GENERALISED IE-THEN:ELSE OPERATOR EOR
COMPACT POLYNOMIAL REPRESENTATION QK
MULTIHOUTPUT EUNCTIONS

u w“l UL U n

Ver31ty Bar Ilan UmV n | ||“

"”l DSD 2011

Outline

. Logic functions vs. System of Logic functions
. Preliminaries

. Generalised ITE (GITE) operator

. EvP and ExP

. Partition algebra of EvP

. Boolean algebra of ExP

. Dichotomy property

. Decomposition

. Conclusions

Saturday, 27 August 2011

[Logic Function vs. System of [Logic

Functions

[Logic Function

. Single Logic : : i
function

Il. Two-block | / /
Partition of d C
Boolean Cube Wi |

Saturday, 27 August 2011

System' off [Logic Functions

. nlogic s 7 I
functions
12 14

IIl. n-block | 0\ ; 137) _/

Partition of
Boolean Cube ol €

Saturday, 27 August 2011

Two Domains

" Boolean Algebra of output vectors

' Partitions Algebra of input vectors

Saturday, 27 August 2011

Partitions

Definition.

A partition on a set C1s a collection of disjoint subsets of C

whose set unionis C,1.e. T = {Ba} such that:

B,NB, =0 (o # f)and U{B,}=C.

Example: § = {1,2,3,4,5,6,7,8}
m = {{1}.{2}.{3.4.7}.{5.6.8}} =11;2:3,4,7,5,6,8}

Partitions

A product 7, = 7«7, of partitions 7, and 7, 1S
a partition comprising intersections of blocks 7, and x,:
b= t(n'loﬂ:z) iff s= t(n'z)& = t(n'l).

A sum (nl rfal)of the partitions 7r; and 7, defined as tfollows:
§I= t(7r1 i nz) iff achains,,s,,...,s exists in C such as:
t, for which either s, =5, (71'1) or

S = 8058 50 eesS, =
S, ES.+1(7Z'2), 0<i=2n-1.

l

Saturday, 27 August 2011

Algebra of Partifions

The algebraic structure of partitions 1s known as a lattice.
This lattice has both

Zero (the smallest partition 7) and

One (the biggest partition 7') elements defined as follows:
i T (70, +7,)

T’ ={sl;...;sm};

1|{11] T %)
ﬂ n Sl,...,Sm o

(T, ® ,)

Saturday, 27 August 2011

Algebraic Decision Diagrams (ADD)

v'Proposed in 1993 by R. Baher, E. Frohm, C. Gaona, G.
Hachtel, E. Macii, A. Parvo, F. Somenzi

v Multi Output Functions as ADD
v'Different forms of representation of ADDs
v'Operations: Apply and If-Then-Else operation

v’ Used for: matrix multiplication, shortest path algorithms,
and numerical linear algebra.

Saturday, 27 August 2011

Algebraic Decision Diagram

An ADD i1s a function:

RO > S

where S 1s the finite carrier of the algebraic structure.

ADD is a form for representation of Multi Output
Functions (MOF).

Saturday, 27 August 2011

Algebraic Decision Diagram

v'ADDs representations

e MTBDD

e Matrix

v’ ADD operations

* Apply
e If-Then-Else (ITE)

Saturday, 27 August 2011

=
o
=
Qe
—
O
o,
S
=
o,
.
<t

Apply(f.g.op)=fopg

7 N\
<t < AN A
<t < AN A
<t < AN A
s N\
<+ <+ AN AN <+ < 0 on
N— —
= v W Al A
- — wr W A A
= —— — _
1
L e — e — —~
L
—_—— O O 80
—_—— O O ~
— _ =
I S
-~ <

Saturday, 27 August 2011

[t=Then-Else (ITE) operation

ITE(f,g,h)= feg+ foh
(1 GRS U AR UELRRA R Skt e et e 2
ARt RARRUARRMALRAAE: Sk bk bbb T UL
f= g= h=
alllio!il sl IBINIE o221 152 1|
111Ce A SRS A0 ARRRRRRE AR T A SR M AMMAARRL | |||)
MBI LAl
siita L
ITE(f. 2. h) =
(fg)2233

The ITE comprises a Boolean function operation as a “binary condition”
being a two-block partition of the Boolean space

Saturday, 27 August 2011

ITE vs. GITE

ITE - two-block partition on the Boolean

cube

'GITE - n-block partition on the Boolean

cube

Generalised ITE operation

Definition. Generalized ITE (GITE) 1s

GITE (n,Y)
where: 7= {Bl;. Il Bm} 1s a partition on the Boolean space;
M= {Yl" I m}_ a set of operators - binary vectors.

