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Abstract: This paper deals with the problem of learning in a new digital or networked society. Specifically, 

the study is focused on the development of students’ network awareness by constructing and investigating the 

network learning environment. An environment comprising the spreadsheet EXCEL and the visualization tool 

NodeXL is introduced. Students construct their own models of the network and are able to observe the behavior of 

the constructed network in the form of a dynamically evolving graph. Models are defined by simple algorithms. 

The algorithms correspond to different rules of network evolution. Specifically, rules for attaching the next vertex 

to the existing network are presented. A number of network examples, constructed and studied by using the 

proposed approach, are presented and discussed. 
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1. Introduction  

 21st century society is, first of all, the so-called networked society, the functioning of which is tightly bound 

to human resources and various services connected to global networks. Self-recognition of an individual, who is 

an element in worldwide network space, is a new phenomenon that was never studied. It is obvious that such 

self-recognition becomes an important component of everyday life in today’s technology-based society and in 

particular — an important component of the education system. 

The remarkable contemporary philosopher and thinker, Luciano Floridi, when asked about education being 

transformed to a new network era said:“… the question becomes: what sort of abilities should we privilege and 

teach to tomorrow’s consumers, curators, producers, and designers of information? The answer seems to me quite 

obvious: the very languages through which information is created, manipulated, accessed, and consumed.” 

(Floridi, 2013). This means that the main issue today is the new learner, the “networked learner”.  

To understand the principles of learning underlying the new, networked student, special research is required. 
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Today’s students, being connected with one another, with teachers, with sources of information they need for 

study, with media comprising various content, become so-called “network personalities” or “digital personalities” 

and acquire new, previously unknown characteristics (Levin, 2012; Levin, Kojukhov, 2013). The network itself 

becomes an important (if not the main) element of a modern educational environment. It is not just by chance that 

changes in a network with time, i.e., the network’s evolution, are thoroughly watched and intensively studied. The 

changing network, as in any dynamic system, requires a mathematical model for its description. A description of 

the network as a dynamic system should be clear and understandable, similar to traditional types of dynamic 

systems, such as electro-mechanic systems or systems of digital control that were successfully studied in school 

using various learning environments. These learning environments were suitable for reflecting, implementing, or 

modeling different dynamic systems, ranging from primitive mechanical assemblies working according to 

Newton’s laws, to automata and microprocessors. 

Today, networks and their components are at the center of scientific interest, both as mathematical objects, 

and as a new social reality known as a social network. The dynamics of social networks’ topology is of great 

interest, since it allows detecting and explaining some unexpected phenomena and laws connected with the 

networks’ functionality. The problem of explaining such laws is a scientific problem similar to the problem of 

analyzing dynamic systems. Of course, there is a difference between these problems, stemming from the different 

nature of various types of dynamic systems. Whereas traditional dynamic systems have a natural character and are 

described by natural physical processes, the social networks constitute artificial worlds. In these artificial worlds, 

the present laws governing communication networks not only do not depend much on the network designer, who 

has developed specific communication means and protocols, but also do not depend on the behavior of the 

participants of the social network. The fact that the behavior of the network users affects the topology of the 

network is of principal importance. In social networks, the topology depends on and can be explained by the rules 

of the so-called “network behavior” of the network participants.          

Furthermore, research on the network behavior of users is connected with the scientific field of collective 

cognition or “social learning”, which actively grows today. Indeed, if today’s “network students” constantly and 

intensively interact and cooperate with their classmates and teachers while learning, the students’ self-recognition 

and network awareness are very interesting for a researcher to investigate both theoretically and in practice. 

Network awareness is something that can be learned, for example, in the framework of a concept for obtaining 

skills in network awareness, conducted by Social Learning Analytics (Schreurs, Teplovs, Ferguson, De Laat, & 

Buckingham Shum, 2013). This relatively new field of research and development is expected to provide, to the 

network participants, tools for analyzing the network behavior as a whole, depending on the behavior of the 

network elements. In Pardo (2013), so-called Social Learning Graphs were studied as a framework to represent 

the interactions among multiple entities in a learning environment. The approach provides a graph notation for 

representation of relations among students and for study of such network procedures as: link-prediction, 

recommendation and abstractions.   

