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Synthesis of Sequential Circuits by using Linearization

lliya Levin, Osnat Keren, and Vladimir Ostrovsky

Abstract: The paper deals with synthesis of sequential circuits defmetheir al-
gorithmic state machine notation. Such circuits have a rermbspecific properties
which enable efficient design of the circuits by utilizingcalled linearization tech-
nigues. A typical linearization technique includes cadtioin of autocorrelation val-
ues for a system of logic functions corresponding to theudircFor the mentioned
sequential circuits, the calculations which usually regunassive computational re-
courses may be significantly reduced and thus low-overheatementations of the
circuits can be obtained relatively easy. The paper intcedwa novel architecture of
so-called linearized sequential circuits, and a pieceaviisearization approach for
synthesis of sequential circuits. Results are evaluatédddmmalytically and by using a
number of standard benchmarks.

Keywords: Sequential circuits, logic functions, linearization, Bihdecision dia-
grams, multi-terminal decision diagrams.

1 Introduction

Linearization is known as one of efficient means for optimizthe logic design.
Extraction of a maximally possible linear portion from aitiad logic function or
from a system of logic functions allows reducing the impletagion complexity in
many cases in practice. Calculations of autocorrelatidnegthat are required for
the linearization are of high complexity, which makes time#rization of functions
of a large number of input variables almost inapplicable. métous researches
were made, providing reductions of the complexity of lineation [1-5]. One
of the ways to reduce the complexity of the calculations iegughe disjoint cubes
representation of logic functions. Calculations overaligjcubes are much simpler
than in the general case. There are two objections whicheptesonsidering the
disjoint cubes representation as a "panacea” in perforriadinearization:
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1. Complexity of the calculations over the disjoint cubesrggly depends on
the order of processing the cubes.

2. An arbitrary disjoint cube representation usually coisgs a great humber
of cubes and thus may become impractical.

In [2], the Authors proposed an analytical method for caltioh of the au-
tocorrelation function for functions represented by disjacubes; the first of the
above objections may therefore be withdrawn since it wasexby the algorith-
mic character of other methods. The second objection seeons problematic
since it is connected with the nature of logic functions. tiioately, there are at
least two ways to overcome the second objection. These ways a

1. Using decomposition techniques. Indeed, it is possibleduce the com-
plexity of the function’s representation by partitioninigetfunction into a
number of sub-functions each having a smaller number obidisicubes.
Such an approach was examined in [6] where the initial fonctvas pre-
sented as a superposition of a number of so-called "trapemetions com-
prising disjoint cubes of a smaller rank.

2. Applying the methods based on disjoint cubes to a speddgsaf logic
functions for which the disjoint cubes representation iattmal”. In most
cases we deal with logic functions which are not "randomligegated” but
developed by humans [7]. Since that, an enormously wides aédogic
functions comprises the functions which somehow reflechitivg abilities
of humans in creating a description of the technologicairenment. Such
a description usually has the algorithmic style and, coneetly, the cor-
responding logic functions reflect this algorithmic nat{®§ In turn, the
algorithmic nature is basically the desired property ofaligness. One of
the well known examples of such a kind of descriptions is agofithmic
State Machine (ASM) chart description. Development of tig&MAchart re-
quires thinking in a form of the ASM paths, each correspogdna specific
disjoint cube.

Other examples of the disjoint cubes representations arar8Decision Dia-
grams (BDDs) [9] and multi-terminal BDDs (MTBDDs) [10]. BD&nd MTBDD
are data structures that are widely used in logic synthesissarification. Descrip-
tion of such diagrams can actually be used as a universaepooa different con-
ceptual levels of systems representation. Indeed, the MIBiay be considered
as a form of systems’ specification, as a form of represemtaif a logic function
and even as a certain model of the system’s implementatidre present work
has been triggered by the visual and cognitive closeneseedttiove two concepts
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(ASM and MTBDD), as well as by their direct relations with #eguential circuits.
It looks indeed reasonable and interesting to study teciesi@f linearization on a
class of functions, which seem suitable for linearizatioadvance, by their nature.

