

Rσ (δi) = ∑
i

R(τi). (7)

The matrixσ defines the permutation of the autocorrelation values, i.e.an auto-
correlation value at positionx in R is relocated to positionσ ⊙x in Rσ . Hence, the
autocorrelation values associated with the original vectorsδi are moved to positions
σ ⊙δi and vectorsτi of high autocorrelation values are moved toσ ⊙ τi = δi .

Clearly, the problem of the construction of a nonsingular matrix σ , and hence
nonsingularT is equivalent to the problem of the construction of a set ofn base
vectors. That is, the initial set of base vectors,{δi}

n−1
i=0 , that spans the domain of

the function is being replaced by another set of base vectors{τi}
n−1
i=0 that allows a

more compact representation of the function [15].

Example 4 Consider the function from Example 2. The autocorrelation values of
the function are

R= [16,6,0,0,12,6,0,2,0,0,10,6,0,0,10,6].

The sum of the autocorrelation values at positions corresponding to positions2i

is µ( f ) = 18. The value ofµ( fσ ) is upper bounded by12+ 10+ 10+ 6 = 38.
However, this value is not achievable by a linear transformation of the input vari-
ables. A set of four linearly independent vectors that maximizes µ( fσ ) is the
following,τ0 = (0100) = 4,τ1 = (1010) = 10,τ2 = (0001) = 1andτ3 = (0111) = 7.
This set ofτ ’s defines a non-singular matrix T= (τ3,τ2,τ1,τ0) and the optimal lin-
ear transformation matrix

σ = T−1 =







1 0 1 0
1 0 1 1
1 0 0 0
1 1 1 0






.
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The permuted autocorrelation function defined byσ is

Rσ = [16,12,10,10,6,6,6,6,2,0,0,0,0,0,0,0].

and µ( fσ ) = 12+10+6+2 = 30. Sinceµ( fσ ) > µ( f ) the linearized function is
of a lower complexity than the original function. Table 1 shows the Karnaugh-like
maps of the multi-output function and the corresponding linearized function.

Table 1. Karnaugh-like maps off and fσ
x3x2 00 01 11 10
x1x0
00 2 0 1 1
01 2 2 3 3
11 0 4 2 2
10 1 1 2 2

z3z2 00 01 11 10
z1z0
00 2 2 1 4
01 0 2 1 0
11 2 2 1 3
10 2 2 1 3

f (x3x2x1x0) fσ (z3z2z1z0)

3.2 Linearization algorithm

Known linear decomposition algorithms for Boolean functions of a large number
of inputs are greedy and do not guarantee an improvement in the implementation
cost.

The linearization procedure described below is still greedy, however it has an
inherent property that the linearized function has aµ greater or equal to theµ of
the original function (see the performance analysis on Section 4).

Denote byF0 and RF0 the initial set of disjoint cubes and its corresponding
autocorrelation function respectivly.

Let Fi, 1≤ i ≤ n, be a local linearly transformed set obtained by applying a local
linear transformation matrixσi onFi−1, [15], Fi = σi(Fi−1). Equivalently, fi−1(x) =
fi(σi ⊙x), or fi(x) = fi−1(Ti ⊙x) whereTi = σ−1

i . The linearized function obtained
by applying iterativelyn local transformations isFn = σn(· · · (σ2(σ1(F0))) · · · ) =
(σn⊙·· ·σ2⊙σ1)(F0) = σ(F0).

Let RFi be the autocorrelation function corresponding toFi, From Eq. 6 we
have,

RFi (τ) = RFi−1(Ti ⊙ τ). (8)

Clearly,Ri(τ) can be computed by applying the local linear transformationmatrix

σi directly on the autocorrelation functionRFi−1. Namely, letRFi = {C(i)
j ,V(i)

j }Mi
j=1

be the set ofMi cubes that represent the autocorrelation functionRFi , then,

RFi = σ(RFi−1) = {σ(C(i−1)
j ),V(i−1)

j }
Mi−1
j=1 (9)



Linearization of Multi-Output Functions by Ordering of theAutocorrelation ...489

whereR= RF0 = {C(0)
j ,V(0)

j }M0
j=1 andRσ = RFn−1 = {C(n−1)

j ,V(n−1)
j }

Mn−1
j=1 . Note that

in suboptimal linearization procedures,RF0 may be calculated for a smaller set of
τ ’s, i.e. RF0 ⊂ R.