The importance and actuality of research and development of network learning environments seems to be clear. 

The most widely known tool today is the program environment Node XL. (Smith et al., 2009), which is a tool that 

allows one to visualize various networks in the form of graphs. For this purpose, it uses the widely known 

spreadsheet software, Excel. In the Node XL environment, students can easily present the status of social networks 

known to them through their personal experience. This allows the students to observe the network dynamics by 

analyzing their own behavior in the network, on the one hand, and changes in network topology, on the other hand.  
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The present paper is interesting, not only in that it describes how NodeXL can be used for analyzing a 

network — it also demonstrates how NodeXL can be used for modeling a network. Thus, the environment 

acquires features of a micro-world, and in this micro-world students may not only observe the dynamics of the 

networks in which they are active — they also may construct their own models of functioning networks and may 

analyze the dynamics of these models. Such a learning environment allows one to reach a number of pedagogical 

objectives corresponding to the principles of constructionism (Papert, 1991) as well as constructivist theory 

suitable for educational micro-worlds. Among the principles of constructionism are the following: 

(1) Reflectivity — i.e., ensuring that students understand the connection between their own behavior and the 

laws governing the functioning of the network.. 

(2) Visualization — i.e., ensuring that the network may be represented as a graph reflecting the ways/results 

of the network’s functioning according to the rules set by the students.       

(3) Discovery — i.e., the possibility to construct various new networks corresponding to various laws 

governing network functioning. 

(4) Experimentation — i.e., the ability to check a scenario “What if?” — the possibility to formulate, model, 

and verify various rules (algorithms) for forming networks, followed by analysis of the modeling results and 

formulation of conclusions. 

This paper presents a network modeling method performed within a spreadsheet-based constructionist 

learning environment, which helps to develop the students’ network awareness. This paper is organized as follows. 

It consists of two different parts. In the first, to some extent the “humanitarian” part, concepts of network 

pedagogy and Social Learning Analytics are discussed; the newly introduced method of network simulation is 

presented. The second, to some extent, the “mathematical” part of the paper, deals with studying a number of 

specific networks by using the proposed simulation approach and applying mathematical analysis to the 

simulation results. 

2. Learning within Networks  

2.1 Network Pedagogy 

Network pedagogy is one of the fastest growing trends of education. Research in the field of network 

pedagogy focuses on studying cognitive processes and methods of development and support for networks of 

social relations, in a framework where learning takes place. Network learning is a type of non-formal learning that 

attracts people who highly rank social contacts as a tool for self-development (Jones, Asensio, & Goodyear, 2000). 

Recent studies show that network learning positively affects both the scholastic activity of the students, and the 

school’s functioning (Coburn & Russel, 2008; Penuel et al., 2010). The network learning includes using 

information technologies as a platform for fostering cooperation between students, their teachers, and the teaching 

resources. 

The network pedagogy focuses on differences in social relations, on which people base their strategies, which 

they use to support these relations, and regarding the positive effect that can be obtained from these relations for 

that type of teaching. The theory of network teaching is closely connected to, and utilizes the methodology of 

social networks theory, including network analysis (Ferguson & Buckingham Shum, 2012). 

Analysis of social networks is based on the assumption that networks comprise nodes and the connections 

between them. Nodes are individual actors in the network, and the connections between these nodes function as 
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the relations between the actors. The influence of the network structure can be studied at three levels: the level of 

the actors’ position (the individual level), the level of relations in the network (the level of connections), and the 

level of the general network structure (the network level). 

The network pedagogy is based on a number of principles (Patarakin, 2007): 

 Study takes place in a learning environment in which new knowledge is being learned; the environment 

should provide activity that is supposed to achieve specific results by using specific instruments, tools, and 

technologies. 

 Study takes place in cooperation, where the newcomers gradually become experts through practical 

participation in solving some problems in a specific field of knowledge. Cognition is related to the specific 

situation in which it takes place. 

