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Foreword

Since some decades, computer simulations have become a part and parcel of
advanced learning environments. This book addresses the nature of simulation
from multiple perspectives and within a variety of contexts in order to provide a
foundation for its effective integration into education and learning.

Actually, while much has been written about models and simulations, little has
been written about the underlying theoretical and epistemological foundations. In
addition, there are also several shortcomings with regard to the instructional design
principles and the varieties of ways for effective use of models and simulations in
learning and instruction. This book provides a theoretically sound and practical
guide for designing and using models and simulations to support learning in formal
instructional contexts. Furthermore, it provides a comprehensive framework for
conducting research on educational uses of models and simulations. This will be
illustrated by examples of different types of simulations, including agent-based and
system dynamics simulations in various contexts. The author provides the reader
with a rationale and methodology for the design of interactive models and simu-
lations along with a variety of applications ranging from the natural to the social
sciences. Franco Landriscina makes clear that operating with simulations pre-
supposes the application of mental models that provide the user with both a model
of the system to be simulated and a model for reasoning in order to simulate the
transformations of the system. Then, a simulation can be used to show the possible
real effects of alternative conditions and courses of action. Consequently, the
theory of mental models becomes a cornerstone of the theoretical argumentation
which covers the broad range of theories and research on mental models—starting
with the neopragmatic approach (e.g., Stachowiak) across cognitive-constructivist
approaches (e.g., Johnson-Laird) up to the conception of model-centered learning
and problem solving (e.g., my own work) that operate with computer-based
simulations.

Thus, this book provides a state-of-the-art review of modeling for learning and
problem solving in complex domains. Topics covered include the foundations of
knowledge structures and mental model development, modeling for understanding,
dynamic systems modeling, simulation-based learning, and simulations for
thinking. The thread tying these chapters together is an emphasis on what the
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learner is doing and specifically on having learners engaged in modeling and
simulation construction rather than merely interacting with preconstructed simu-
lations. Actually, very often learners use simulations as mere applications that
have been designed by programmers and instructors. The learners often do not get
insights into the design of the tools itself, and therefore, they do not understand the
functions of modeling the world. Such simulations can be called black box models.
In contrast, Franco Landriscina is pleading to engage learners in processes of
understanding the models underlying the simulations. Such models can be called
glass box models. They presuppose that the learners can check the conceptual and
mathematical models that are used to run a simulation. Clearly, this part of the
book is another cornerstone of the argumentation.

This book deals with these focal points from the perspective called Model-
Centered Learning and provides an extension to the glass-box approaches: The
author explores the learning impact of students when constructing models of
complex systems in various subject matter domains. The act of modeling in this
vein needs to include reflection upon the thinking processes and the function of the
tools which the learner may apply for modeling. Human learning either yields to
manage new situations or improve efficacy of known behavior. This dual approach
of human learning is described as the interplay between schemas and mental
models. Based on these cognitive tools the human mind is able to create new and
artificial models of the world aiming at the simulation of what would happen if the
world is manipulated in a certain way. This means a ‘‘mental simulation runs’’ to
imagine the events that would take place in the world if a particular action were to
be performed. Thus, mental models allow one to perform entire actions internally
and to judge the consequences of actions, interpret them, and draw appropriate
conclusions. From the perspective of mental model research, Franco Landriscina
moves in his book from the notion of models as a particular mode of internal
representation mediating between images and propositions to the understanding of
mental models as tools of embodied simulation (by means of cognitive linguistics).
This is a great extension of mental model theory that could serve as a fundamental
basis for future research in this special field of interest.

Humans are probably the only creatures who can simulate complex scenarios in
mind in order to anticipate changes in the real world. The theory of mental model
takes most of those assumptions into account, when asking how individuals
operate successfully with the world and its demands for intelligent behavior.
Modeling and simulations are means that make humans smart.

It is of great importance to see all the chapters in this book as contributions to
the questions of how people think, how they learn, and how instruction can support
those phenomena. Consistently, the book’s focus is on the particular relevance of
simulations and their unique roles to play in learning. This has to do with creating
learning environments, whether simulated or virtual, which students can explore
freely or within varying constraints required by guidance in order to construct
knowledge on their own. The key to the success of this application of simulations
is not so much in how the ‘‘message’’ itself is presented, but in the degree to which
students can work out for themselves ways to reduce the dissonance between what
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the environment presents to the user and the knowledge and experience the user
brings in when he or she enters the environment. An extended use of computer-
based simulations as a tool to expedite the processes of problem solving may help
shift the focus from the end product and from the pure acquisition of facts to
cognitive processes like manipulation and understanding which then encourages
curiosity and creativity. In this sense, various features of simulation technologies
may help students become better problem solvers.

