
GENERALISED IF-THEN-ELSE OPERATOR FOR
COMPACT POLYNOMIAL REPRESENTATION OF

MULTI OUTPUT FUNCTIONS

Ilya Levin, Osnat Keren

Tel Aviv University, Bar Ilan University, Israel

DSD 2011
Saturday, 27 August 2011

Outline

• Logic functions vs. System of Logic functions

• Preliminaries

• Generalised ITE (GITE) operator

• EvP and ExP

• Partition algebra of EvP

• Boolean algebra of ExP

• Dichotomy property

• Decomposition

• Conclusions
Saturday, 27 August 2011

Logic Function vs. System of Logic
Functions

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

c

b

d

a

c

b

d

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

c

d

a

c

b

d

Saturday, 27 August 2011

Logic Function

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

c

b

d

a

c

b

d

I. Single Logic
function

II. Two-block
Partition of
Boolean Cube

Saturday, 27 August 2011

I. n Logic
functions

II. n-block
Partition of
Boolean Cube

System of Logic Functions

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

c

d

a

c

b

d

Saturday, 27 August 2011

Boolean Algebra of output vectors

 Partitions Algebra of input vectors

Two Domains

Saturday, 27 August 2011

Partitions

Definition.
A partition on a set C is a collection of disjoint subsets of C
whose set union is C, i.e. π = Bα{ } such that:

Bα ∩ Bβ =∅ α ≠ β()and Bα{ } = C.

Example: S = 1,2, 3,4,5,6,7,8{ }
π1 = 1{ }, 2{ }, 3, 4, 7{ }, 5,6,8{ }{ } = 1; 2; 3,4,7; 5,6,8{ }

Saturday, 27 August 2011

Partitions

A product π prd = π1iπ 2 of partitions π1 and π 2 is
a partition comprising intersections of blocks π1 and π 2 :
s ≡ t π1iπ 2() iff s ≡ t π 2()& s ≡ t π1().

A sum π1 + π 2()of the partitions π1 and π 2 defined as follows:

 s ≡ t π1 + π 2() iff a chain s0 , s1,…, sn exists in C such as:

s = s0 , s1,…, sn = t, for which either si ≡ si+1 π1() or

 si ≡ si+1 π 2(), 0 ≤ i ≥ n −1.

Saturday, 27 August 2011

Algebra of Partitions

π1 π2

(π1 ● π2)

(π1+π2)

The algebraic structure of partitions is known as a lattice.
This lattice has both
Zero (the smallest partition π 0) and
One (the biggest partition π 1) elements defined as follows:

π 0 = s1;…; sm{ };

π 1 = s1,…, sm{ }.

Saturday, 27 August 2011

Algebraic Decision Diagrams (ADD)

üProposed in 1993 by R. Baher, E. Frohm, C. Gaona, G.
Hachtel, E. Macii, A. Parvo, F. Somenzi

üMulti Output Functions as ADD

üDifferent forms of representation of ADDs

üOperations: Apply and If-Then-Else operation

üUsed for: matrix multiplication, shortest path algorithms,
and numerical linear algebra.

Saturday, 27 August 2011

Algebraic Decision Diagram

An ADD is a function:

where S is the finite carrier of the algebraic structure.

ADD is a form for representation of Multi Output
Functions (MOF).

f : 0,1{ }n → S

Saturday, 27 August 2011

Algebraic Decision Diagram

üADDs representations
• MTBDD

• Matrix

üADD operations
• Apply

• If-Then-Else (ITE)

Saturday, 27 August 2011

Apply operation

f =

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; g =

4 4 4 4
4 4 4 4
2 2 2 2
2 2 2 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Apply f , g, +() =
5 5 4 4
5 5 4 4
2 2 3 3
2 2 3 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Apply f ,g,op() = f op g

Saturday, 27 August 2011

If-Then-Else (ITE) operation

 ITE f ,g, h() = f ig + f ih

f =

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; g =

3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; h =

4 4 4 4
4 4 4 4
2 2 2 2
2 2 2 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ITE f , g, h() =
3 3 4 4
3 3 4 4
2 2 3 3
2 2 3 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The ITE comprises a Boolean function operation as a “binary condition”
being a two-block partition of the Boolean space

Saturday, 27 August 2011

ITE - two-block partition on the Boolean

cube

GITE - n-block partition on the Boolean

cube

ITE vs. GITE

Saturday, 27 August 2011

Generalised ITE operation

Definition.Generalized ITE (GITE) is
GITE π,Y()
where: π = B1;…;Bm

⎧
⎨
⎩

⎫
⎬
⎭
 is a partition on the Boolean space;

Y = Y1,…,Ym
⎧
⎨
⎩

⎫
⎬
⎭
− a set of operators - binary vectors.