 Study takes place through building a network. This is the so-called connectivism principle (Siemens, 2004). 

Study is a process that takes place in a changing environment, in which its basic nodes are constantly reorganized. 

During the transformation, the network nodes form connections, which are more convenient for transferring 

information, data, and knowledge. All participantsin the network have specific autonomy regarding their 

individual behavior, and the network has a very limited influence on that individual behavior.     

Each participant of a network community may perform its simple operations, thus forming topology and 

dynamics of the network as a whole. Such a model of network interaction can be used in pedagogical practice for 

teaching the principles of decentralization. Experience in working under decentralized conditions is quite 

important for a networked student, and it may be obtained inside today’s network communities. To obtain such 

experience, students only have to join any network community and to feel that there are an element thereof.  It is 

therefore very important to organize the learning process as a practical activity in which the students actually 

participate. 

Complex and sometimes unexplainable relations between the behavior of an individual and collective 

behavior have been acknowledged by scientists, and have been intensively studied for a long time. We wish to just 

mention some remarkable works in this field, which seem to appear earlier than the problem appeared in the social 

networks (Zetlin, 1963; Varshavsky, 1973; Resnick, 1997). The pedagogic depth of these works was not 

sufficiently recognized before the appearance of network reality, which characterizes the new digital society.  

2.2 Social Learning Analytics 

Social Learning Analytics (SLA) is being developed to assist both the students in their learning with the aid 

of social networks, and professional teachers — by involving all of them in an informal studying process via 

participation in new and existing virtual communities (Schreurs, Teplovs, Ferguson, De Laat, & Buckingham 

Shum, 2013). 

The students and the teachers, who participate in a functioning real network in formal or informal pedagogic 

contexts, should be considered as objects that form the network of social relations, which reflects the flow of 

social informational resources there-between (Lave-Wenger, 1991). There are various examples. One example is a 

virtual group, which gains experience in using a specific technology by exchange of knowledge and information 

there-between. Another example is a virtual community collectively building a system of knowledge about their 

own history and which collects the corresponding informational resources (Wenger, Trayner & De Laat, 2011). 

SLA enables members of such virtual communities (students, teachers, and researchers) to establish and 

answer a number of questions, which lead them to network awareness. Examples of such questions are as follows:  
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Who teaches and who learns in the network? 

What is the direction of information flow? 

Is the interaction of the network members effective? How do they affect changes in the network topology?  

The above list could be extended; however, the proposed research focuses on the specific questions outlined 

above, since they could be effectively studied based on the method of network modeling proposed in the present 

paper. 

In SLA environments, students answer the proposed questions by constructing computer models of networks 

in a suitable software environment, followed by analyzing the resulting computer simulation. In our paper, we 

develop a constructionist approach for the above activity. According to this approach, students have to pass 

through the classical way of modeling, which comprises the following sequentially performed activities: 

Construction, Explanation, Prediction, Experimentation, Discovery, and Justification. Note that students’ 

discoveries about the network’s functioning are not necessarily correct. Network dynamics is a complex 

phenomenon and cannot be described by simple algorithms. Accuracy of the student’s discoveries is secondary for 

tasks of such a class. There is something more important: the process of setting a task in the form of a model, on 

the one hand, and experimental study of the model, on the other hand. 

2.3 Simulating Network Dynamics by Using the NodeXL Environment 

In our study, we developed a new SLA environment comprising NodeXL and Excel. The NodeXL software is 

utilized for visualizing and analyzing a network, whereas the standard Excel software is used for synthesizing 

models for various networks and for further experiments with the models (Smith et al., 2009). 

Basically, NodeXL deals with importing a list of network edges/links (which is built by any specialized 

program) into a specific space in Microsoft Excel, and with processing the list to visualize the network as a graph 

and to further analyze the graph. As a result of processing the list of network links, the user gains access to various 

characteristics of the network and to various forms of its graphical representation.  That is all the NodeXL can 

give a user. Analytic activity of the user, though being always welcome, cannot by itself be considered the object 

of SLA. It is quite obvious that the analytical component of NodeXL should be fulfilled by a synthetic component, 

thereby providing students with options to model/synthesize and to analyze different networks. These options 

together mean providing students with the possibility of research, which is the main advantage of work in 

computer-based educational environments. 