Example 5 Assume that the predefined set ofτ ’s defined for the function in Exam-
ple 2 consists of all binary cubes of Hamming weight less or equal to two, i.e.

RF0 = {C(0)
j ,V(0)

j }3
j=1 =

{

(0∗01),6
(1010),10
(0100),12

}

⊂ R.

Let σ =







1 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0






, then, σ(RF0) = {σ(C(0)

j ),V(0)
j }3

j=1 =

{

(010∗),6
(0010),10
(0001),12

}

.

The linearization procedure described in Table 2 works on a predefined set of
autocorrelation values corresponding toτ ’s of Hamming weight smaller or equal
to w. The procedure constructs the linear transformation matrixσ and a set of
linearized disjoint cubes representing the linearized function fσ .

In order to simplify the calculation ofσi, the matrixTi is decompose into a
permutation matrixPi and a linearization matrixL i, Ti = Pi ⊙L i andσi = L i ⊙Pi.
The matricesPi andL i are defined in Appendix A.

Table 2.Linearization procedure

Seti = 1
For all τ ∈ GF(2n) , ||τ|| ≤ w calculateR(τ).
Setσ = I
While i ≤ n

1) If R(τ) = 0 for all candidateτ ’s then break.
2) Determineτ, τ ≥ 2i−1 that maximizesR(τ).
In case there is more than oneτ choose one randomly.
3) Construct the local linear transformation matrixσi
(see Appendix A)
4) Apply the local linear transformation onR
5) Apply the local linear transformation on the set of products
6) Updateσ , σ = σi ⊙σ
7) Incrementi

Note that the local linear transformation may break a cubeC into two cubes
of a smaller order. However the number of distinct cubes in each step is upper
bounded by the restriction on the Hamming weight of the initial set ofτ ’s, i.e.
Mi = |{C(i),V(i)}Mi

j=1| ≤ ∑w
k=1

(n
k

)

. Thereby, the complexity of the computation and
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Table 3. The autocorrelation function and optimalτ per step without restriction on the Hamming
weight ofτ.

i RFi (0,1, . . .15) τ µ
0-original [ 16, 6, 0, 0, 12, 6, 0, 2, 0, 0, 10, 6, 0, 0, 10, 6] 4 18

1 [16, 12, 0, 0, 6, 6, 0, 2, 0, 0, 10, 10, 0, 0, 6, 6]10 18
2 [16, 12, 10, 10, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 2] 4 28
3 [16, 12, 10, 10, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 2]15 28

final [16, 12, 10, 10, 6, 6, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0] - 30

representation of the autocorrelation function in a PLA-like form is of orderN2 and
the computational complexity of the ordering forw = 3 is of ordern4.

Example 6 Table 3 shows the linearization process of the function fromExample
2. It relates to the case where there is no restriction on the Hamming weight of the
initial set ofτ ’s, i.e. w= 4. The first column is the step number, the second column
shows the permuted autocorrelation values and the third andfourth columns are
the chosenτ and theµ . Note that the chosenτ written in the i’th row is greater or
equal to2i .

Example 7 The linearization process of f, when the Hamming weight of the initial
set ofτ ’s is restricted by w= 2, is shown in Figure 2. To simplify the presentation,
the set of cubes in Example 5 is expanded into minterms and theminterms in each
column are ordered by their corresponding integer value. Figure 2 shows how the
autocorrelation values are permuted by applying local transformations on the set
of cubes. Each column represents a step. Only the cubes that have integer value
≥ 2i−1 are considered and may proceed to the next step. The chosen vector at each
step is bolded. Due to the restriction w= 2 the process stops after three steps. The
linearized function hasµ = 12+10+6+0 = 28which is smaller than the maximal
possibleµ .

Fig. 2. Local transformations on a subset of cubes{C(i)
j ,V(i)

j }Mi
j=1 that represent the autocorrelation

functionsRi in Example 7. The initial subset corresponds toR= R0 and comprises cubes of Hamming
weight≤ 2.
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4 Performance Analysis

In this section we prove that although the suggested algorithm is sub-optimal and
greedy, it cannot derive a linearized function with a complexity measureµ that is
smaller than theµ of the original function.

