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Synthesis of Sequential Circuits by using Linearization

Iliya Levin, Osnat Keren, and Vladimir Ostrovsky

Abstract: The paper deals with synthesis of sequential circuits defined by their al-
gorithmic state machine notation. Such circuits have a number of specific properties
which enable efficient design of the circuits by utilizing so-called linearization tech-
niques. A typical linearization technique includes calculation of autocorrelation val-
ues for a system of logic functions corresponding to the circuit. For the mentioned
sequential circuits, the calculations which usually require massive computational re-
courses may be significantly reduced and thus low-overhead implementations of the
circuits can be obtained relatively easy. The paper introduces a novel architecture of
so-called linearized sequential circuits, and a piece-wise linearization approach for
synthesis of sequential circuits. Results are evaluated both analytically and by using a
number of standard benchmarks.

Keywords: Sequential circuits, logic functions, linearization, Binari decision dia-
grams, multi-terminal decision diagrams.

1 Introduction

Linearization is known as one of efficient means for optimizing the logic design.
Extraction of a maximally possible linear portion from an initial logic function or
from a system of logic functions allows reducing the implementation complexity in
many cases in practice. Calculations of autocorrelation values that are required for
the linearization are of high complexity, which makes the linearization of functions
of a large number of input variables almost inapplicable. Numerous researches
were made, providing reductions of the complexity of linearization [1–5]. One
of the ways to reduce the complexity of the calculations is using the disjoint cubes
representation of logic functions. Calculations over disjoint cubes are much simpler
than in the general case. There are two objections which prevent considering the
disjoint cubes representation as a ”panacea” in performingthe linearization:
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1. Complexity of the calculations over the disjoint cubes strongly depends on
the order of processing the cubes.

2. An arbitrary disjoint cube representation usually comprises a great number
of cubes and thus may become impractical.

In [2], the Authors proposed an analytical method for calculation of the au-
tocorrelation function for functions represented by disjoint cubes; the first of the
above objections may therefore be withdrawn since it was caused by the algorith-
mic character of other methods. The second objection seems more problematic
since it is connected with the nature of logic functions. Fortunately, there are at
least two ways to overcome the second objection. These ways are:

1. Using decomposition techniques. Indeed, it is possible to reduce the com-
plexity of the function’s representation by partitioning the function into a
number of sub-functions each having a smaller number of disjoint cubes.
Such an approach was examined in [6] where the initial function was pre-
sented as a superposition of a number of so-called ”trapeze”functions com-
prising disjoint cubes of a smaller rank.

2. Applying the methods based on disjoint cubes to a specific class of logic
functions for which the disjoint cubes representation is “natural”. In most
cases we deal with logic functions which are not ”randomly generated” but
developed by humans [7]. Since that, an enormously wide class of logic
functions comprises the functions which somehow reflect cognitive abilities
of humans in creating a description of the technological environment. Such
a description usually has the algorithmic style and, consequently, the cor-
responding logic functions reflect this algorithmic nature[8]. In turn, the
algorithmic nature is basically the desired property of disjointness. One of
the well known examples of such a kind of descriptions is an Algorithmic
State Machine (ASM) chart description. Development of the ASM chart re-
quires thinking in a form of the ASM paths, each corresponding to a specific
disjoint cube.

Other examples of the disjoint cubes representations are Binary Decision Dia-
grams (BDDs) [9] and multi-terminal BDDs (MTBDDs) [10]. BDDand MTBDD
are data structures that are widely used in logic synthesis and verification. Descrip-
tion of such diagrams can actually be used as a universal concept on different con-
ceptual levels of systems representation. Indeed, the MTBDD may be considered
as a form of systems’ specification, as a form of representation of a logic function
and even as a certain model of the system’s implementation. The present work
has been triggered by the visual and cognitive closeness of the above two concepts
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(ASM and MTBDD), as well as by their direct relations with thesequential circuits.
It looks indeed reasonable and interesting to study techniques of linearization on a
class of functions, which seem suitable for linearization in advance, by their nature.