Yi (i =i .,m)corresponds to a certain block Bi ol the partition 7.

Thus, GITE consists of a partition portion (Evolution Part)
and an operator portion (Execution Part).

Saturday, 27 August 2011

Multn Output Function'as/ GITE

Definition
A Multi — Output Function (MOF)

is a mapping f : {O,l}n —Y,
which is GITE (7Z',Y) defined on two sets:

a) the partitions 7 and
b) the set Y of operators.

Polynomial representation oit GITE

Example: D =BY, +B,Y, + B/)Y,

+ AB(10)+ AB(01)+ AB(00)
/\
\

GITE algebra 1S'a product of two algebras

Boolean Algebra

/\Partltlons Algebra

GITE algebra

The GITE algebra is a product of two algebras:

* the algebra of partitions on the Evolution Part

* the Boolean algebra on the Execution Part

Partitions Algebra of GITE Evolution Part

GITE Apply operation

Definition : GITE Apply operation

Apply(D,, D,.0p|= DyopD, =

= GITE(ﬂa-ﬂ?b;Ya1 opYbl, iy opYb2 L Opme !

GITE Apply operation 1s performed by multiplying
partitions /& and by pair-wise op operation on operators Y.

Saturday, 27 August 2011

GITE Apply operation

Definition. Apply operation on GITE-polynomial
we call Product of GITE-polynomials and define as follows:

i ! l >

D, D, =Apply(D1, Dz,op)=2(Bl.1j -B]%l]{yiopyk} ,

for each pair of terms from D1 and D2,

Bilj OBI%Z 1s a logic product (AND) of B-functions;

YiOij - 1s the Apply operation between Yi and Y '

Saturday, 27 August 2011

GITE Apply operation

The Apply operation between D, = GITE (7:1;1/11 I "Ylm) and
Il ey ald D Al

"t 2m

D, = Apply(D,,D,)= D,op D, = GITE(7,*7t,;Y,, 0pY,,.....Y,,,0pY,,.).

D1 D2 Dop
Oop
Ty n, 717107172
[agpuan [nnagpan

Saturday, 27 August 2011

Factorization of GITE expressions

The product of GITE partitions corresponds to the Apply operation

The sum of GITE partitions corresponds to factorization ot GITEs.

Detine the factorization of GITEs as follows:

D

D:D.opD.:GITE(n'. 7ol LD
l] At HRL

)

where f 1s a number of blocks in (ni i 715].)

D1 D f stand for GITEs representing remaining functions.

Saturday, 27 August 2011

Example

ST LD | 1= 2l Dr it B L ks e S 0 L ==) 0 i o 6 L D s L D i D
1 LTS 2 P U E WA RE T LA s S LS 6

D oD GITE(n Y Y Y oGITE(n Y Y ,sz
it italiuke) onainsinG

=GATE(7Z’ SR D D \;
1 23456

D oD =D (D D]—xD M o1 -
3 17237177456

I 23" 456

where:

D —Y [xY +xY]
36

1
(xY+xY]Y
Dise =500 4

Saturday, 27 August 2011

Substitution

LetD,.D.., D, be:

HilnnE Rt
il GITE(nl;Yll,le),Dz il GITE(nz;Yzl,...,Yzm |
il GITE(EB;Y31,...,Y3m)

After substitution: Y1) — D2 le e D3,We have:

Il GITE(nl;DZ,D3)

Boolean algebra of GITE Execution Part

Boolean algebra of GITE Execution Part

X+Y

Boolean algebra off GITE Execution Part

Example 1: X+Y =(X &Y

/
&
/

||

Boolean algebra of GITE Execution Part

Example 2

Boolean algebra off GITE Execution Part

Example 2
X Y

,\ & '\ ,\

Boolean algebra of GITE Execution' Part

Example 2: X+ X &Y =X+Y

Decomposition

* Beginning from the initial implicant table to
construct a network consisting of a number
of component GITE

* Minimise component independently

* Each of the components have to be
dichotomic

Dichotomic Fragment

We say that a set of product terms forms a dichotomic fragment,

if the set 1s straightforwardly mappable into an MTBDD.

