GENDRALISED IFHHIDN-DLSE OPDRATOR FOR COMIPACT POLYNOMIAL RDPRESENIATION OF MULII OUTPUT RUNCTIONS

Ilya Levin, Osnat Keren

Tel Aviv University, Bar Ilan University, Israel

DSD 2011

Outline

Logic functions vs. System of Logic functions

- Preliminaries

Generalised ITE (GITE) operator
$E v P$ and ExP
Partition algebra of $E v P$
Boolean algebra of ExP

- Dichotomy property

Decomposition
Conclusions

Logic Function vs. System of Logic Functions

Logic Function

I. Single Logic function
II. Two-block Partition of Boolean Cube

System of Logic Functions

I. n Logic functions
II. n-block Partition of Boolean Cube

Two Domains

- Boolean Algebra of output vectors

Partitions Algebra of input vectors

Partitions

Definition.

A partition on a set C is a collection of disjoint subsets of C whose set union is C, i.e. $\pi=\left\{B_{\alpha}\right\}$ such that:
$B_{\alpha} \cap B_{\beta}=\varnothing(\alpha \neq \beta)$ and $\cup\left\{B_{\alpha}\right\}=C$.

Example: $S=\{1,2,3,4,5,6,7,8\}$
$\pi_{1}=\{\{1\},\{2\},\{3,4,7\},\{5,6,8\}\}=\{\overline{1} ; \overline{2} ; \overline{3,4,7} ; \overline{5,6,8}\}$

Partitions

A product $\pi_{p r d}=\pi_{1} \bullet \pi_{2}$ of partitions π_{1} and π_{2} is a partition comprising intersections of blocks π_{1} and π_{2} : $s \equiv t\left(\pi_{1} \bullet \pi_{2}\right)$ iff $s \equiv t\left(\pi_{2}\right) \& s \equiv t\left(\pi_{1}\right)$.

A sum $\left(\pi_{1}+\pi_{2}\right)$ of the partitions π_{1} and π_{2} defined as follows: $s \equiv t\left(\pi_{1}+\pi_{2}\right)$ iff a chain $s_{0}, s_{1}, \ldots, s_{n}$ exists in C such as: $s=s_{0}, s_{1}, \ldots, s_{n}=t$, for which either $s_{i} \equiv s_{i+1}\left(\pi_{1}\right)$ or $s_{i} \equiv s_{i+1}\left(\pi_{2}\right), 0 \leq i \geq n-1$.

Algebra of Partitions

The algebraic structure of partitions is known as a lattice.
This lattice has both
Zero (the smallest partition π^{0}) and
One (the biggest partition π^{1}) elements defined as follows:

$$
\begin{aligned}
& \pi^{0}=\left\{\overline{s_{1}} ; \ldots ; \overline{s_{m}}\right\} \\
& \pi^{1}=\left\{\overline{s_{1}, \ldots, s_{m}}\right\}
\end{aligned}
$$

Algebraic Decision Diagrams (ADD)

\checkmark Proposed in 1993 by R. Baher, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Parvo, F. Somenzi
\checkmark Multi Output Functions as ADD
\checkmark Different forms of representation of ADDs
\checkmark Operations: Apply and If-Then-Else operation
\checkmark Used for: matrix multiplication, shortest path algorithms, and numerical linear algebra.

Algebraic Decision Diagram

An ADD is a function:

$$
f:\{0,1\}^{n} \rightarrow S
$$

where S is the finite carrier of the algebraic structure.
ADD is a form for representation of Multi Output Functions (MOF).