One of the well known tasks in synthesis of sequential circuit is a task of states
assignments. The states assignment versus the efficient linearization was deeply
studied in [11]. However, the most popular state assignmentbeing a so-called1-
hot encoding was never examined from the point of its implementability would a
linearization technique be applied. We pay a specific attention to this issue in the
paper. Specifically, we propose and examine the1-hot assignment for linearized,
ASM based sequential circuits SC. We describe a decomposition approach for im-
plementing such SC. The approach is evaluated on a number of benchmarks.

The paper is organized as follows.

Section 2 recalls the basics of the linearization techniques, as well as the Al-
gorithmic State Machines base notation and their connection to sequential circuits.
Section 3 introduces a newly proposed concept of a Linearized ASM and describes
a corresponding architecture of a Linearized SC. Section 4 introduces a piece-wise
decomposition of ASM based sequential circuits. Experimental results of the piece-
wise linearization of benchmark sequential circuits are presented in Section 5. The
summary of the research is given in Section 6.

2 Definitions and Related Works

Two main fields form the background of the present study: Linearization Tech-
niques and Synthesis of SC based on the Algorithmic State Machine notation. In
this section we will recall some concepts from both of these fields.

2.1 Linearization of logic functions

Analysis and synthesis methods based on the properties of the Walsh spectrum of
a Boolean function and/or on its autocorrelation function are referred to as spectral
techniques. In this paper, we consider spectral techniquesfor performing linear
decomposition of a system of Boolean functions (multiple-output function). The
initial multiple-output function is presented as a superposition of a linear func-
tion and a nonlinear multiple-output functionfσ where f (x) = fσ (σx). The linear
functionσ is determined by using the autocorrelation values of the initial function
so that the linearly transformed functionfσ minimizes a certain cost (complexity)
function. As in many works related to minimization of BinaryDecision Diagrams
(BDDs), the cost functions considered hereby are expressedby the number of nodes
in the BDD, the number of paths and the Average Path Length (APL) of the BDD.
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The cost functions reflect the required memory size, the testing complexity and
average time of the logic simulations [12].

The linearization requires computation of the autocorrelation values of a
Boolean function. The computation of the autocorrelation values can be performed
either by a straightforward technique based on the definition of the autocorrela-
tion function, or by using the Wiener-Khinchin theorem withcomplexityO(N2N)
whereN is the number of input variables. For functions of a large number of in-
puts (> 20) these approaches may be impractical. Nevertheless, formost of the
applications, e.g. for FSMs derived from ASMs, the combinational part may be
represented as a set ofM disjoint cubes of small sizesM ≪ 2M . In these cases the
autocorrelation function for the linearization can be calculated by using the algo-
rithms presented in [2, 3], with the computational complexity proportional toM2.
A different approach to the problem of linearization of large systems represented
by a set of non-disjoint cubes is a parallel decomposition ofthe function into sub-
functions, combined with the linearization of each sub-function [6]. Preliminary
results demonstrating the potential of this approach were presented in [13].

2.2 Specification of sequential circuits by algorithmic state machine chart

Consider a system that comprises a control unit and an operational unit (a data-
path). The operational unit contains a number of computing elements, while
the control unit produces vectors of control binary signalsforming the setY =
{y1, . . . ,yN} and forcing execution of operations in the operational unit. These con-
trol signals constitute Boolean functions of input variablesX = {x1, . . . ,xL} which
arrive from the operational unit, and of so-called state variablesZ = {z1, . . . ,zU}
of internal states of the control unit. Interaction betweenthe control unit and the
operational unit may be described algorithmically and expressed graphically in a
form of an Algorithmic State Machine chart.

An ASM is a directed connected graph containing an initial vertex, a final ver-
tex, a finite set of operator vertices and conditional vertices. Each conditional vertex
contains a single logical condition from the setX = {x1, . . . ,xL}. Each operator ver-
tex contains a specific output vector. Let{Y0 . . . ,YQ−1} be the set of such vectors,
Y0 = (0, . . . ,0) is the “empty” of “null” vector.