One of the well known tasks in synthesis of sequential diisua task of states
assignments. The states assignment versus the efficieariiation was deeply
studied in [11]. However, the most popular state assignrbeirtg a so-called-
hot encoding was never examined from the point of its implemslity would a
linearization technigue be applied. We pay a specific attenb this issue in the
paper. Specifically, we propose and examine et assignment for linearized,
ASM based sequential circuits SC. We describe a decompospproach for im-
plementing such SC. The approach is evaluated on a numbenohmarks.

The paper is organized as follows.

Section 2 recalls the basics of the linearization techrigas well as the Al-
gorithmic State Machines base notation and their connetticequential circuits.
Section 3 introduces a newly proposed concept of a LineddZM and describes
a corresponding architecture of a Linearized SC. Sectigrirdduces a piece-wise
decomposition of ASM based sequential circuits. Experiialaesults of the piece-
wise linearization of benchmark sequential circuits aespnted in Section 5. The
summary of the research is given in Section 6.

2 Definitions and Related Works

Two main fields form the background of the present study: &iization Tech-
nigues and Synthesis of SC based on the Algorithmic StatehMaaotation. In
this section we will recall some concepts from both of theslel$.

2.1 Linearization of logic functions

Analysis and synthesis methods based on the propertie® &Vétlsh spectrum of
a Boolean function and/or on its autocorrelation functiomraferred to as spectral
techniques. In this paper, we consider spectral technifpregerforming linear
decomposition of a system of Boolean functions (multiplépat function). The
initial multiple-output function is presented as a supsition of a linear func-
tion and a nonlinear multiple-output functidg wheref(x) = f5(0Xx). The linear
function o is determined by using the autocorrelation values of thigirfunction
so that the linearly transformed functidg minimizes a certain cost (complexity)
function. As in many works related to minimization of BindDgcision Diagrams
(BDDs), the cost functions considered hereby are exprdsgtte number of nodes
in the BDD, the number of paths and the Average Path Lengti.YaPthe BDD.
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The cost functions reflect the required memory size, thengstomplexity and
average time of the logic simulations [12].

The linearization requires computation of the autocotiete values of a
Boolean function. The computation of the autocorrelatialugs can be performed
either by a straightforward technique based on the defmitibthe autocorrela-
tion function, or by using the Wiener-Khinchin theorem watbmplexity O(N2V)
whereN is the number of input variables. For functions of a large hanof in-
puts & 20) these approaches may be impractical. Neverthelessndst of the
applications, e.g. for FSMs derived from ASMs, the comboral part may be
represented as a setMf disjoint cubes of small sizdd < 2M. In these cases the
autocorrelation function for the linearization can be oédted by using the algo-
rithms presented in [2, 3], with the computational comgiexiroportional toM?.
A different approach to the problem of linearization of largystems represented
by a set of non-disjoint cubes is a parallel decompositiotheffunction into sub-
functions, combined with the linearization of each subetion [6]. Preliminary
results demonstrating the potential of this approach wezsgmted in [13].

2.2 Specification of sequential circuits by algorithmic stee machine chart

Consider a system that comprises a control unit and an épeshtunit (a data-
path). The operational unit contains a number of computilggnents, while
the control unit produces vectors of control binary sigrfalsning the sety =
{y1,...,yYn} and forcing execution of operations in the operational.uFfiese con-
trol signals constitute Boolean functions of input varegX = {xy,...,X_} which
arrive from the operational unit, and of so-called stateadesZ = {z,...,z,}
of internal states of the control unit. Interaction betwdiea control unit and the
operational unit may be described algorithmically and esped graphically in a
form of an Algorithmic State Machine chatrt.

An ASM is a directed connected graph containing an initiatase a final ver-
tex, afinite set of operator vertices and conditional vegidEach conditional vertex
contains a single logical condition from the et {xi,...,x_}. Each operator ver-
tex contains a specific output vector. Ligh...,Yo 1} be the set of such vectors,
Yo = (0,...,0) is the “empty” of “null” vector.