In our paper, we propose a method for modeling networks within the Microsoft Excel environment, followed 

by importing a list of the network edges into NodeXL and by further visualizing the networks. The dynamics of a 

network is a process that occurs in discrete time. Each step of the process occurs in one time unit. A new vertex 

can be added to the current network at each step. The main issue in constructing the network is developing and 

implementing the algorithm of adding a new vertex to the current network. The list of edges for the network to be 

modeled is formed as a result of applying the algorithm. The adding of a vertex at each predetermined time period 

is defined by the algorithm that forms a new edge of the network. Comparing parameters of all possible 

vertices-candidates creates a complete list of edges. A decision regarding attaching a new edge is made in 

accordance with the algorithm (the set of rules) specified in advance. The algorithm defines the topology of the 

network as well as its dynamics.  

Note that the network's topology and its dynamics as well as the corresponding algorithms for forming the 

network are quite complex. The essence of the proposed modeling approach lies in its orientation to 
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non-professionals. It allows modeling a network by formulating simple rules and avoids manipulating 

sophisticated mathematical constructions.            

The proposed method of network modeling can be described as follows. 

Let, in time unit n, a new vertex Vn be added to the list of vertices. Furthermore, parameters of the new 

vertex are compared with parameters of the existing network vertices V0,…Vn-1, and, according to a 

predetermined rule, a decision about creating a new edge is made. Each new edge is added to the existing list of 

edges. 

The algorithm for constructing network models is implemented in Visual Basic for Applications (VBA) and 

comprises two nested loops (external and internal). The external loop forms the list of vertices, whereas the 

internal loop forms the list of edges. Both of the lists are located at a specific position in Microsoft Excel, which is 

intended for analysis by means of NodeXL. 

For example, let us consider modeling an arbitrary network, in which decisions about creating an edge are 

taken randomly. Let us call such a rule “a rule of random connection”. An edge ViVj will be created if, when 

checking the pair of vertices Vi and Vj, probability p of their connection (and the creation of the edge) will be 

greater than some predetermined value. In other words, in Excel, the statement “RAND( ) p, where 0  p  1” 

should be true for creating a new edge. By changing the value of p, we can change the probability of creating new 

edges. Figure 1 illustrates a graph of such a network for two different values of p. 

         
Figure 1  Graphs of Networks, Formed According to the Rule of Random Connection, when p = 0.2 (Left) and p = 0.7 (Right) 

 

The proposed method enables a user to build models of networks by defining various sets of rules for 

forming connecting edges, and for further studying the obtained models by changing the rules. Moreover, the user 

is able to study the dynamics of the network’s evolution by gradually adding to it a number of vertices and 

observing changes in the network graph, which is provided by NodeXL. 

The next section presents the results of a number of examples from Social Learning Analytics studies, 

performed by using the proposed simulation method.   

3. Analysis of Network Simulation 

We start our study by considering the widely known model of so-called scale-free networks proposed by 

Barabási and Albertin (1999). According to the Barabási-Albertmodel, scale-free networks are based on two key 
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mechanisms: continuous growth and preferential attachment (Barabási, Albert, & Jeong, 2000). That is, (a) the 

networks expand continuously adding new vertices, and (b) there is a higher probability that a new vertex will be 

linked to a vertex already having many connections, i.e., characterized by a large degree. 

In their works, Barabási and Albert did not specify which model of preferential attachment they propose to 

consider, whereas these models may be very heterogeneous (Raigorodski, 2010). In our first example, we try to 

clarify the above issue. We study a number of network models built in the NodeXL environment based on the 

proposed method. These models are characterized by the following features: (i) each new vertex may be 

connected to at most one old vertex, i.e., at every time step at most one new edge appears in the network; (ii) any 

connection event is realized with the same probability p due to external factors; (iii) the probability Π that a new 

vertex will be connected to vertex i depends not directly on its degree di but on the place of di in the sorted list of 

vertex degrees. We call these models one-max constant-probability models.  