One of the important features of an ASM chart is its equivalence to a finite
state machine (FSM). Both ASM and FSM representations are convenient forms
for description of sequential circuits (SC). We say that an FSM implementsa corre-
sponding ASM. We mean that the ASM chart is an initial specification of a system,
while the FSM is a mathematical model of the system and can be transformed to
a certain hardware description (netlist, VHDL etc.). A simple procedure allows
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transforming any ASM into the FSM form by associating so-called paths of the
ASM with transitions of the corresponding FSM [8, 14]. The paths, in turn, are
defined by using so-calledmarkson the ASM. Each of the marks corresponds to a
certain state of the FSM. An example of the marked ASM with logical conditions
X = {x1, . . . ,x4}, control signalsY = {y1, . . . ,y8}, output vectors{Y0, . . . ,Y7} and
marks (FSM states){a0, . . . ,a4} is shown in Figure 1.

Fig. 1. Marked ASM.

After performing a state assignment, a structural table of the FSM may be con-
structed. The structural table is presented in Table 1, in the form of a list of the
disjoint cubes.

Columns of the table relate to: an input portion of the FSM (“Input variables”
and “State variables” columns) and to an output portion of the FSM (“Next state”
and “Output functions” columns). Each row of the table corresponds to a specific
transition of the FSM or to a certain path within the ASM from Figure 1. The
structural table of the FSM represents a system of logic functions or a multiple-
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Table 1. Structural table of the FSM corresponding to ASM forFigure 1.

Input variables State variable Next state var. Output variables
x1 x2 x3 x4 a z1 x2 x3 a d1 d2 d3 y1 y2 y3 y4 x5 x6 x7 x8

0 0 - - a0 0 0 0 a1 0 0 1 1 0 0 0 0 0 0 0
0 1 - - a0 0 0 0 a2 0 1 0 0 1 0 0 0 0 0 0
1 0 - - a0 0 0 0 a2 0 1 0 0 1 0 0 0 0 0 0
1 1 - - a0 0 0 0 a3 0 1 1 0 0 1 0 0 0 0 0
0 0 0 - a1 0 0 1 a4 1 0 0 0 0 0 1 0 0 0 0
0 1 0 - a1 0 0 1 a2 0 1 0 0 1 0 0 0 0 0 0
1 0 0 - a1 0 0 1 a2 0 1 0 0 1 0 0 0 0 0 0
1 1 0 - a1 0 0 1 a3 0 1 1 0 0 1 0 0 0 0 0
- - 1 - a1 0 0 1 a4 1 0 0 0 0 0 0 0 1 0 0
0 0 - 0 a2 0 1 0 a1 0 0 1 1 0 0 0 0 0 0 0
0 1 - 0 a2 0 1 0 a2 0 1 0 0 1 0 0 0 0 0 0
1 0 - 0 a2 0 1 0 a2 0 1 0 0 1 0 0 0 0 0 0
1 1 - 0 a2 0 1 0 a3 0 1 1 0 0 1 0 0 0 0 0
- - - 1 a2 0 1 0 a4 1 0 0 0 0 0 0 1 0 0 0
0 0 0 - a3 0 1 1 a1 0 0 1 1 0 0 0 0 0 0 0
0 1 0 - a3 0 1 1 a2 0 1 0 0 1 0 0 0 0 0 0
1 0 0 - a3 0 1 1 a2 0 1 0 0 1 0 0 0 0 0 0
1 1 0 - a3 0 1 1 a4 1 0 0 0 0 0 0 0 0 1 0
- - 1 - a3 0 1 1 a4 1 0 0 0 0 0 0 0 1 0 0
0 0 - 0 a4 1 0 0 a1 0 0 1 1 0 0 0 0 0 0 0
0 1 - 0 a4 1 0 0 a2 0 1 0 0 1 0 0 0 0 0 0
1 0 - 0 a4 1 0 0 a3 0 1 0 0 1 0 0 0 0 0 0
1 1 - 0 a4 1 0 0 a3 0 1 1 0 0 1 0 0 0 0 0
- - - 1 a4 1 0 0 a0 0 0 0 0 0 0 0 0 0 0 1

output function of the sequential circuit.