Recent developments in interactive software, and the emergence of systems
thinking provide a unique opportunity to create interactive model-based simula-
tions that address student learning. Computer simulation programs encourage
students to explore complex and realistic systems. The interactive environment
and graphic capability of these programs provides instant feedback to the students.
In addition to dynamic simulation capabilities, many of these programs allow the
user to incorporate animation into the simulation.

Clearly, simulations are computer programs aiming at modeling complex sys-
tems’ behaviors. They allow a learner to explore a system in a controlled way in
order to better understand how the system components interact, and how alternate
decisions can affect desired outcomes. In the future, these types of simulations
might merge to create even more intelligent instructional simulation systems. Such
simulations could provide a rich level of fidelity along with sufficient instructional
support, and include some degree of artificial intelligence that can adapt the
fidelity, difficulty, and support to an individual learner’s needs.

This book provides a unique and truly comprehensive perspective on the
intelligent use of simulations in various fields of learning and education. The book
explores the learning impact of students when constructing models of complex
systems and using simulations in the context of complex problem solving.
According to Landriscina’s theory, students should be involved increasingly in
building their own models and engaging at a deep conceptual level of under-
standing of the content, processes, and problem solving of the tasks to be
accomplished. Indeed, a simulation is nothing else than a computer program that
attempts to simulate the reality by operating with an abstract model of a particular
physical or social system and its characteristics in order to gain insight into the
functioning of the system. Every model is constructed in accordance with specific
intentions in order to simplify its original in several respects as well as to create
subjective plausibility with regard to the world.

The core of each computer simulation consists of a (conceptual) model of the
system to be modeled and no simulation can be better than the underlying model.
In addition to the model of the system, a simulation program must also include a
model for reasoning in order to simulate the transformations of the system. Then, a
simulation can be used to show the possible real effects of alternative conditions
and courses of action. In other words: A simulation is a computerized version of
the model of a system that runs over time and is iterative by nature with regard to
the underlying model: A model of the system must be constructed, then the
computer program simulates the model, learns from the simulation, revises the
model, and continues the iterations until an adequate level of understanding is
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developed. The conceptual model is the focal point of each simulation. All
activities either converge upon or emanate from the conceptual model. All
structures, through mappings either into or out of the conceptual model, must be to
some extent compatible with it. This book describes all these processes in detail
and on a solid theoretical foundation.

Simulations and models are increasingly considered to be innovative learning
environments which are consistent with how people learn: Variables can be limited
to a manageable level and structure and direction for learning can be provided,
real-world problems can be addressed, and students can take control and respon-
sibility for their own learning progress.

Instructional researchers apply computer simulations in order to create ‘‘syn-
thetic learning environments’’ for instructional purposes. That is to say, a partic-
ular task simulation has been designed to model some specific domain of reality
with which students can interact. From an instructional point of view, it is nec-
essary to state that the particular model of the reality that constitutes the core and
scope of the simulation represents both the subject matter as well as the ‘‘con-
ceptual models’’ of a subject. A simulation is a method of teaching/learning or
evaluating learning of curricular content that is based on an actual situation. The
simulation, designed to replicate a real-life situation as closely as desired, has
students assume roles as they analyze data, make decisions, and solve the problems
inherent in the situation. As the simulation proceeds, students respond to the
changes within the situation by studying the consequences of their decisions and
subsequent actions and predicting future problems/solutions. During the simula-
tion, students perform tasks that enable them to learn or have their learning
evaluated. A well-designed simulation simplifies a real-world system, while
heightening awareness of the complexity of that system. Students can participate
in the simplified system and learn how the real system operates without spending
the days, weeks, or years it would take to undergo this experience in the real world.

Thus, a learning environment which contains computer simulation facilities
may support knowledge acquisition as well as problem solving. Actually, learning
initiated by computer simulation involves explorative thinking, inductive, and
analogical reasoning. These skills put high cognitive and metacognitive demands
on students, who must generate hypotheses and test them by accomplishing
learning tasks actively as well as performing experiments in the simulated envi-
ronment. Accordingly, simulations of complex environments often require com-
plex problem solving, which can be trained systematically by situating simulations
and model-centered learning into the various field of instruction. Actually, this
book is a great contribution to the infusion of simulations into the field of learn-
ing—it is a milestone of educational technology research and development.