3.1 Constant-Probability Search Network Model 

The first model (we call it the Constant-Probability Search Model or CPSM) is based on a regular linear 

search of a vertex with a maximum degree by consecutive comparisons of a current maximum degree with the 

degree’s value of a currently checked vertex. If this value is greater than the current maximum, the maximum is 

updated. For vertices with equal degrees, an earlier arrived vertex is preferable. However, in contrast to the 

standard search, every comparison is not always performed but instead, it is performed with probability p. A new 

vertex is connected to a vertex v with a found maximum degree, which, correspondingly, is equal to a true 

maximum degree with probability p. The degree of vertex v is incremented by 1 and the new vertex’s degree is 

assigned to 1 if it has been connected to any vertex.   

Therefore, the vertex with the 1st largest degree will be “chosen for connection” by a new vertex with 

probability p, the vertex with the 2nd largest degree — with probability (1-p)p, …, and the vertex with the ith 

largest degree — with probability (1-p)i-1p (for equal degrees, the degree of a vertex checked earlier is quasi 

larger). For n existing vertices, the probability that the new vertex will connect to no vertex is equal to (1-p)n. 

Given an n-vertex network based on CPSM or any other one-max constant-probability model, the lower bound of 

the expected maximum degree in the network is equal to p (n-1). 

It is clear that the higher p is, the larger is the degree of the first vertex in the network and the rather this 

degree is the maximum. That is, the older vertices increase their connectivity at the expense of the younger ones 

and a “rich-get-richer” phenomenon (Barabási & Albert, 1999) is detected for high p values. 

Diagrams of some 100-vertex networks simulated in the NodeXL environment for different values of p are 

presented in Figure 2 (the degree of a vertex that arrived at time step t is denoted by dt). 

3.2 Constant-Probability Ordered Network Model 

The second network model that we consider, the so-called Constant-Probability Ordered Model (CPOM), is 

similar to CPSM but the algorithm used for connecting a current vertex is more subtle and efficient. In accordance 

with the model’s rules, the list of existing vertices is kept sorted in decreasing order of their degrees so that the 

vertex with a maximum degree is on top of the list. The list is scanned from the top and a new vertex is connected 

to the first vertex v which “is allowed to be connected by the probability p”. The degree of vertex v is incremented 

by 1, and this vertex is moved toward the top of the list in order to find a proper new place for it. The new vertex’s 

degree is assigned to 1 and this vertex is inserted into the list above vertices with degrees 0 (isolated vertices) if it 

has been connected to any vertex.  
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(a) p = 1, d1 = 99                                           (b) p = 0.8, d1 = 78 (max), d2 = 20 

 

    
(c) p = 0.5, d1 = 23, d2 = 51 (max), d3 = 9, d4 = 11               (d) p = 0.1, d1 = 6, d2 = 9, d9 = 12 (max), d17 = 10 

Figure 2  100-Vertex Networks Based on CPSM 
 

This model exhibits a real network whose mechanism keeps most referred sites at the top of the list and 

makes them, correspondingly, more reachable than others. 

Despite the different algorithms used by CPSM and CPOM, both models provide identical network 

topologies and diagrams (illustrated in Figure 2), which are appropriate for CPOM as well.  

CPOM (like CPSM) is characterized by the following phenomenon that becomes apparent for low p values. 

Some vertices that come first may remain isolated, i.e., with zero degree. The reason is that while a network is not 

large, a new vertex may rather connect to neither of the existing vertices, and thus find itself at the bottom of the 

list. Next later vertices will find more vertices in the network and the probability of their connecting to one of the 

existing vertices will be higher. At that, they will be linked with a higher probability to vertices with larger degrees, 

and their degrees after connection will be 1. Therefore, as the size of the network increases, the probability of 

vertices with zero degrees “to be found” by new vertices decreases. 