Algebraic Decision Diagram

\checkmark ADDs representations

- MTBDD
- Matrix
\checkmark ADD operations
- Apply
- If-Then-Else (ITE)

Apply operation

$$
\begin{gathered}
\operatorname{Apply}(f, g, o p)=f \boldsymbol{o p} g \\
f=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) ; g=\left(\begin{array}{llll}
4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2
\end{array}\right) \\
\operatorname{Apply}(f, g,+)=\left(\begin{array}{llll}
5 & 5 & 4 & 4 \\
5 & 5 & 4 & 4 \\
2 & 2 & 3 & 3 \\
2 & 2 & 3 & 3
\end{array}\right)
\end{gathered}
$$

If-Then-Else (ITE) operation

$$
\begin{aligned}
& \boldsymbol{T} E(f, g, h)=f \bullet g+\bar{f} \bullet h \\
& f=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) ; g=\left(\begin{array}{llll}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{array}\right) ; h=\left(\begin{array}{llll}
4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2
\end{array}\right) \\
& \boldsymbol{I T E}(f, g, h)=\left(\begin{array}{llll}
3 & 3 & 4 & 4 \\
3 & 3 & 4 & 4 \\
2 & 2 & 3 & 3 \\
2 & 2 & 3 & 3
\end{array}\right)
\end{aligned}
$$

The ITE comprises a Boolean function operation as a "binary condition" being a two-block partition of the Boolean space

ITE vs. GITE

ITE - two-block partition on the Boolean

cube
GITE - n-block partition on the Boolean
cube

Generalised ITE operation

Definition. Generalized ITE (GITE) is

GITE (π, Y)
where: $\pi=\left\{B_{1} ; \ldots ; B_{m}\right\}$ is a partition on the Boolean space;
$Y=\left\{Y_{1}, \ldots, Y_{m}\right\}-$ a set of operators - binary vectors.
$Y_{i}(i=1, \ldots, m)$ corresponds to a certain block B_{i} of the partition π.
Thus, GITE consists of a partition portion (Evolution Part) and an operator portion (Execution Part).

Multi Output Function as GITE

Definition

A Multi-Output Function (MOF)
is a mapping $f:\{0,1\}^{n} \rightarrow Y$, which is $\boldsymbol{\operatorname { G I T E }}(\boldsymbol{\pi}, Y)$ defined on two sets:
a) the partitions π and
b) the set Y of operators.

Polynomial representation of GITE

Example : $D=B_{1} Y_{1}+B_{2} Y_{2}+B_{0} Y_{0}$

$$
B_{1}=x_{1} ; B_{2}=\bar{x}_{1} \bar{x}_{2} ; B_{0}=\overline{B_{1}+B_{2}}
$$

GITE

GITE algebra is a product of two algebras

GITE algebra

The GITE algebra is a product of two algebras:

- the algebra of partitions on the Evolution Part
- the Boolean algebra on the Execution Part

Partitions Algebra of GITE Evolution Part

GITE Apply operation

Definition: GITE Apply operation

$$
\begin{aligned}
& \text { Apply }\left(D_{a}, D_{b}, o p\right)=D_{a} o p D_{b}= \\
& =\boldsymbol{G I T E}\left(\pi_{a} \cdot \pi_{b} ; Y_{a 1} o p Y_{b 1}, Y_{a 1} o p Y_{b 2} \ldots, Y_{a m} o p Y_{b m}\right)
\end{aligned}
$$

GITE Apply operation is performed by multiplying partitions π and by pair-wise $o p$ operation on operators Y.

GITE Apply operation

Definition. Apply operation on GITE-polynomial we call Product of GITE-polynomials and define as follows:

Let $D_{1}=\sum_{i=1}^{m} Y_{i}+B_{0}^{1} Y_{0}, D_{2}=\sum_{k=1}^{l} Y_{k}+B_{0}^{2} Y_{0}$.
$D_{1} \circ D_{2}=\operatorname{Apply}\left(D_{1}, D_{2}, o p\right)=\Sigma\left(B_{i j}^{1} \cdot B_{k l}^{2}\right)\left\{Y_{i} o p Y_{k}\right\}$,
for each pair of terms from D_{1} and D_{2},
$B_{i j}^{1} \cdot B_{k l}^{2}$ is a logic product (AND) of B-functions;
$Y_{i} o p Y_{j^{-}}$is the Apply operation between Y_{i} and Y_{k}

GITE Apply operation

The Apply operation between $D_{1}=\boldsymbol{\operatorname { I I T E }}\left(\pi_{1} ; Y_{11}, \ldots, Y_{1 m}\right)$ and $D_{2}=\boldsymbol{\operatorname { I I T }} \boldsymbol{E}\left(\pi_{2} ; Y_{21}, \ldots, Y_{2 m}\right):$
$D_{o p}=\operatorname{Apply}\left(D_{1}, D_{2}\right)=D_{1} o p D_{2}=\boldsymbol{\operatorname { G I T }}\left(\pi_{1} \cdot \pi_{2} ; Y_{11}\right.$ op $Y_{21}, \ldots, Y_{1 m}$ op $\left.Y_{2 m}\right)$.