September 2012 Norbert M. Seel
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Preface

This is a book about ‘‘Simulation and Learning’’. It is written for educators,
teachers, and instructional scientists, but also for instructional designers, and
anyone else involved in designing or using simulation-based learning environ-
ments. I argue herein that, to comprehend the instructional potential of simulation
and to design effective simulation-based learning environments, what occurs inside
the computer and inside the students’ minds must receive equal consideration.

The framework I adopt to do so is Model-Centered Learning, in which simu-
lation is viewed as being particularly effective when learning requires a restruc-
turing of students’ individual mental models, as ideally occurs when they learn
scientific concepts. I focus on mental simulation as a fundamental capacity of the
human brain, which allows us the flexibility of shifting from static to dynamic
mental models, in function of a given situation.

I also formulate the hypothesis that simulation models can extend our own
biological capacity for carrying out simulative reasoning. I therefore examine
recent approaches in cognitive science such as Embodied Cognition and the
Extended Mind Hypothesis. Lastly, I propose a conceptual model, the ‘‘Epistemic
Cycle’’, as a blueprint for understanding the cognitive activities that are involved
in simulation-based learning and for designing and planning instructionally
effective simulation-based instructional activities.

This book is intended to promote the increased use of simulation in educational
institutions, and the examples presented herein range from those that are appro-
priate for middle school to higher education levels. Most of the examples are
drawn from the natural and applied sciences, but the accompanying considerations
and guidelines are equally valid for other branches of science. The book is also
intended to provide teachers with insights into making simulation-based activities
more meaningful for students.

My choice of basing the book on the cognitive approach to simulation does not,
of course, intend to minimize the importance of other approaches to this topic,
such as the social, cultural, and historical, which I consider equally valuable, as
they are beyond the scope of my own field of investigation.

As illustrated throughout the book, given the appropriate instructional planning
and conditions, a circular, student-simulation interaction can arise, in which mind
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and program modify each other in real time. My own aim in writing this book was
to engage the reader in a similar interaction.

I would therefore be very grateful to receive the Reader’s comments, sugges-
tions, and/or critiques on the ideas presented herein, so as to adapt my conceptual
models to better reflect the complex nature of the simulation-learning relation.

Trieste, Italy, September 2012
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Chapter 1
An Introduction to Simulation
for Learning

Reality is that which, when you stop believing in it, doesn’t go
away.
Philip K. Dick, How To Build A Universe That Doesn’t Fall
Apart Two Days Later (1978)

1.1 The Simulation Paradox

Simulation is all around us. Indeed, most of the objects in our everyday lives have
been carefully simulated before being physically produced. Young people spend
hours playing video games that vividly reproduce sports or imaginary worlds;
doctors practice on virtual patients; molecular process simulations allow phar-
maceutical companies to invent new medicines; and realistic simulation models
render weather forecasting more precise than ever before. Moreover, managers in
multinational companies use simulations to analyze future market scenarios, and
simulation is also a recurrent theme in many movies and science fiction novels.

The field of scientific research, however, most heavily relies on simulation and
uses it for nearly all topics of inquiry, for example, from those of the birth of the
universe to the neural underpinnings of consciousness and intelligence. Science is
therefore the realm that pushes the technological limits of simulation to their
extremes. In fact, simulations of galaxy formations, molecular dynamics, protein
unfolding, ocean currents, and aerodynamic design require the use of advanced
numerical algorithms and parallel computers located in powerful data processing
centers. Furthermore, simulation is not only transforming scientific practice, but it
is also leading scientists and philosophers of science to re-examine relations
between models, theories, and experiments. According to Winsberg (2010), ‘‘the
last part of the twentieth century has been, and the twenty-first century is likely to
continue to be, the age of computer simulation’’ (p. 9).

One of the aims of simulation, both in science and in industry, is that of
learning: Through simulation of a real or imaginary system, one can better
understand its inner workings and how to intervene when necessary. Simulation-
based training typically aims to help trainees acquire specific operative skills, as in
the case of aircraft pilots, anesthesiologists, or power plant workers. In business
contexts, learning simulations usually operate on a company’s organizational
level, with the goal of improving its overall market competitiveness.