The linearization procedure produces a non-singular linear transformation ma-
trix σ = T−1, which is a product ofn′ matrices,n′ ≤ n, σ = σn′ ⊙·· ·⊙σ2⊙σ1. At
thei’th step, (i = 0, . . .n−1), the(i+1)’th base vector is determined. By restricting
the decimal value of the candidateτ ’s to be greater or equal to 2i it is guaranteed
that the chosen vector is linearly independent of previousi base vectors{δk}

i−1
k=0.

Therefore the chosen base vector has to replace one of the vectors {δk}
n−1
k=i . Let

τ = (bn−1, . . . ,b0) be the chosen vector. If thei’th bit of τ , bi−1, is set to ”1” then
δi−1 is replaced byτ . Otherwise,δw, w≥ i, is replaced byτ . The indexw is deter-
mined as follows;
Let J stand for the setJ = { j|i +1≤ j ≤ n−1, b j = 1}, the value ofw is

w = arg(minj∈JRi(δ j)). (10)

In other words, the vector of the smallest autocorrelation value is replaced. For
example,

Example 8 For i = 4 and τ = (00101011) the base vectorδ3 is replaced byτ . If
i = 4 andτ = (00100011) thenδ5 is replaced byτ .

When thei’th bit of τ is set to ”1” then the matrixTi is of the form

Ti =

(

I(n−i)×(n−i)

0
τ 0

I(i−1)×(i−1)

)

and if thei’th bit of τ , is 0, then

Ti =









I 0 0
0 0 0
0 0 I
0 1 0
0 0 0

τ

0
0
0
0

I(i−1)×(i−1)









.

In both cases, thei’th column ofTi is the vectorτ that has larger correlation value
than any vector in the set{δk}

n−1
k=i . The matrixT is the product of the localTi

matrices,T = T1⊙T2⊙·· ·⊙Tn′.
Let µi stands for the complexity measure ofFi, and letµ0 andµn stand for the

complexity measure of the original and transformed functions respectively. Since

RFi (τ) = RFi−1(Ti ⊙ τ),
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Fig. 3. Behavior of the elements inGF(2n) in two sequential steps of the procedure

thenµi = ∑n−1
j=0 RFi (δ j) = ∑n−1

j=0 RFi−1(τi). The following theorems state that the sug-
gested algorithm cannot decrease theµ of the linearized function.

Theorem 1 For all 1 ≤ i < n, the suggested linearization procedure constructs a
local matrix Ti for whichµi ≥ µi−1.

Proof The proof is by induction.
At the first step, one of the original base vectors, sayδk, k ∈ {0, . . .n− 1} is re-
placed by a vector carrying the maximal autocorrelation value. Therefore,RF0(τ)≥
RF0(δk) and

µ1 =∑
j

RF1(δ j) = ∑
j

RF0(τ j) = ∑
i 6=k

RF0(δi)+RF0(τ)

=µ0 +(RF0(τ)−RF0(δk)) ≥ µ0.

(11)

Assume that the inequality holds for the first(i − 1) steps. Consider theτ =
(bn−1, . . . ,b0) of the i’th step. There are two cases: case I, when thei’th bit of τ is
equal to ”1”, and case II, when it equals ”0”.

Figure 3 illustrates the behavior of the elements inGF(2n) in two sequential
steps of the procedure. The vectors are classified as candidate or non candidate
vectors. The non candidate vectors at thei’th step ((i + 1)’th step ) are vectors
of integer value< 2i−1 (< 2i). The left figure illustrates case I. For this case, it
is shown below, that the linearly transformed chosen vectorτ and δi−1 become
non candidate vectors for the(i +1)’th step while the linearly transformed{δk}

n−1
k=i

proceed to the next step as candidates. The right figure illustrates case II. In this
case, the linearly transformedδi−1 and{δk}

n−1
k=i,k6=w remain candidates for the(i +

1)’th step.
Case I.Thei’th bit of τ , bi−1, is equal to ”1”. When thei’th bit is set to ”1” then

thePi matrix is the identity matrix, i.e.σi = Ti = L i, andµi = µi−1 +(RFi−1(τ)−
RFi−1(δi−1)) ≥ µi−1.
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To complete the proof we show that the subset of (the remaining) original base
vectors,{δk}

n−1
k=i , that were not replaced by vectors of higher autocorrelationvalues

will be considered as candidates in the next step. In other words, we show that
these vectors are transformed to binary vectors of decimal value that fulfills the
restriction.