One of the important features of an ASM chart is its equivedeto a finite
state machine (FSM). Both ASM and FSM representations ameetiient forms
for description of sequential circuits (SC). We say that &VEmplements corre-
sponding ASM. We mean that the ASM chart is an initial speaifin of a system,
while the FSM is a mathematical model of the system and camabsformed to
a certain hardware description (netlist, VHDL etc.). A slenprocedure allows
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transforming any ASM into the FSM form by associating sdezhlpaths of the
ASM with transitions of the corresponding FSM [8, 14]. Thehsa in turn, are
defined by using so-callemharkson the ASM. Each of the marks corresponds to a
certain state of the FSM. An example of the marked ASM withdabconditions

X = {Xq,...,X4}, control signalsy = {y1,...,ys}, output vectoryYp,...,Y7} and
marks (FSM states)ay, ..., as} is shown in Figure 1.
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Fig. 1. Marked ASM.

After performing a state assignment, a structural tabléefRSM may be con-
structed. The structural table is presented in Table 1, énftim of a list of the
disjoint cubes.

Columns of the table relate to: an input portion of the FShgtit variables”
and “State variables” columns) and to an output portion effSM (“Next state”
and “Output functions” columns). Each row of the table cep@nds to a specific
transition of the FSM or to a certain path within the ASM froriglire 1. The
structural table of the FSM represents a system of logictfans or a multiple-
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Table 1. Structural table of the FSM corresponding to ASMHigure 1.

Input variableg| State variable| Next state vari Output variables

xi[X2|xa| xa [ a]zi|xe]xs]| @ di]do]da][y1]y2]ya][ya]Xs]|X6]X7 ] Xs
0|{0|-]| -|al0|0|0O|a|0O|lO|1|2|0|0|0O|O|0O]|O|O
O|{1|-]| -|a|0|0|0}|a|O|l1|0|0O|1|0|0O|O|0O]|O0O|O
1/{0|-| - |a|0|0|0fa|0O|2|0OfO0Ofl1|0|0O|O|O]|O]|O
1(1|-] - |a|0|0|0fag|O|2|1]0fl0O|2]|0|0|0O|0O]|O
0{0|O0]| - |lag|0O|0O|1|ag|21|0O|0O|O|O|O|21|0O|0O]|0O|O
0{1|0]| - |ag|0O|0O|1}|a|Ofll1|0O|0O|1|0O|0O|O|0O]|O|O
1/0|0| - ||;y|0|0O|1fa|O|2|OfOfl1|0O|0O|0O|O|O]|O
1/1|0| - ||;y|0|0O|1fag|O|2|1]0Ofl0O|2]|0|0O|0O|O]|O
-|-121| -1|a|0|0|1lfjay|2|0O|0O|O|O|O|O|O|1]|0]|O
0|{0|-|O0}al0O|1|0|a|0O|0O|1|2|0|0|0O|O|0O]|O|O
O|{1|-|O0|al0O|1|0|a|O|1|0|0O|1|0|0O|O|0O]|O|O
1(0 Ol|lap|0O|1|0}|a|Ofll1|0|0|1|0|0Of|O0O|0O]|0O]|O
1/1|-]0{a|0|1|0fag|O|2|1]0fl0O|2]|0|0|0O|0O]|O
-|-|-]11a|0|1|0fjay|21|0O|0O|O|O|O|O|2]|0O|0O]|O
0{0|O0]| - |lag|0O|1|1|a|0O|O|1|2|0|0O|0O|O|0O]|O|O
0{1|0]| - |ag|0O|1|1|a|O|1]|0O|0O|1|0O|0O|O|0O]|O|O
1/0|0]| - ||ag|0|1|1|a|O|2|OfOf1|0O|0O|0O|O|O]|O
1/1|0]| - ||ag|O0|21|1|as|2|0Of0OfOflO|O|O|O|O|2]|O
-|-11| - |a|0|1|1fjay|2|0O|O|O|O|O|O|O|1]|0]|O
0|{0|-]|0|al1]|0|0}|a|0O|O0O|1|2|0|0O|0O|O|0O]|O|O
O|1|-|0}|all1]|0|0}|a|0Ofll1|0|0O|1|0|0O|O|0O]|O]|O
1/{0|-]0fay|1|0|0fag|0O|2|0OfO0Ofl1|0|0O|0O|O|O]|O
1/{1|-]0|a|1|0|0fag|0O|2|1]|0fl0O|2]|0|0|0O|0O]|O
-|-|-]111a|1|0|0fa|0O|O0Of0O}O|l0O|0O|0O|0O|0O0|0]|1

output function of the sequential circuit.