Factorization of GITE expressions

The product of GITE partitions corresponds to the Apply operation

The sum of GITE partitions corresponds to factorization of GITEs.

Define the factorization of GITEs as follows:
$D=D_{i} o p D_{j}=\boldsymbol{G I T E}\left(\pi_{i}+\pi_{j} ; D_{1}, \ldots, D_{f}\right)$,
where f is a number of blocks in $\left(\pi_{i}+\pi_{j}\right)$
D_{1}, \ldots, D_{f} stand for GITEs representing remaining functions.

Example

Let $D_{1}=x_{1} Y_{1}+\bar{x}_{1} \bar{x}_{2} Y_{2}+\bar{x}_{1} x_{2} Y_{3}, D_{2}=\bar{x}_{1} Y_{4}+x_{1} \bar{x}_{3} Y_{5}+x_{1} x_{3} Y_{6}$.
$D_{1} \circ D_{2}=\boldsymbol{\operatorname { G I T E }}\left(\pi_{1} ; Y_{1}, Y_{2}, Y_{3}\right) \circ \boldsymbol{\operatorname { G I T E }}\left(\pi_{2} ; Y_{4}, Y_{5}, Y_{6}\right)=$
$=\boldsymbol{G A T E}\left(\pi_{1}+\pi_{2} ; D_{23}, D_{456}\right)$.

$$
D_{1} \circ D_{2}=D_{3}\left(D_{23}, D_{456}\right)=x_{1} D_{23}+\bar{x}_{1} D_{456}
$$

where:

$$
\begin{aligned}
& D_{23}=Y_{1} \circ\left(\bar{x}_{3} Y_{5}+x_{3} Y_{6}\right) \\
& D_{456}=\left(\bar{x}_{2} Y_{2}+x_{2} Y_{3}\right) \circ Y_{4}
\end{aligned}
$$

Substitution

Let D_{1}, D_{2}, D_{3} be:
$D_{1}=\boldsymbol{\operatorname { I I T }} \boldsymbol{E}\left(\pi_{1} ; Y_{11}, Y_{12}\right), D_{2}=\boldsymbol{\operatorname { G I T }} \boldsymbol{E}\left(\pi_{2} ; Y_{21}, \ldots, Y_{2 m}\right)$,
$D_{3}=\boldsymbol{\operatorname { I I T E }}\left(\pi_{3} ; Y_{31}, \ldots, Y_{3 m}\right)$
After substitution: $Y_{11} \leftarrow D_{2} \quad Y_{12} \leftarrow D_{3}$, we have: $D_{1}=\operatorname{GITE}\left(\pi_{1} ; D_{2}, D_{3}\right)$

Boolean algebra of GITE Execution Part

Boolean algebra of GITE Execution Part

$$
X+Y
$$

Boolean algebra of GITE Execution Part

Example 1: $X+Y=\overline{(\bar{X} \& \bar{Y})}$

Boolean algebra of GITE Execution Part

Example 2

Boolean algebra of GITE Execution Part

Example 2

Boolean algebra of GITE Execution Part

Example 2: $X+\bar{X} \& Y=X+Y$

Decomposition

- Beginning from the initial implicant table to construct a network consisting of a number of component GITE
- Minimise component independently
- Each of the components have to be dichotomic

Dichotomic Fragment

We say that a set of product terms forms a dichotomic fragment, if the set is straightforwardly mappable into an MTBDD.