Given the above considerations, one might easily imagine simulation being
used as a teaching method in schools and universities, in adjunct to more tradi-
tional methods, such as classes and laboratories. One might also legitimately

F. Landriscina, Simulation and Learning, DOI: 10.1007/978-1-4614-1954-9_1,
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expect that its teaching potential has been both theoretically and experimentally
investigated to develop applicative simulation guidelines for diverse educational
contexts. Strangely, however, these suppositions are far from true in current
educational scenarios.

Although the last few years have witnessed an increase in the use of simulations
as a teaching tool, their actual penetration into school programs is still quite scarce.
According to the National Research Council (2011) report entitled Learning
Science Through Computer Games and Simulations, ‘‘several barriers slow large-
scale development and use of games and simulations for science learning in K-12
and higher education’’ (p. 175).

This dearth of educational applications parallels a delay in research programs.
The same report states, ‘‘there is moderate evidence that simulations motivate
students’ interest in science and science learning, and less evidence about whether
they support other science learning goals’’ (p. 2). One of the report’s conclusions
stated that ‘‘The many gaps and weaknesses in the body of research on the use of
simulations and games for science learning make it difficult to build a coherent
base of evidence that could demonstrate their effectiveness and inform future
improvements. The field needs a process that will allow research evidence to
accumulate across the variety of simulations and games and in the face of the
constant innovation that characterizes them’’ (p. 55).

We are therefore faced with the paradox of an instructional method receiving
positive, even enthusiastic comments, which lacks momentum, however, to be
translated into sound school practice. Wherein lie the reasons for this aspiration-
reality divide? The above-mentioned report identified a series of practical hurdles
to be surmounted, such as the need for a closer alignment with school curricula,
teacher’s professional support needs, and school policies that actually do allocate
funds for hardware and software purchases. Although these issues are important,
they concerns difficulties in introducing not only simulation, but also other tech-
nology-enhanced teaching methods into classrooms, such as hypermedia learning
and computer-based scenarios (not discussed in the present book). With respect
to simulation, specifically, cultural and conceptual factors linked to its specific
features as a knowledge method and to its role in educational practices can also
significantly delay this instructional updating and integration process. The
remaining part of this chapter will therefore more closely examine three of these
aspects:

• the epistemic status of simulation;
• different meanings of the word ‘‘simulation’’;
• differences between simulations and games.

1.2 The Epistemic Status of Simulation

Etymology shows that the verb ‘‘to simulate’’ (lat. ‘‘simulō,’’ imitate) can also
mean pretend and can take on a negative connotation thereby. In fact, up to the
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post-war period and the consequent development of computer simulations in
military and scientific contexts, the word simulation was considered to exclusively
mean the intentional distortion of an event. This negative connotation actually
harks back to Plato’s idea of ‘‘li9lgri1’’ (mimesis, the Greek term for simulation)
intended as an imperfect copy or fictitious replica of reality (as opposed to
Aristotle, who conversely viewed mimesis as a means to know nature through
potentially valid and acceptable representations). For example, Ulysses, the
symbol of human capacity to solve problems through cunning and intelligence,
pretended to be insane to avoid participating in the Trojan War, but his ‘‘simu-
lation’’ was discovered. In more modern times, a simulation foul in soccer is a
player’s attempt to gain an unfair advantage by pretending to be injured through
harmless or even no physical contact with a rival, and is therefore misconduct
punishable by a yellow card. Simulation is therefore frequently considered to be a
‘‘fake’’ representation of the real world. In fact, many Sci-Fi film protagonists find
themselves lost in a simulated world created to conceal the real world. In other
words, simulation has a certain ambiguity due to its epistemic status, as something
existing halfway between fiction and reality.

This ambiguity can therefore underlie some even unconsciously pessimistic
ideas about simulation. For example, teachers view the method with suspicion,
believing that it risks showing students a poor or distorted representation of reality.
The concern is not entirely unjustified; students can easily confuse simulation with
reality, especially if their knowledge of the simulated system is not yet fully
developed. This is the ‘‘seductive power’’ of simulation, described by Starr (1994)
in his analysis of the game SimCity. Turkle (1997) drew the same conclusion by
maintaining that people react differently to the seduction of simulation: ‘‘One can
accept simulations on their own terms […]. This might be called simulation res-
ignation. Or one can reject simulations to whatever degree possible […]. This might
be called simulation denial. But one can imagine a third response. This would take
the cultural pervasiveness of simulation as a challenge to develop a new social
criticism. This new criticism would discriminate between simulations. It would take
as its goal the development of simulations that help their users understand and
challenge their model’s built-in assumptions.’’ (Turkle 1997, p. 82).