Figure 3 illustrates this phenomenon for p = 0.1. A network after 100 time steps (Figure 3 (a)) and the same 

network after 1000 time steps (Figure 3 (b)) have the same 6 isolated vertices with order numbers 1, 5, 11, 15, 23, 

and 27. 
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(a) A network after 100 time steps                      (b) The same network after 1000 time steps 

Figure 3  A Phenomenon of First Isolated Vertices for CPOM (p = 0.1) 
 

An important feature of the proposed modeling method is the fact that NodeXL, in combination with VBA, 

allows one to simulate the network’s growth in a continuous mode to any predetermined size, to analyze the 

intermediate result, and to continue the modeling in the continuous mode until the next specified size. This allows 

one to see the development of the network in dynamics. 

Computer experiments implemented in the NodeXL environment show that for p < 0.5, the higher that p is, 

the smaller is the network size for which the expected number of isolated vertices achieves saturation, and the 

smaller is the number itself in saturation. For p > 0.5, the expected number of isolated vertices is less than 1. 

3.3 Constant-Probability Ordered Non-0 Model 

In order to neutralize the negative effect described in the previous subsection, when some vertices, which 

come first may remain isolated, we slightly modified CPOM. A new vertex connected to one of the existing 

vertices is not inserted above the isolated vertices and remains at the bottom of the list. Thus old vertices with zero 

degrees will not be at the bottom and the list will be sorted only concerning degrees exceeding 1. Such a model is 

appropriately called Constant-Probability Ordered Non-0 Model (CPOM-N0). 

An example of this model’s behavior for p = 0.1 is shown in Figure 4. In Figure 4(a) one can see a network 

after 100 time steps. This network has 3 isolated vertices: 5, 12, and 17. The same network after 300 time steps is 

presented in Figure 4(b). It has the only isolated vertex 5. Finally, after 1200 time steps, there are no isolated 

vertices in this network (Figure 4(c)). 
 

   
(a) The network after 100 time steps        (b) The network after 300 time steps       (c) The network after 1200 time 

Figure 4  A Network Based on CPOM-N0 (p = 0.1) 
 



Developing Students’ Awareness of Network Dynamics by Spreadsheet Environment 

 959

CPOM-N0 is evidence that the additional advantage of CPOM, in contrast with CPSM, lies in its flexibility. 

The list of existing vertices in CPOM is actually the priority list. While in CPSM a vertex’s degree directly 

determines the vertex’ priority, in CPOM the vertex’s place in the list determines this criterion. One can define this 

place not only as a function of a degree but as a function of additional parameters as well.  

There are also other differences regarding the behavior of CPOM and CPOM-N0. Isolated vertices not only 

disappear in networks based on CPOM-N0 as they grow. For small networks, the expected number of vertices 

with zero degree in a CPOM-N0 network is less than in a CPOM network of the same size. On the other hand, the 

expected number of connected components consisting of more than one vertex in a CPOM-N0 network is greater 

than in a CPOM network of the same size. This phenomenon can be explained by the following. An isolated 

vertex of a CPOM network may rather remain isolated in the ensuing time steps than in a CPOM-N0 network in 

which this vertex has a higher probability of becoming a starting vertex of a new autonomous part of the network. 

In any case, networks based on constant-probability models are characterized by the same expected number of 

connected components including isolated vertices. This number is equal to the number of vertices that were 

isolated at some time, i.e., to the number of appearances of isolated vertices. 

Two corresponding examples are illustrated in Figure 5. In Figure 5(a) one can see the CPOM network after 

100 time steps. This network has 11 connected components, 5 of which (5, 12, 14, 30, and 57) are isolated vertices. 

The CPOM-N0 network after 100 time steps (presented in Figure 5(b)) has also 11 connected components but 

only 3 of them are isolated vertices (25, 33, and 40). With increase of the network in Figure 5(b), new vertices will 

connect to these 3 vertices sooner or later, while the probability of connecting new vertices to 5 isolated vertices in 

Figure 5(a) will decrease at every time step. Herewith, both networks will consist of 11 connected components, 

and the probability of new connected components appearing will decrease with an increase of the networks.     