The linearly transformed set of the original base vectors isthe set{σi ⊙δk}
n−1
k=i .

From the structure ofL i we have,σi ⊙ δk = L i ⊙ δk = δk for k ≥ i. Clearly, the
decimal values of the elements of the transformed set are greater or equal to 2i .
Hence they remain as candidates for the next step.

Case II. The i’th bit of τ , bi−1, is equal to ”0”.
In case thei’th bit of τ is zero thenδw is replaced byτ , i.e. µi = µi−1+(RFi−1(τ)−
RFi−1(δw)) Sincew≥ i then the base vectorδw has decimal value greater or equal
to 2i has been considered as a candidate. Moreover, it was chosen to be replaced
by τ . Namely,RFi−1(τ) ≥ RFi−1(δw) and thereforeµi ≥ µi−1.

In this case the original vectors{δk}
n−1
k=i−1 excluding the vectorδw which was

replaced byτ are linearly transformed into the vectors{σi ⊙δk}
n−1
k=i−1,k6=w. Indeed,

for k 6= w we have,

σi ⊙δk = L i ⊙Pi ⊙δk =

{

L i ⊙δk k≥ i
L i ⊙δw k = i −1

=

{

δk k≥ i
δw k = i −1

Since the transformed set has decimal values greater or equal to 2i they are avail-
able for future use. Moreover, since for allj ∈ J, RFi (δw) ≤ RFi (δ j) the suggested
structure ofTi keeps the base vectors of the higher correlation values as candidates.

Based on the above,

Theorem 2 The suggested linearization procedure constructs a lineartransforma-
tion matrixσ and its corresponding linearized function fσ for whichµ( fσ )≥ µ( f ).

5 Experimental Results

In this section we provide simulation results on several benchmarks. The perfor-
mance of the suggested linearization algorithm is examinedin terms of the cost
function and the execution time.

Table 4 shows that restricting the Hamming weight of the initial set ofτ ’s to
be less or equal tow, does not effect the performance significantly. This justifies
the use ofw = 3.

Table 5 shows for standard benchmark functions the cost function µ of the
original and linearized functions. The value of the original function is denoted by
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Table 4. Values of the cost functionµ as a function of the restriction
w on the Hamming weight ofτ.

benchmark n,k w = 1 2 3 5 7
sqrt8.pla 8, 4 1164 1284 1268 1286 1286
radd.pla 8,5 824 1304 1304 1304 1304
root.pla 8 ,5 868 932 940 958 958
average 952 1173 1170 1182 1182

µorig. The µALG of the linearized function provided by the suggested linearization
procedure is compared to theµ ’s obtained by [14] and [15].µupb is an upper
bound on cost function. It is defined as the sum of then maximal values of the
autocorrelation values. This bound is not always achievable.

Table 5. Benchmark results for the complexity measureµ of the orig-
inal and linearized functions and upper bound onµ

Benchmark n,k µorig [14] [15] µALG µupb
w = 3

rd53.pla 5,3 50 66 82 82 104
sqr6.pla 6,12 114 114 124 124 196
z4.pla 7,4 320 412 476 476 588
sqn.pla 7,3 292 310 348 346 504
rd73.pla 7,3 308 476 566 566 644
con1.pla 7,2 520 520 524 524 704
5xp1.pla 7,10 512 520 578 574 670
inc.pla 7,9 304 304 324 316 560
misex1.pla 8,7 1472 1536 1664 1664 2048
sqrt8.pla 8,4 1164 1164 1268 1270 1816
radd.pla 8,5 824 1112 1304 1304 1556
root.pla 8,5 868 870 940 948 1712
dist.pla 8,5 638 638 700 690 1058
mlp4.pla 8,8 664 674 734 734 1034
f51m.pla 8,8 884 1076 1244 1204 1536
adr4.pla 8,5 1040 1212 1340 1340 1492
dc2.pla 8,7 820 820 888 894 1310
average 635 695 771 768 1031

Table 6 refers to the benchmark functions420. Thes420represents a Finite
State Machine (FSM) that has 19 input variables,16 state variables and two output
bits. The FSM is defined by a set of 18 Boolean functionsf (i) of 35 variables. In the
table: N is the number of disjoint cubes in the representation off (i) andLorig and
Llin stand for the number of literals in SOP representation of theoriginal function
and the linearized function as computed by ESPRESSO.