Multiple-output functions, derived from the ASM-based SC,form a specific
class of functions. This class can be characterized by the following properties:

1. The multiple-output functions are defined by a set of disjoint cubes since all
transitions of the ASM based SC are pair-wise disjointed.

2. The function is defined on cubes of a small rank (large cubes) since the ma-
jority of the SC transitions depend on a limited subset of input variables
X = {x1, . . . ,xL}.

3. The multiple-output function has a limited number of different output vec-
tors. The set of these vectors is known in advance.

This specific class of functions is in the focus of our study. Such functions cor-
respond to a wide class of controllers that are used both in microprocessors and in
many other applications. We utilize the above properties for reducing the compu-
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tational complexity of the linearization, as well as for decomposing the system for
its optimization.

3 Architecture of Linearized Sequential Circuit

The conventional SC havingW states consists of two parts: a set ofU , (U ≥
⌈log2W⌉) memory elements and a combinatorial part implementing a multiple-
output Boolean functions ofL +U input variables and ofN +U output variables,
whereL is the number of inputs variables{x1, . . . ,xL}, N is the number of out-
put variables{y1, . . . ,yN} andU is the number of next state variables{d1, . . . ,dU}
which equals to the number of bits of the encoded state{z1, . . . ,zU} variables to be
stored in the memory.

We propose a new architecture, called alinearizedSC (LSC), for sequential
circuits derived from ASMs. The block diagram of the linearized SC is shown in
Figure 2.

Fig. 2. Architecture of the linearized sequential circuit.

The task of synthesis of the LSC is to define a linearized BDD representing
the combinatorial part of the SC. This task comprises three sub-tasks: a) a state
assignment; b) an optimized linear transformation; c) an optimized synthesis of a
BDD of the combinational part for minimization of the implementation cost of the
overall system.

We do not deal with the problem of the state assignment for optimal lineariza-
tion. This problem was deeply investigated in [15]. Nevertheless, we do apply a
number of different states assignments to examine efficiency of spectral techniques
for optimizing multiple-output functions derived from theASM-based SC descrip-
tion. Particularly, we are interested in the minimal lengthassignment, as well as in
the 1-hot states assignment. The next section deals with the1-hot states encoded
FSMs.

The problem of selecting an optimizedσ is strongly connected with a form of
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representation of the initial system of logic functions. Since the system is defined
by disjoint cubes the procedure of selecting an appropriateσ has a complexityM2

(M - the number of cubes).

In this paper, we propose a method for synthesis of an optimized BDD by using
a decomposition technique. We call this technique apiece-wise linearization of
sequential circuits. This technique is especially suitable for implementationof the
1-hot encoded FSM. The next section is devoted to the piece-wise linearization
technique.

4 Parallel Decomposition and Piece-wise Linearization of Sequential
Circuits

Presently, the1-hotassignment is the most popular state assignment in the SC de-
sign. A multiple-output function corresponding to the1-hotencoded SC is defined
on a set of non-disjoint cubes. Since that, conventional techniques for transform-
ing such functions into their BDD form are ineffective. It iscorrect both for the
linearization based techniques, and for other techniques.In this paper, we pro-
pose a specific decomposition technique that allows optimizing the transforma-
tion of multiple-output functions corresponding to the1-hotencoded SCs into their
MTBDD form.