It is appropriate to recall that all these network effects have been seen in the course of modeling. The above 

arguments, while interpreting the behavior of the network, were carried out based on analyzing the simulation 

results. 

    
(a) A CPOM network (p = 0.1)                     (b) A CPOM-N0 network (p = 0.1) 

Figure 5  100-Vertex Networks 

3.4 Constant-Probability Ordered Directed Model 

In previous models, it was assumed that connecting a new vertex to an old one leads to an increase in the 

number of connections, both in the old and the new vertices. However, not always a subject that initiates a 

connection is considered as one that acquires this connection. At the same time, a referred object is regarded as a 
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possessor of this connection in any case. Thus there are systems that should be simulated by directed networks 

(e.g., web pages are connected by directed links (Barabási, Albert, & Jeong, 2000)).  

We slightly modify CPOM (the new model will be called Constant-Probability Ordered Directed Model or 

CPODM) and transform our network to the directed one. An edge corresponding to a new connection leaves the 

new vertex and enters the old one. The list of vertices is sorted by their in-degrees. It is clear that the in-degree of 

a new vertex is 0 even if it has been connected to any existing vertex and, therefore, a new vertex is always at the 

bottom of the list. 

The out-degree of any vertex in a network based on CPODM is 1 (if the vertex has been connected to any 

vertex when arriving) or 0 (if the vertex has not been connected to any vertex upon arriving). As follows from the 

model's description, the list of vertices does not distinguish between vertices with zero and non-zero out-degrees. 

For two vertices with zero in-degrees, the older vertex will be closer to the top. Thus old isolated vertices (with 

zero in-degrees and out-degrees) will not be at the bottom of the list. 

Note that the NodeXL software distinguishes between directed and undirected networks and, accordingly, 

may determine in-degrees and out-degrees for vertices of directed networks.Diagrams of two 100-vertex networks 

simulated for different values of p are presented in Figure 6 (in- degree of a vertex arrived at time step t is denoted 

by dt).  

One can see that CPODM is similar to CPOM-N0. Although CPOM-N0 describes an undirected network, it 

distinguishes in special cases between a vertex that is connected to another one and a vertex to which another 

vertex is connected. In fact, both CPOM-N0 and CPODM identically process new vertices. For this reason, the 

same characteristic features are inherent in both models. Like in CPOM-N0 networks, isolated vertices disappear 

in large networks based on CPODM. For small networks, expected numbers of isolated vertices and of connected 

components consisting of more than one vertex for CPODM are the same as for CPOM-N0. 

In this section, we described a number of artificial network models developed by using a 

spreadsheet-based learning environment and visualized by using NodeXL software. The models are 

visualized and studied by applying different experiments and allow one to detect a number of network 

phenomena that could not be detected before.  

  
(a) p = 0.7, d1 = 67, d2 = 26, d4 = 5, d3 = 1         (b) p = 0.1, d8 = 13, d10 = 11, d2 = 9, d4 = 9 

Figure 6  100-Vertex Networks Based on CPODM 
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4. Conclusions 

As citizens of a digital or networked society, we must have knowledge of networks in terms of our global 

environment. Studying the regularities inherent in a network becomes one of the central issues today.  

To the best of our knowledge, previous researches in the field of networked learning never studied the 

problem of developing the network awareness of students. We tried to fill this vacuum by proposing an approach 

based on constructing a learning environment appropriate for modeling networks by students, and, as the result, 

improving their network awareness. The environment uses the spreadsheet Excel as the simulation platform and 

NodeXL software as a visualization tool. Such an environment provides all components of learning by modeling: 

construction, explanation, prediction, experimentation, discovery, and justification. 

Importantly, this paper describes models restricted by using the proposed environment. These artificial 

models, constructed by applying simple algorithms, allow one to study the significant regularities of different 

types of networks. A number of unexpected properties of the networks can be detected by students and studied. 

Our study demonstrates the perspective of using a spreadsheet-based environment as a learning environment 

for a contemporary networked learner. 
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