The dichotomic property guarantees that there exists a Shannon expansion

that will not bring additional product terms to the initial GITE.

The dichotomic property means that the paths of the MTBDD

are 1n one-to-one correspondence with product terms of the GITE.

Saturday, 27 August 2011

Dichotomy Property

We study cases where GITE 1s represented by a MTBDD.
Our hypothesis 1s that the GITE can be more etficiently represented
by a set of dichotomic fragments.

The whole GITE would be considered a set of sub-GITE,
functionally equal to the maitial GITE.

Any GITE can be decomposed into a network of
dichotomic fragments connected by the Apply
and the Substitution operations.

Saturday, 27 August 2011

Algebraic Decomposition Method

The proposed decomposition algorithm 1s based on

grouping of the set of cubes representing

the function to a set of blocks.

The algorithm 1s algebraic decomposition method.

Function F is represented as:

F=DoQ+R

where D, Q and R, are the divisor, quotient and remainder.

Saturday, 27 August 2011

Algebraic Decomposition Method

Decomposition 1s performed simultaneously on the set

of functions that are represented as a single GITE - polynomial.

Our algebraic decomposition has the form:
D = GITE(m,, D,...D, o R.

Where: divisor i, 1s a block header,

quotient (Dl,...Dj), D.,i=1, ...,],1s a block fragment,
Reminder R consists of the remaining cubes

that were not included in the block.

The partition s, together with the GITE-polynomials D,

form a block.

Saturday, 27 August 2011

Decomposition

Saturday, 27 August 2011

Two Algorithms of Decomposition

v Two algorithms have been developed and studied: a “density”
algorithm and a “dichotomy” algorithm

v'Both algorithms use one and the same general decomposition method

v'The general method is the partitioning of the set of cubes into a
number of components. This partitioning 1s performed recursively

v'On each step of the recursive procedure, the corresponding component
1s partitioned 1nto two subsets: a common header and a remainder

v Each common header is implemented as a conventional MTBDD

v The main concern of the general decomposition method is searching
for optimal “common headers”, for obtaining optimal resulting MTBDD

Saturday, 27 August 2011

Dichotomy: Oniented Decomposition

C Befin)

stack<=PLA

j

stack<= 0 (PLA) PLLA<=stack

1

StaCk<Tl (PLA 0 1 { i))

Shannon expansion

T 1 0 I}l
><Decompos1t10n)

Saturday, 27 August 2011

Density,

Block density corresponds to a number of literals in the
block’s cubes normalised by the maximal possible
number of literal in this block. The success of the
decomposition strongly depends on the density.

Saturday, 27 August 2011

Experimental Results'- ILow Density

Title | X]| D% Nmon Nnet ratio
ALU1 12 18 982 25 0.02
B12 15 29 155 145 0.93
DKA48 15 31 3428 58 0.02
DK27 9 34 79 22 0.28
CON1 7 37 16 15 0.94
ALU2 10 39 264 150 0.57
DUKE2 22 40 1435 326 0.23
ALU3 10 42 278 151 0.54
MISEX3C 14 43 10875 705 0.06
WIM 4 50 15 10 0.67
F51M 3 53 255 155 0.61
DK17 10 57 160 55 0.34
APLA 10 64 128 35 0.66
INC 7 79 39 35 0.9

Saturday, 27 August 2011

Experimental Results - High' Density

Title | X] D% Nmon Nnet ratio

ADDG6 12 52 504 731 1.45
RADD 8 57 90 143 1.59
CLIP 9 59 189 376 1.99
Z4 7 61 52 101 1.94
ROOT 8 65 72 134 1.86
SQR6 6 67 63 85 1.35
SQN 7/ 69 81 116 1.43
MLP4 8 73 240 345 1.44
SAO2 10 73 95 157 1.65
DIST 8 73 125 326 2.61
BW 5 80 25 58 2.32
RD53 5 90 15 53 3.53

Saturday, 27 August 2011

Conclusions

v'Generalised ITE (GITE) operation is introduced

v’ Multi output functions can be expressed by the GITE
v'GITE comprises Evolution Part (EvP) and Execution Part (ExP)

v GITE algebra is a product of two algebras: Partition algebra of
ExP and Boolean algebra of EvP

v'The problem of GITE decomposition is formulated

v Mutual effect of the algebras are used as a base of the
decomposition algorithm

Saturday, 27 August 2011