Multiple-output functions, derived from the ASM-based S@m a specific
class of functions. This class can be characterized by tl@wviog properties:

1. The multiple-output functions are defined by a set of disjoubes since all
transitions of the ASM based SC are pair-wise disjointed.

2. The function is defined on cubes of a small rank (large gukiese the ma-
jority of the SC transitions depend on a limited subset olutnyariables
X = {Xl,...,XL}.

3. The multiple-output function has a limited number of eifint output vec-
tors. The set of these vectors is known in advance.

This specific class of functions is in the focus of our studyctsfunctions cor-
respond to a wide class of controllers that are used both @napiocessors and in
many other applications. We utilize the above propertiesdducing the compu-
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tational complexity of the linearization, as well as for degosing the system for
its optimization.

3 Architecture of Linearized Sequential Circuit

The conventional SC having/ states consists of two parts: a setlWf (U >
[log,W|) memory elements and a combinatorial part implementing &iphed
output Boolean functions df +U input variables and o +U output variables,
wherelL is the number of inputs variablefsq,...,x }, N is the number of out-
put variables{ys,...,yn} andU is the number of next state variabléd, ... ,dy }
which equals to the number of bits of the encoded sfate .., z, } variables to be
stored in the memory.

We propose a new architecture, calledireearizedSC (LSC), for sequential

circuits derived from ASMs. The block diagram of the lingead SC is shown in
Figure 2.

el !
i

Memory

Fig. 2. Architecture of the linearized sequential circuit.

The task of synthesis of the LSC is to define a linearized BDO@eaenting
the combinatorial part of the SC. This task comprises thrdetasks: a) a state
assignment; b) an optimized linear transformation; c) atmgped synthesis of a
BDD of the combinational part for minimization of the implentation cost of the
overall system.

We do not deal with the problem of the state assignment famgptineariza-
tion. This problem was deeply investigated in [15]. Neveless, we do apply a
number of different states assignments to examine effigiehspectral techniques
for optimizing multiple-output functions derived from th&SM-based SC descrip-
tion. Particularly, we are interested in the minimal lengfisignment, as well as in
the 1-hot states assignment. The next section deals withlthet states encoded
FSMs.

The problem of selecting an optimizedis strongly connected with a form of
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representation of the initial system of logic functionsn& the system is defined
by disjoint cubes the procedure of selecting an approptatas a complexityvi?
(M - the number of cubes).

In this paper, we propose a method for synthesis of an optienBDD by using
a decomposition technique. We call this techniqugiexe-wise linearization of
sequential circuits This technique is especially suitable for implementatbthe
1-hot encoded FSM. The next section is devoted to the piece-wigarization
technique.

4 Parallel Decomposition and Piece-wise Linearization of &uential
Circuits

Presently, the.-hotassignment is the most popular state assignment in the SC de-
sign. A multiple-output function corresponding to thdotencoded SC is defined

on a set of non-disjoint cubes. Since that, conventiondirtieties for transform-

ing such functions into their BDD form are ineffective. Itdsrrect both for the
linearization based techniques, and for other techniqueghis paper, we pro-
pose a specific decomposition technique that allows optigithe transforma-

tion of multiple-output functions corresponding to thdwotencoded SCs into their
MTBDD form.

4.1 Piece-wise linearization of multiple-output functiors

In [6], a piece-wise linearization technique was proposétiis technique com-
prises a step of parallel decomposition of the initial setwtbes into a number
of components (subsets of cubes), followed by a step of enldgnt linearization
of the components. The resulting piece-wise linearizedvort is directly ma-
pable onto a special type of a binary graph called ParalleltiMarminal BDD
(PMTBDD). The PMTBDD is constructed by combining compondtEBDDs
using: a serial operation (i.e. replacing one terminal noflan MTBDD with
another MTBDD), and a parallel operation (i.e. connectiogts of two or more
MTBDDSs). An efficient algorithm for construction of an optwed PMTBDD was
proposed in [13]. The decomposition algorithm includegifianing of the set of
cubes of the function into a number of components. The pariitg is followed
by a recursive decomposition of the components into a contmeader and a set of
fragments. The efficiency of the decomposition algorithmteirms of the number
of MTBDD nodes, was demonstrated on a number of benchmarks.