4.1 Piece-wise linearization of multiple-output functions

In [6], a piece-wise linearization technique was proposed.This technique com-
prises a step of parallel decomposition of the initial set ofcubes into a number
of components (subsets of cubes), followed by a step of independent linearization
of the components. The resulting piece-wise linearized network is directly ma-
pable onto a special type of a binary graph called Parallel Multi-Terminal BDD
(PMTBDD). The PMTBDD is constructed by combining componentMTBDDs
using: a serial operation (i.e. replacing one terminal nodeof an MTBDD with
another MTBDD), and a parallel operation (i.e. connecting roots of two or more
MTBDDs). An efficient algorithm for construction of an optimized PMTBDD was
proposed in [13]. The decomposition algorithm includes partitioning of the set of
cubes of the function into a number of components. The partitioning is followed
by a recursive decomposition of the components into a commonheader and a set of
fragments. The efficiency of the decomposition algorithm, in terms of the number
of MTBDD nodes, was demonstrated on a number of benchmarks.

The aim of the parallel decomposition step is creating a PMTBDD for an ar-
bitrary multiple-output function. The decomposition algorithm is started with the
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partitioning of the set of cubes representing the ON-set of the function, into a set
of logic blocks. It is followed by the hierarchical separation of the blocks for a
common header and a set of block fragments. The separation isaccomplished by
extracting a set of common factors (so-called prefixes) froma subset of the original
set of cubes.

Let us formulate a number of definitions necessary for explaining the decom-
position procedure.

We will call a prefixany part of a cube. A subset of cubes comprising prefixes
with at least one common variable form ablock. The cubes of the original set, not
included in the block, are called a remainder.

A set of the prefixes of the block defines ablock header. A set of cubes having
exactly the same (common) prefix is called ıfamily. A set of cubes obtained by
extracting the common prefix from afamily forms atail.

The block header is selected in such a way as to provide minimization of the re-
sulting PMTBDD. We select the block header using the following criteria: 1) max-
imal increase ofdensity(minimizing the percentage of “dont cares” in the block);
2) maximal suitability for further linearization of the block.

By is nature, the block header is a logic function, ON-set of which is a superset
of ON-sets of the block. The block will be implemented as an MTBDD whose
internal nodes are associated with the prefix variables. Theterminal nodes of the
MTBDD represent the tails, each to be implemented as a separate MTBDD. Each
of the tails and the remainder will be each recursively decomposed in the same
above described way, until no further decomposition is possible. A detailed formal
algorithm of a single iteration of the decomposition is presented in the Appendix.

An important feature of the decomposition method is its ability to benefit from
any other optimization method the user may wish to apply - Sifting, K-Procedure,
etc [1, 4]. These can be applied to the component MTBDDs, and may further
reduce the total diagram’s size. A PMTBDD with the linearized blocks is denoted
LPMTBDD.

The following example illustrates how the decomposition works.

Example 1: Let a Multiple-output function is defined by the set cubes presented
in Table 2.

BDD, LTBDD, PMTBDD and LPMTBDD for the example are presentedin
Figures 3-6 correspondingly.

Terminal nodes of MTBDDs in Figures 3-6 are marked by decimalnumbers of
the corresponding outputs. A standard implementation of the MTBDD of our ex-
ample, in the form of an ordered MTBDD, is presented in Figure3. Figure 4 shows
a linearized MTBDD corresponding to the Example. A PMTBDD obtained by the
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Table 2. The list of cubes of the example.

# x0 x1 x2 x3 x4 F0 F1 F2 F3

0 0 1 - 0 - 1 0 0 0
1 0 1 - 1 - 0 1 1 0
2 - - 1 - 0 0 0 1 1
3 - - - 0- 1 0 0 0 1
4 1 0 - 1 - 1 1 0 0

Fig. 3. Straightforward implementation of
MTBDD of the Example.

Fig. 4. Linearized MTBDD for the Example.

Fig. 5. PMTBDD corresponding to the Exam-
ple.

Fig. 6. Linearized PMTBDD of the Example.

proposed decomposition method, is shown in Figure 5. The PMTBDD comprises
two portions the block (left) and the remainder (right). Theportions are assem-
bled by the newly introduced parallel connection of MTBDDs.Figure 6 shows the
piece-wise linarized MTBDD. Notice that sets of terminal nodes in the PMTBDD
and in the standard MTBDD are not the same. It is a result of theconcatenation
operation between the original terminal nodes. The concatenation is calculated as
the OR function between corresponding output vectors [6]. For example, terminal
node 7 in the MTBDD (Figure 3) corresponds to two terminal nodes 3 and 6 in the



Synthesis of Sequential Circuits by using Linearization 471

PMTBDD (Figure 5). Such cases reflect the non-disjoint property, as in cubes 1
and 2 from Table 2.