The dichotomic property guarantees that there exists a Shannon expansion that will not bring additional product terms to the initial GITE.

The dichotomic property means that the paths of the MTBDD are in one-to-one correspondence with product terms of the GITE.

Dichotomy Property

We study cases where GITE is represented by a MTBDD.
Our hypothesis is that the GITE can be more efficiently represented by a set of dichotomic fragments.

The whole GITE would be considered a set of sub-GITE, functionally equal to the initial GITE.

Any GITE can be decomposed into a network of dichotomic fragments connected by the Apply and the Substitution operations.

Algebraic Decomposition Method

The proposed decomposition algorithm is based on grouping of the set of cubes representing the function to a set of blocks.

The algorithm is algebraic decomposition method.

Function F is represented as:
$\mathrm{F}=\mathrm{D} \circ \mathrm{Q}+\mathrm{R}$
where D, Q and R , are the divisor, quotient and remainder.

Algebraic Decomposition Method

Decomposition is performed simultaneously on the set of functions that are represented as a single GITE - polynomial.
Our algebraic decomposition has the form:
$D=\operatorname{GITE}\left(\pi_{h}, D_{1}, \ldots D_{j}\right) \circ R$.

Where: divisor π_{h} is a block header, quotient $\left(D_{1}, \ldots D_{j}\right), D_{i}, i=1, \ldots, j$, is a block fragment,
Reminder R consists of the remaining cubes
that were not included in the block.
The partition π_{h} together with the GITE-polynomials D_{i}
form a block.

Decomposition

Two Algorithms of Decomposition

\checkmark Two algorithms have been developed and studied: a "density" algorithm and a "dichotomy" algorithm
\checkmark Both algorithms use one and the same general decomposition method
\checkmark The general method is the partitioning of the set of cubes into a number of components. This partitioning is performed recursively
\checkmark On each step of the recursive procedure, the corresponding component is partitioned into two subsets: a common header and a remainder
\checkmark Each common header is implemented as a conventional MTBDD
\checkmark The main concern of the general decomposition method is searching for optimal "common headers", for obtaining optimal resulting MTBDD

Dichotomy Oriented Decomposition

Density

Block density corresponds to a number of literals in the block's cubes normalised by the maximal possible number of literal in this block. The success of the decomposition strongly depends on the density.

Experimental Results - Low Density

Title	$\|\mathrm{X}\|$	$\mathrm{D} \%$	Nmon	Nnet	ratio
ALU1	12	18	982	25	0.02
B12	15	29	155	145	0.93
DK48	15	31	3428	58	0.02
DK27	9	34	79	22	0.28
CON1	7	37	16	15	0.94
ALU2	10	39	264	150	0.57
DUKE2	22	40	1435	326	0.23
ALU3	10	42	278	151	0.54
MISEX3C	14	43	10875	705	0.06
WIM	4	50	15	10	0.67
F51M	8	53	255	155	0.61
DK17	10	57	160	55	0.34
APLA	10	64	128	85	0.66
INC	7	79	39	35	0.9

Experimental Results - High Density

Title	$\|\mathrm{X}\|$	D\%	Nmon	Nnet	ratio
ADD6	12	52	504	731	1.45
RADD	8	57	90	143	1.59
CLIP	9	59	189	376	1.99
Z4	7	61	52	101	1.94
ROOT	8	65	72	134	1.86
SQR6	6	67	63	85	1.35
SQN	7	69	81	116	1.43
MLP4	8	73	240	345	1.44
SAO2	10	73	95	157	1.65
DIST	8	73	125	326	2.61
BW	5	80	25	58	2.32
RD53	5	90	15	53	3.53

Conclusions

\checkmark Generalised ITE (GITE) operation is introduced
\checkmark Multi output functions can be expressed by the GITE
\checkmark GITE comprises Evolution Part (EvP) and Execution Part (ExP)
\checkmark GITE algebra is a product of two algebras: Partition algebra of ExP and Boolean algebra of EvP
\checkmark The problem of GITE decomposition is formulated
\checkmark Mutual effect of the algebras are used as a base of the decomposition algorithm