Yi i =1,…,m()corresponds to a certain block Bi of the partitionπ.

Thus, GITE consists of a partition portion (Evolution Part)
and an operator portion (Execution Part).

Saturday, 27 August 2011

Multi Output Function as GITE

Definition
AMulti−Output Function (MOF)
is a mapping f : 0,1{ }n→Y ,
which is GITE π,Y() defined on two sets:
a) the partitions π and
b) the set Y of operators.

Saturday, 27 August 2011

Polynomial representation of GITE

Example :D = B1Y1 + B2Y2 + B0Y0

B1 = x1; B2 = x1x2; B0 = B1 + B2

Saturday, 27 August 2011

GITE

B

00 01

B

10 11

A

EvP

ExP

X

Y

D = AB 11() + AB 10() + AB 01() + AB 00()

Saturday, 27 August 2011

EvP

ExP

GITE algebra is a product of two algebras

Partitions Algebra

Boolean Algebra

Saturday, 27 August 2011

GITE algebra

The GITE algebra is a product of two algebras:

•the algebra of partitions on the Evolution Part

•the Boolean algebra on the Execution Part

Saturday, 27 August 2011

Partitions Algebra of GITE Evolution Part

Saturday, 27 August 2011

GITE Apply operation

Definition:GITE Apply operation

Apply Da, Db ,op() = DaopDb =
=GITE πaiπb;Ya1opYb1,Ya1opYb2…,YamopYbm(),
GITE Apply operation is performed by multiplying
partitions π and by pair-wise op operation on operators Y .

Saturday, 27 August 2011

Definition. Apply operation on GITE-polynomial
we call Product of GITE-polynomials and define as follows:

Let D1= Yi+B0
1Y0

i=1

m
∑ , D2 = Yk+B0

2Y0
k=1

l
∑ .

D1D2 = Apply D1, D2,op()= Bij
1 ⋅Bkl

2⎛
⎝⎜

⎞
⎠⎟
YiopYk{ }∑ ,

for each pair of terms from D1 and D2,

Bij
1 ⋅Bkl

2 is a logic product (AND) of B-functions;

YiopY j - is the Apply operation between Yi and Yk

GITE Apply operation

Saturday, 27 August 2011

GITE Apply operation

The Apply operation between D1 = GITE π1;Y11,…,Y1m() and

D2 = GITE π 2;Y21,…,Y2m():
 Dop = Apply D1,D2() = D1opD2 = GITE π1iπ 2;Y11opY21,…,Y1m opY2m().

op =
π1°π2π2π1

D1 D2 Dop

Saturday, 27 August 2011

Factorization of GITE expressions

The product of GITE partitions corresponds to the Apply operation,

The sum of GITE partitions corresponds to factorization of GITEs.

Define the factorization of GITEs as follows:

D = Di opDj = GITE πi + π j ;D1,…,Df(),
where f is a number of blocks in πi + π j()
D1,…,Df stand for GITEs representing remaining functions.

Saturday, 27 August 2011

Example

Let D
1
= x

1
Y
1
+ x

1
x
2
Y

2
+ x

1
x
2
Y

3
,D

2
= x

1
Y

4
+ x

1
x
3
Y

5
+ x

1
x
3
Y

6
.

D
1
D

2
=GITE π

1
;Y

1
,Y

2
,Y

3
⎛
⎝⎜

⎞
⎠⎟
GITE π

2
;Y

4
,Y

5
,Y

6
⎛

⎝⎜
⎞

⎠⎟
=

=GATE π
1
+π

2
;D

23
,D

456
⎛

⎝⎜
⎞

⎠⎟
;

D
1
D

2
=D

3
D

23
,D

456
⎛

⎝⎜
⎞

⎠⎟
= x

1
D

23
+ x

1
D

456
;

where:
D

23
=Y

1
 x

3
Y

5
+ x

3
Y

6
⎛

⎝⎜
⎞

⎠⎟

D
456

= x
2
Y

2
+ x

2
Y

3
⎛
⎝⎜

⎞
⎠⎟
Y

4
Saturday, 27 August 2011

Substitution

Let D1, D2, D3 be :

D1 = GITE π1;Y11,Y12(), D2 = GITE π2;Y21,…,Y2m(),
D3 = GITE π3;Y31,…,Y3m()
After substitution: Y11←D2 Y12 ←D3,we have:

D1 = GITE π1;D2,D3()

Saturday, 27 August 2011

Boolean algebra of GITE Execution Part

Saturday, 27 August 2011

Boolean algebra of GITE Execution Part

A

00 10

B

00 01
B

00 01

B

10 11

A

+ =

Saturday, 27 August 2011

A

11 01

B

11 10 B

11 10

B

01 00

A

& =

X +Y = X &Y()

Example:

X &Y

Boolean algebra of GITE Execution Part

Example 1:

Saturday, 27 August 2011

A

000 001

B

000 011

B

000 011

B

001 011

A
X Y

+ =

Example 2

Boolean algebra of GITE Execution Part

Saturday, 27 August 2011

A

111 110

B

000 011
B

000 011

B

000 010

A

& =

X Y

Example 2

Boolean algebra of GITE Execution Part

Saturday, 27 August 2011

Example 2: X + X &Y = X +Y

A

000 001

+ =
A

B

000 011

B

001 011

X &Y

Boolean algebra of GITE Execution Part

Saturday, 27 August 2011

•Beginning from the initial implicant table to
construct a network consisting of a number
of component GITE

•Minimise component independently

•Each of the components have to be
dichotomic

Decomposition

Saturday, 27 August 2011

Dichotomic Fragment

We say that a set of product terms forms a dichotomic fragment,
if the set is straightforwardly mappable into an MTBDD.

The dichotomic property guarantees that there exists a Shannon expansion
that will not bring additional product terms to the initial GITE.

The dichotomic property means that the paths of the MTBDD
are in one-to-one correspondence with product terms of the GITE.

Saturday, 27 August 2011

Dichotomy Property

We study cases where GITE is represented by a MTBDD.
Our hypothesis is that the GITE can be more efficiently represented
by a set of dichotomic fragments.

The whole GITE would be considered a set of sub-GITE,
functionally equal to the initial GITE.

Any GITE can be decomposed into a network of
dichotomic fragments connected by the Apply
and the Substitution operations.

Saturday, 27 August 2011

The proposed decomposition algorithm is based on
grouping of the set of cubes representing
the function to a set of blocks.

The algorithm is algebraic decomposition method.

Function F is represented as:

F = D Q + R

where D, Q and R, are the divisor, quotient and remainder.

Algebraic Decomposition Method

Saturday, 27 August 2011

Decomposition is performed simultaneously on the set
of functions that are represented as a single GITE - polynomial.
Our algebraic decomposition has the form:

D = GITE πh , D1,...Dj() R.

Where: divisor πh is a block header,

quotient D1,...Dj(), Di, i = 1, ..., j, is a block fragment,
Reminder R consists of the remaining cubes
that were not included in the block.
The partition πh together with the GITE-polynomials Di
form a block.

Algebraic Decomposition Method

Saturday, 27 August 2011

Decomposition

!

Saturday, 27 August 2011

Two Algorithms of Decomposition

üTwo algorithms have been developed and studied: a “density”
algorithm and a “dichotomy” algorithm

üBoth algorithms use one and the same general decomposition method

üThe general method is the partitioning of the set of cubes into a
number of components. This partitioning is performed recursively

üOn each step of the recursive procedure, the corresponding component
is partitioned into two subsets: a common header and a remainder

üEach common header is implemented as a conventional MTBDD

üThe main concern of the general decomposition method is searching
for optimal “common headers”, for obtaining optimal resulting MTBDD

Saturday, 27 August 2011

Dichotomy Oriented Decomposition

Begin

stack<=PLA

PLA<=stack

Stack

Column
without

Shannon expansion

stack<= 1 (PLA

stack<= 0 (PLA)

End

Decomposition

1

0

1 0

Saturday, 27 August 2011

Density

Block density corresponds to a number of literals in the
block’s cubes normalised by the maximal possible
number of literal in this block. The success of the
decomposition strongly depends on the density.

Saturday, 27 August 2011

Experimental Results - Low Density

Saturday, 27 August 2011

Experimental Results - High Density

Saturday, 27 August 2011

Conclusions

üGeneralised ITE (GITE) operation is introduced

üMulti output functions can be expressed by the GITE

üGITE comprises Evolution Part (EvP) and Execution Part (ExP)

üGITE algebra is a product of two algebras: Partition algebra of
ExP and Boolean algebra of EvP

üThe problem of GITE decomposition is formulated

üMutual effect of the algebras are used as a base of the
decomposition algorithm

Saturday, 27 August 2011