Figure 4 shows the average execution time of the linearization procedures of
[14, 15] and the proposed method withw= 3 as a function of the number of inputs.
The execution time was measured on Intel-Centrino, 1.2Ghz,0.99GB RAM. For
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Table 6. FSM s420
i N Lorig Llin % improvement sec
1 24 66 49 25.8 7.8
2 24 49 32 34.7 7.4
3 24 32 15 53.1 7.3
4 26 32 32 reordering 8.1
18 69 151 151 reordering 23.9

the statistics we used random PLA’s of four outputs and 50 products. The variance
of the measurements was less than 3%. It is clear from Figure 4 that linearization
over disjoint cubes ([15] andALG) is more efficient in terms of execution time than
linearization based on Wiener-Khinchin theorem (Kproc).

Table 7 compares the average execution time of the linearization procedure of
[15] and the suggested method (both withw = 3) for randomly generated PLAs
having 10 to 40 inputs, four outputs 50 products.

Table 7. Average execution-time in seconds for 4-outputs and 50-products PLAs.

inputs 10 15 20 25 30 35 40
[15] 2.64 7.69 21.87 56.38 151.42 339.95 738.03
ALG 0.33 0.69 1.55 3.59 8.37 16.97 31.62

The average execution time for larger number of inputs is given in Figure 5.
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and the proposed algorithm linearization pro-
cedure (ALG) as a function of the number of
inputs of randomly generated PLAs ( 4 out-
puts and 50 products).

10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

10
4

Number of inputs

se
co

nd
s

50 products

100 products

Fig. 5. Average execution time as a function
of the number of inputs of a randomly gener-
ated PLAs having 4 outputs and 50 and 100
products

6 Conclusion

Linear decomposition is an effective approach for reduction of the implementation
cost of a Boolean function. The linearization goal is to construct a linear transfor-
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mation function for which the corresponding linearized function is of a minimal
implementation cost. The computational complexity of known linearization proce-
dures comes from the calculation of the autocorrelation function for functions of
large number of input variables. The present work provides atechnique having a
small computational complexity. This was achieved by ordering a small predefined
set of autocorrelation values. Although the proposed technique is greedy and hence
suboptimal, it is proved to derive a linearized function having a µ which is not
smaller than theµ of the original function.

The proposed technique is checked by using a set of standard benchmarks. The
experimental results clearly demonstrate efficiency of theproposed technique.

Apendix

A Construction of the local linear transformation matrix

The matricesTiTiTi andσσσ i can be represented as a product of two(n×n) non-singular
matricesPPPi andLLLi , namely,

TTT i = PPPi ⊙ LLLi , and σσσ i = LLLi ⊙PPPi ,

wherePiPiPi is a permutation matrix,PPPi
−1 = PPPi

T = PPPi , andLLLi has ones on its diagonal
and a single column of Hamming weight greater or equal one. Clearly,LLLi satisfies
LLL−1

i = LLLi.
Let τ = (bn−1, . . . ,b0) be the chosen vector. The permutation matrixPPPi and a

linearization matrixLLLi that are constructed as follows:
Construction of PPPi:
The structure of the permutation matrixPiPiPi of the i’th step depends on the value
of the i’th bit of τ . If it equals ”1” thenPiPiPi is the identity matrix. Else,PiPiPi is the
following permutation matrix:

PPPi =

















n−1... ... w ... ... ... i−1 ... ...1,0
III 0 0 0 0
0 0 0 1 0
0 0 III 0 0
0 1 0 0 0
0 0 0 0 III

















(12)

Construction of LLLi :
If the i’th bit of τ is set to ”1”, thenw = i −1, otherwise,w is defined according to
Eq. 10. LetI(k×k) be a(k×k) identity matrix.

LiLiLi =

(

III (n−i)×(n−i)
0

τ −δi−1 +δw
0

III (i−1)×(i−1)

)

.
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Note that the+ and the− are XORs since the calculation is made overGF(2), we
use the above notation to emphasize that the vectorδw is replaced by the vectorτ
at thei’th step.
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