The aim of the parallel decomposition step is creating a PMDBor an ar-
bitrary multiple-output function. The decomposition algfam is started with the



Synthesis of Sequential Circuits by using Linearization 469

partitioning of the set of cubes representing the ON-sehefftinction, into a set
of logic blocks. It is followed by the hierarchical sepaoatiof the blocks for a
common header and a set of block fragments. The separatamcisnplished by
extracting a set of common factors (so-called prefixes) fassubset of the original
set of cubes.

Let us formulate a number of definitions necessary for erpigi the decom-
position procedure.

We will call a prefixany part of a cube. A subset of cubes comprising prefixes
with at least one common variable formbeock The cubes of the original set, not
included in the block, are called a remainder.

A set of the prefixes of the block defineblack header A set of cubes having
exactly the same (common) prefix is called ifamily. A set obesiobtained by
extracting the common prefix fromfamily forms atail.

The block header is selected in such a way as to provide naaiion of the re-
sulting PMTBDD. We select the block header using the follaywriteria: 1) max-
imal increase otlensity(minimizing the percentage of “dont cares” in the block);
2) maximal suitability for further linearization of the k.

By is nature, the block header is a logic function, ON-set biol is a superset
of ON-sets of the block. The block will be implemented as anB®D whose
internal nodes are associated with the prefix variables. t&iminal nodes of the
MTBDD represent the tails, each to be implemented as a sepsfBBDD. Each
of the tails and the remainder will be each recursively dgmoged in the same
above described way, until no further decomposition is ipbssA detailed formal
algorithm of a single iteration of the decomposition is praed in the Appendix.

An important feature of the decomposition method is itsihib benefit from
any other optimization method the user may wish to apply tirijf K-Procedure,
etc [1, 4]. These can be applied to the component MTBDDs, aay further
reduce the total diagram’s size. A PMTBDD with the lineatizdocks is denoted
LPMTBDD.

The following example illustrates how the decompositiorrkgo

Example 1: Leta Multiple-output function is defined by the set cubesprged
in Table 2.

BDD, LTBDD, PMTBDD and LPMTBDD for the example are preseniad
Figures 3-6 correspondingly.

Terminal nodes of MTBDDs in Figures 3-6 are marked by decimahbers of
the corresponding outputs. A standard implementation @M BDD of our ex-
ample, in the form of an ordered MTBDD, is presented in FighrEigure 4 shows
a linearized MTBDD corresponding to the Example. A PMTBDDamed by the
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Table 2. The list of cubes of the example.
[#][x0[x %2 [x3][xa[|Fo|Fa [ o[ s ]

offof1,-(0|-J1{0|0]0
1jfjo0f1|-|1|-jo0j1(1}0
2l-1-]11]-]0}0f0|1|1
3||-]1-]1-10-{1}]0|0|0O|1
411|10|-|1|-}Jl1f{1|0]|O0

ofafojulicioloiNclolo

Fig. 3. Straightforward implementation ¢ . n n

MTBDD of the Example. Fig. 4. Linearized MTBDD for the Example.

Fig. 5. PMTBDD corresponding to the ExamFig. 6. Linearized PMTBDD of the Example.
ple.

proposed decomposition method, is shown in Figure 5. The BINO comprises
two portions the block (left) and the remainder (right). Tgwtions are assem-
bled by the newly introduced parallel connection of MTBDBgure 6 shows the
piece-wise linarized MTBDD. Notice that sets of terminatas in the PMTBDD
and in the standard MTBDD are not the same. It is a result otdmeatenation
operation between the original terminal nodes. The coneditan is calculated as
the OR function between corresponding output vectors [6}.example, terminal
node 7 in the MTBDD (Figure 3) corresponds to two terminalesd and 6 in the
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PMTBDD (Figure 5). Such cases reflect the non-disjoint prigpas in cubes 1
and 2 from Table 2.

The Example demonstrates the significant reduction of timeten of MTBDD
nodes. Indeed, the standard MTBDD has 17 non-terminal n@dENs), after the
linearization this number is reduced to 12 nodes (and 2 XQ&syaThe PMTBDD
has 8 NTNs, the linearization further reduces that numbé&rMINs (and 2 XOR
gates).