The Example demonstrates the significant reduction of the number of MTBDD
nodes. Indeed, the standard MTBDD has 17 non-terminal nodes(NTNs), after the
linearization this number is reduced to 12 nodes (and 2 XOR gates). The PMTBDD
has 8 NTNs, the linearization further reduces that number to6 NTNs (and 2 XOR
gates).

5 Piece-Wise Linearization of 1-hot Hncoded FSMs

The computational complexity of the above method [13] makesit impractical for
arbitrary functions of a large number of variables. Nevertheless, a class of1-hot
encoded FSMs should be considered a special class of FSMs from the point of our
task. Such FSMs seem extremely suitable for the piece-wise linearization, since
the cubes of the corresponding multiple-output functions are non-disjoint, while
the cubes corresponding to a single FSM state are disjoint. The FSMs may be pre-
sented in a form of Shared MTBDDs (SMTBDDs) comprising a number of parallel
MTBDDs each corresponding to a certain FSMs state. Althoughsuch a represen-
tation is much better than the straightforward classical MTBDD representation, it
may be even improved by using the piece-wise decomposition.Specifically, we
propose a method for decomposition of a multiple-output function corresponding
to a1-hotencoded FSM.

Let Table 2 defines a benchmark of a1-hotencoded FSM. It is seen in the table
that there are a lot of non-disjoint pairs of cubes in this function (for example the
first and the fifth cubes are non-disjoint, as well as many other pairs). This fact
prevents efficient transforming the benchmark to its MTBDD form by using con-
ventional methods. However, the above-described piece-wise linearization gives an
elegant solution presented in Figure 7.

The optimized parallel MTBDD corresponding to the functionfrom Table 2 is
shown in Figure 7. For the sake of simplicity, only the ON-sets of the output func-
tion and of the next state function are marked within the terminal nodes. Symbol
stands for the empty output vector comprising zeros only.

The standard MTBDD implementation for the example requires212 non-
terminal nodes; the proposed piece-wise linearized solution (comprising a num-
ber of parallel MTBDDs corresponding to the FSMs states) requires 23 non-
terminal nodes. However, the method enables obtaining the structure of the parallel
MTBDD, shown in Figure 7, which has only 13 non-terminal nodes. This impres-
sive result shows how MTBDDs can be improved by using specificproperties of
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Table 3. Table 3. Structural table (multiple-output function) with1-hotstate encoding.

Input variables State variables Next state var. Output functions
x1 x2 x3 x4 z1 z2 z3 z4 z5 d1 d2 d3 d4 d5 y1 y2 y3 y4 y5 y6 y7 y8

0 0 - - 1 - - - - 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 - - 1 - - - - 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 - - 1 - - - - 0 0 0 1 0 0 1 0 0 0 0 0 0
1 1 - - 1 - - - - 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 - - 1 - - - 0 0 0 0 1 0 0 1 1 0 0 0 0
0 1 0 - - 1 - - - 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 0 - - 1 - - - 0 0 1 0 0 0 1 0 0 0 0 0 0
1 1 0 - - 1 - - - 0 0 0 1 0 0 0 1 0 0 0 0 0
- - 1 - - 1 - - - 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 - 0 - - 1 - - 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 - 0 - - 1 - - 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 - 0 - - 1 - - 0 0 1 0 0 0 1 0 0 0 0 0 0
1 - - 0 - - 1 - - 0 0 0 1 0 0 0 1 0 0 0 0 0
- - - 1 - - 1 - - 0 0 0 0 1 1 0 0 0 1 0 0 0
0 0 0 - - - - 1 - 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 - - - - 1 - 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 0 - - - - 1 - 0 0 1 0 0 0 1 0 0 0 0 0 0
1 1 0 - - - - 1 - 0 0 0 0 1 0 0 0 0 0 0 1 0
- - 1 - - - - 1 - 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 - 0 - - - - 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 - 0 - - - - 1 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 - 0 - - - - 1 0 0 1 0 0 0 1 0 0 0 0 0 0
1 1 - 0 - - - - 1 0 0 0 1 0 0 0 1 0 0 0 0 0
- - - 1 - - - - 1 1 0 0 0 0 0 0 0 0 0 0 0 1

the ASM based SCs.