5 Piece-Wise Linearization of 1-hot Hncoded FSMs

The computational complexity of the above method [13] makespractical for
arbitrary functions of a large number of variables. Newvelgls, a class df-hot
encoded FSMs should be considered a special class of FSMdtiepoint of our
task. Such FSMs seem extremely suitable for the piece-wisarization, since
the cubes of the corresponding multiple-output functiores reon-disjoint, while
the cubes corresponding to a single FSM state are disjolrd.FEMs may be pre-
sented in a form of Shared MTBDDs (SMTBDDs) comprising a nandj parallel
MTBDDs each corresponding to a certain FSMs state. Althagth a represen-
tation is much better than the straightforward classicalB®D representation, it
may be even improved by using the piece-wise decompositgpecifically, we
propose a method for decomposition of a multiple-outputfiom corresponding
to al-hotencoded FSM.

Let Table 2 defines a benchmark of dnotencoded FSM. It is seen in the table
that there are a lot of non-disjoint pairs of cubes in thisction (for example the
first and the fifth cubes are non-disjoint, as well as manyroplagrs). This fact
prevents efficient transforming the benchmark to its MTBRIIni by using con-
ventional methods. However, the above-described piese-liviearization gives an
elegant solution presented in Figure 7.

The optimized parallel MTBDD corresponding to the functioom Table 2 is
shown in Figure 7. For the sake of simplicity, only the ONss&ftthe output func-
tion and of the next state function are marked within the teainnodes. Symbol
stands for the empty output vector comprising zeros only.

The standard MTBDD implementation for the example requ2&2 non-
terminal nodes; the proposed piece-wise linearized swiufcomprising a num-
ber of parallel MTBDDs corresponding to the FSMs statesuireg 23 non-
terminal nodes. However, the method enables obtainingtthetsre of the parallel
MTBDD, shown in Figure 7, which has only 13 non-terminal ned&his impres-
sive result shows how MTBDDs can be improved by using spepifiperties of



472 I. Levin, O. Keren, and V. Ostrovsky:

Table 3. Table 3. Structural table (multiple-output funaoi with 1-hotstate encoding.

Input variableg| State variables|| Next state var. Output functions
xa[Xe|xa| x4 [[z1] 22| 23] Za |25 ][ i [ ]2 ]3] dads |[ya]y2]ya|va]ys|Ye|y7]Ve
o|of|-|-1}|1|-|-|-|-)0O0|21]|]0|0O|O|1|0|0O|O|0O|O|O]|O
o|{1(-|-}|1|-|-|-|-)0j0|2|0O|0O|Of|1|0O|0O|O|O|O]|O
1(0{-|-¢|2}-|-]|]-]-]0lOf0O|2]|]0|0O|2|0|0O|0O|0O|O]|O
i(1|-|-¢(2}{-|-|-/-|0lOf1]0|2|0|0O|1|0O|0O|O|O]|O
o|o(o|-4|-|1|-|-|-f0O0j0|O|O|1|0Of0O|21|1|0|0O]|0O]|O
o|1(0] - 1|-|-|-|f0ojo0j1|0|0OfOf1|0|0O|0O|O|O]|O
i1/0(0|-{-|2|-|-]-|0|lOf1]0]|0|0O|2|0|0|0O|O|O]|O
1(2|0|-¢{-|2|-|]-]-|0lOf0O|21]|0|0O|0O|1|0O|0O|0O|O]|O
-|-1/2y-1-/1|-|-|-fO0jO0j0O|O|1}|0O|lO|O|O|O|1]|0O]|O
o|o(-|]0}|-|-|1|-|]-)0O0|1]|]0|0O|0Of1|0|0O|O|0O|O|O]|O
o|1|-|]0] - 1|-|-|f0j0|212|0|l0O}O0Of1|0|0O|0O|O|O]|O
1|10 o|-/-|1|-|-(0j0|2|0|0O|0Of1|0O|0O|O|O|O]|O
1(-|-(O0{-|-]2]|-]-|/O0|lOfO|1]|]0|O|O|1|0O|0O|O|O]|O
-!-/-1121-/-]1]-|-fojoj0O|O|1}1|l{0|0O|0O|21|0O|0O]|O
o|o(o|-4{-|-|-|1|-40j1|0|0O|O|O|O|O|O|O|O|O]|O
o|1(0]| - | -|- 1|-|fojo|1|0f0OfOfl1|0|0O|0O|O|O]|O
i1(0{0|-{-|-|]-]2]-|/O0|lOf1]0|0|0O|2]|0|0|0O|O|O]|O
1(2|0|-¢{-|-]-]2|-|/0|lOf0O|O|2|0O|O|O|O|O|O|12]|O0
-!-/2y-14-/-|-]1]-|fojoj0O|O|1}|0O|lO|O|O|O|1]|0O]|O
o|o|(-|]0}|-|-|-|-|10|2]|]0|0OfO|1|0|0O|O|0O|O|O]|O
o|1|-|0}|-|-]|- 1(f0j0|1|0|l0O}j0Of1|0]|0O|0O]|O|O]|O
1(0{-{O{-|-|]-]-]21|0|lOf1]0]|0|0O|2|]0|0O|0O|0O|O]|O
i1(1|-(0¢{-|-|-]-]21|0|lOfO|1]|]0|O|O|1|0O|0O|O|O]|O
-!-/-121-!-]-]-]1|f1j0{0|0|O}jO|O|O|O|0O|O|O]|1

the ASM based SCs.

6 Experimental Results

In this section we present experimental results obtaine@ onmber of indus-
trial benchmarks provided by different high-tech companith most cases these
benchmarks describe micro-controllers as an embeddedpsaarious computer
systems. Experiments were carried out by using our espediaveloped software.
The results of the experiments are presented in Tables #16sdme benchmarks,
the calculations required were too huge and results wereltained. Such cases
are highlighted in the tables.

First six columns of Table 4 comprise titles of benchmarkdtheir parameters.
The 7-th, 8-th, and 9-th columns indicate the number of MTBf&ides in the con-
ventional, decomposed and piece-linearized realizatiesigectively. The last col-
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Fig. 7. Parallel MTBDD implementing &-hotencoded function from Table 2.

umn shows reduction of the number of nodes (in percentsh#linearized imple-
mentations in comparison with the number of nodes in the @otonal MTBDD:

Qc = (1-C/B)100 %. Notice, that the experiment utilized the originabfpded

by the companies) state assignment. In most cases the nwhbite bitsU is
greater thatd = [log,W]|. Table 4 indicates that linearization of the benchmark
function gives the reduction of about 30MTBDD nodes.

Table 4. Benchmarks results for the original state encoding

Linearized
Benchmark InputsL | OutputsN | StateW | State bitdJ | Cubes MTBDD | MTBDD | Q %
s208 11 2 18 8 153 157 116 26.1
s298 3 6 218 14 1096 - - -
s386 7 7 13 6 64 126 91 27.8
s420 19 2 18 16 137 210 167 20.5
s510 19 7 47 6 77 111 75 32.4
s820 18 19 25 5 232 251 178 29.1
s832 18 19 25 5 245 311 216 30.5
s1494 8 10 48 6 250 565 240 57.5

Table 5 reflects experiments related to the LinearizatioM@BDDs of the
same benchmarks, where an optimized minimal length staigrament is applied.
The last column indicates the number of nodes in MTBDDs spoading to the
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linearized benchmark functions. All MTBDDs of Table 5 wemnstructed by us-
ing a conventional technique (without decomposition). e illustrates the high
sensitivity of the number of MTBDD nodes to different stateedings. Indeed,
even applying the minimal length state encoding resultkérsignificant reduction
of the number of nodes of the obtained MTBDD.

Table 5. Benchmark results for

the optimal minimallength state 3STable 6. Benchmark resullts for the 1-hot state assignment.

sighment.

- Parallel Piecewicw | Q

” BenchmarH State blq Nodes“ Benchmark MTBDD | Decomposition Linearization| %
§§8§ g 493?0 s208 | 1864 146 137 |62
386 7 ) s386 447 92 82 11
<420 5 30 s420 938 142 138 2.8
510 3 75 s510 >1600 106 89 16
) 5 154 s820 >13000 352 328 6.8
83 5 154 s832 >10000 358 335 6.4
S1497 3 61 s1488 | >14000 412 401 2.7
s1494 | >32000 399 377 5.5

Table 5. Benchmark results for the optimal minimal leng#tesassignment

Table 6. Benchmark results for thehot state assignment

Results of thel-hot state assignment experiments are presented in Table 6.
Columns of this table are similar to those of Table 4. Thedatimn indicates the
reduction, achieved by the piece-wise linearization in parison with the parallel
decomposition:Q = (1— P/C)100%. The conventional MTBDDs in most of the
cases appeared too big, and even could not be constructagasa@nable time pe-
riod. However, for all cases of Table 6, the both proposedugmsition methods
provide very good solutions. The last column of the tableashthe reduction in
the number of nodes, provided by the piece-wise lineadmath comparison with
the parallel decomposition, which is of about 10%.