6 Experimental Results

In this section we present experimental results obtained ona number of indus-
trial benchmarks provided by different high-tech companies. In most cases these
benchmarks describe micro-controllers as an embedded partof various computer
systems. Experiments were carried out by using our especially developed software.
The results of the experiments are presented in Tables 4-6. For some benchmarks,
the calculations required were too huge and results were notobtained. Such cases
are highlighted in the tables.

First six columns of Table 4 comprise titles of benchmarks and their parameters.
The 7-th, 8-th, and 9-th columns indicate the number of MTBDDnodes in the con-
ventional, decomposed and piece-linearized realizationsrespectively. The last col-
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Fig. 7. Parallel MTBDD implementing a1-hotencoded function from Table 2.

umn shows reduction of the number of nodes (in percents) for the linearized imple-
mentations in comparison with the number of nodes in the conventional MTBDD:
ΩC = (1−C/B)100 %. Notice, that the experiment utilized the original (provided
by the companies) state assignment. In most cases the numberof state bitsU is
greater thanU = ⌈log2W⌉. Table 4 indicates that linearization of the benchmark
function gives the reduction of about 30MTBDD nodes.

Table 4. Benchmarks results for the original state encoding.

Linearized
Benchmark InputsL OutputsN StateW State bitsU Cubes MTBDD MTBDD Ω %

s208 11 2 18 8 153 157 116 26.1
s298 3 6 218 14 1096 - - -
s386 7 7 13 6 64 126 91 27.8
s420 19 2 18 16 137 210 167 20.5
s510 19 7 47 6 77 111 75 32.4
s820 18 19 25 5 232 251 178 29.1
s832 18 19 25 5 245 311 216 30.5
s1494 8 10 48 6 250 565 240 57.5

Table 5 reflects experiments related to the Linearization ofMTBDDs of the
same benchmarks, where an optimized minimal length state assignment is applied.
The last column indicates the number of nodes in MTBDDs corresponding to the
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linearized benchmark functions. All MTBDDs of Table 5 were constructed by us-
ing a conventional technique (without decomposition). Thetable illustrates the high
sensitivity of the number of MTBDD nodes to different state encodings. Indeed,
even applying the minimal length state encoding results in the significant reduction
of the number of nodes of the obtained MTBDD.

Table 5. Benchmark results for
the optimal minimallength state as-
signment.

Benchmark State bit Nodes

s208 5 90
s298 8 430
s386 4 53
s420 5 90
s510 6 76
s820 5 154
s832 5 154
s1494 6 261

Table 6. Benchmark results for the 1-hot state assignment.

Parallel Piecewicw Ω
Benchmark MTBDD Decomposition Linearization %

s208 1864 146 137 6.2
s386 447 92 82 11
s420 938 142 138 2.8
s510 >1 600 106 89 16
s820 >13 000 352 328 6.8
s832 >10 000 358 335 6.4
s1488 >14 000 412 401 2.7
s1494 >32 000 399 377 5.5

Table 5. Benchmark results for the optimal minimal length state assignment

Table 6. Benchmark results for the1-hotstate assignment

Results of the1-hot state assignment experiments are presented in Table 6.
Columns of this table are similar to those of Table 4. The lastcolumn indicates the
reduction, achieved by the piece-wise linearization in comparison with the parallel
decomposition:Ω = (1−P/C)100%. The conventional MTBDDs in most of the
cases appeared too big, and even could not be constructed in areasonable time pe-
riod. However, for all cases of Table 6, the both proposed decomposition methods
provide very good solutions. The last column of the table shows the reduction in
the number of nodes, provided by the piece-wise linearization in comparison with
the parallel decomposition, which is of about 10%.