7 Conclusions

The paper describes an approach for synthesis of sequeintizts (SCs) described
by their Algorithmic State Machine (ASM) chart. Such SCs nhaysynthesized
efficiently since their corresponding logic functions aedided by disjoint cubes.
Moreover, the ASM form of the SC representation is close ®BDD form. We
consider that the optimal MTBDD representation as the rioiteof the SC opti-
mization. We propose a method for transformation of anahmnultiple-output
function, derived from ASM, into an optimized Multi-TernrahBDD. The method
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is based on a newly introduced concept of the Linearized S&amprises the fol-
lowing steps: a) transforming an initial ASM chart into ae@ponding multiple-
output function, followed by a specific states assignmepteither linearization
of the function or decomposition of the function followed liyearization of its
components.

Experimental results, carried out on a set of benchmarl@yaloncluding the
following:

e We have discovered a wide class of multiple-output funetion which lin-
earization techniques work extremely efficiently. Thisssl@omprisednter
alia, so-called “human-produced” functions having the aldpniic structure.

e We have opened a new way to linearize functions of a large eamiinput
variables for the above-specified class of the multiplgsoutunctions. It has
become possible since the functions of that class are defieen an ASM
and, consequently, are defined by disjoint cubes of a sl ra

¢ Representations of the initial ASM-based functions in thEB®D form are
very sensitive to the states encoding, which requires aiapattention of
researchers.

e The proposed decomposition technique, as well as the piesselineariza-
tion has proven to be very efficient in the caseldifiot states assignment,
while conventional techniques have failed on the same eadts due to
their high complexity.

The Authors believe that it is highly desirable to recognilze class of the
functions to be synthesized and to utilize specific propsntif the recognized class
for optimization of the synthesis. Our study of the ASM-gled functions has
allowed extending the plurality of functions that can beogfitly linearized.

Appendix

The decomposition algorithm

The presented below algorithm, details the flow of a pariciieration of the de-
composition procedure. The main part of a particular iteratonsists of choosing
the prefixes for the block. The prefixes are chosen one by oaeh &Eme a prefix
is chosen, all the prefixes non-disjoint with this prefix amdobnging to different
characteristic functions are moved to the remainder. Nejoitit prefixes belong-
ing to the same characteristic function as the prefix areiged in the block. This
continues until no more suitable prefixes can be found. Hiemethe iteration
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proceeds the tails and constructs the blocks of the MTBDI®.idn-trivial tails as
well as the remainder serve as inputs to the next iteratibtisecalgorithm.

L = Empty list of pairs Prefix, Talil
Let R= Set of cubesy = vector of integer outputs.
Let B = Basic Prefix,Tr = its family, Tr = Tg\S= its tail
L=[L,(B,Tr)]
Ty = R\(TF UTR)
C={t:teRandt-B=0}
Tr= {t te R\(CUT{:)}
C = COMMON_PARTS(C)
while |C| > 0,do
Let S=Secondary Prefix
Te = its family
Tr = TF\S= its tail
L= [L> (S>TT)]
To={t:teCandt-S=0}
TNO = {t te C\To}
C=To
Tr=TrUTnO
. end while
Classify and enumerate the tailslin
Construct the Block’s BDD fronk
19: Ly ={l:1 e L, Tail () is trivial }
20: Lyt = {l e L\LT}
21: if the remainder is trivialthen
222 LT = [Ly,Remainder
23: else
24:  LNT = [Ln7,Remaindelr
25: end if
26: for all the list elements in LTo
27:  Implement the tail
28: end for
29: for all the list elements in LNTHo
30: Recursively call this procedure
31: end for

e N o =
© N OOk WDNR O
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