7 Conclusions

The paper describes an approach for synthesis of sequentialcircuits (SCs) described
by their Algorithmic State Machine (ASM) chart. Such SCs maybe synthesized
efficiently since their corresponding logic functions are defined by disjoint cubes.
Moreover, the ASM form of the SC representation is close to the BDD form. We
consider that the optimal MTBDD representation as the criterion of the SC opti-
mization. We propose a method for transformation of an initial multiple-output
function, derived from ASM, into an optimized Multi-Terminal BDD. The method
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is based on a newly introduced concept of the Linearized SC and comprises the fol-
lowing steps: a) transforming an initial ASM chart into a corresponding multiple-
output function, followed by a specific states assignment; b) either linearization
of the function or decomposition of the function followed bylinearization of its
components.

Experimental results, carried out on a set of benchmarks, allow concluding the
following:

• We have discovered a wide class of multiple-output functions on which lin-
earization techniques work extremely efficiently. This class comprises,inter
alia, so-called “human-produced” functions having the algorithmic structure.

• We have opened a new way to linearize functions of a large number of input
variables for the above-specified class of the multiple-output functions. It has
become possible since the functions of that class are derived from an ASM
and, consequently, are defined by disjoint cubes of a small rank.

• Representations of the initial ASM-based functions in the MTBDD form are
very sensitive to the states encoding, which requires a special attention of
researchers.

• The proposed decomposition technique, as well as the piece-wise lineariza-
tion has proven to be very efficient in the case of1-hot states assignment,
while conventional techniques have failed on the same benchmarks due to
their high complexity.

The Authors believe that it is highly desirable to recognizethe class of the
functions to be synthesized and to utilize specific properties of the recognized class
for optimization of the synthesis. Our study of the ASM-derived functions has
allowed extending the plurality of functions that can be efficiently linearized.

Appendix

The decomposition algorithm

The presented below algorithm, details the flow of a particular iteration of the de-
composition procedure. The main part of a particular iteration consists of choosing
the prefixes for the block. The prefixes are chosen one by one. Each time a prefix
is chosen, all the prefixes non-disjoint with this prefix and belonging to different
characteristic functions are moved to the remainder. Non-disjoint prefixes belong-
ing to the same characteristic function as the prefix are included in the block. This
continues until no more suitable prefixes can be found. Thereafter the iteration
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proceeds the tails and constructs the blocks of the MTBDD. The non-trivial tails as
well as the remainder serve as inputs to the next iterations of the algorithm.

1: L = Empty list of pairs Prefix, Tail
2: Let R = Set of cubes,Y = vector of integer outputs.
3: Let B = Basic Prefix,TF = its family, TT = TF\S= its tail
4: L = [L,(B,TT)]
5: TU = R\(TF ∪TR)
6: C = {t : t ∈ Randt ·B≡ 0}
7: TR = {t : t ∈ R\(C∪TF)}
8: C = COMMON PARTS(C)
9: while |C| > 0, do

10: Let S=Secondary Prefix
11: TF = its family
12: TT = TF\S= its tail
13: L = [L,(S,TT)]
14: TO = {t : t ∈C andt ·S≡ 0}
15: TNO = {t : t ∈C\TO}
16: C = TO

17: TR = TR∪TNO

18: end while
Classify and enumerate the tails inL
Construct the Block’s BDD fromL

19: LT = {l : l ∈ L, Tail (l) is trivial }
20: LNT = {l : l ∈ L\LT}
21: if the remainder is trivial,then
22: LT = [LT ,Remainder]
23: else
24: LNT = [LNT,Remainder]
25: end if
26: for all the list elements in LTdo
27: Implement the tail
28: end for
29: for all the list elements in LNTdo
30: Recursively call this procedure
31: end for
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