Thus, the idea of simulation as imitation or reproduction of an objective reality
makes up part of the epistemic beliefs with which students and teachers approach
it as a learning method. As shown by research on personal epistemologies, these
types of beliefs significantly influence different aspects of the learning process;
some epistemic features of simulation will therefore be more closely examined
here below.

1.3 Not All Simulations are Created Equal

The online Merriam-Webster’s dictionary defines simulation as ‘‘the imitative
representation of the functioning of one system or process by means of the
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functioning of another.’’1 Hence, a fundamental feature of simulation is the repro-
duction, in form or content, of some aspects of a system—although, as described
above, ‘‘fake reality’’ is another feature frequently attributed to the concept.

In practice, however, the word ‘‘simulation’’ implies many meanings, which vary
in function of specific contexts and aims; the most commonly used ones are as follows:

• understanding, to gain knowledge of theories, models, and structures;
• prediction, to obtain a currently reliable imagine of a future occurrence;
• decision support, to support individual or team decision-making skills;
• design and modeling, to explore various design options, verify the quality of a

product’s performance before production, and to refine production processes;
• training, to teach operational and technical skills and work methods;
• entertainment, for curiosity, fun, and competition.

Each of these aims is linked to a specific type of simulation that varies per
application area, knowledge required, modeling methods, and software tools.
Overall, however, we can distinguish between two main types of simulation:

• model-based simulations, based on the construction of the theoretical model of a
system (also known as ‘‘theoretical simulations’’);

• experiential simulations, based on the creation of a virtual event to be experi-
enced by one or more participants.

Experiential simulation, of course, has broad application in training and games,
for example, for interacting with real or imaginary people (role-play), driving a
vehicle, manipulating a device, or moving through a virtual world. Experiential
simulation environments are quite popular with the general public, due to the
advanced technologies that are currently being used to create virtual worlds, im-
mersive environments, and augmented reality devices. The present book, however,
will exclusively examine model-based simulation, henceforth termed ‘‘simulation.’’2

1.4 Differences Between Simulation and Games

The terms ‘‘simulation’’ and ‘‘games’’ are frequently used interchangeably. The
main reason for this phenomenon lies in the massive presence of simulation in
commercial video games. Simulation games are designed to simulate some aspects
of an imaginary or real situation, and this is achieved by using a wealth of details,
stories, and special effects. Popular sub-genres are city building, life simulation
games, social simulation games, sports games, and vehicle simulation games.
Some well-known examples are SimCity, where the player acts as a city planner,

1 The Chap. 2 will propose a definition more specific to the instructional use of simulation.
2 Even this type of simulation allows for the use of technologies such as virtual reality, but they
are more frequently run as traditional computer programs.
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and The Sims, a simulation of the daily activities of virtual people. Moreover, the
expression ‘‘business simulation’’ is sometimes used as synonym for the business
games used in manager training programs.

Recent years have also witnessed a growing interest in simulations in the field
of e-learning, where the term ‘‘simulation’’ is frequently associated with terms
such as ‘‘serious games’’ and ‘‘game-based learning’’ (Aldrich 2003; Prensky
2007; Quinn 2005). Typical examples are simulated co-worker consultancy,
meetings, and sales negotiations. These are experiential simulations and thus
essentially role-play, which generally progress along decision tree lines.3

Although technical or cultural simulation versus game lines are blurring, they
present key differences from an instructional perspective. It is therefore important
to distinguish between these two methods.

By definition, a simulation is based on the imitation of a system or a situation,
whereas a game is not bound by this constraint, but exclusively follows its own
rules. As Kant wrote in his Critique of Judgment, game playing is an ‘‘occupation
that is pleasant in itself’’ (in Bernard 1914, p. 184). In addition to this basic
difference, games are competitive in nature. Thus, whereas game players usually
want to win (even against themselves, to improve their score), simulation is
oriented toward the acquisition of knowledge or achievement of practical goals.
Furthermore, although games are played spontaneously, for fun and/or for
socializing, students generally interact with simulation in educational and
therefore more structured contexts.

The instructional effectiveness of games, in general, and video games, in
particular, remains a debated topic. Researchers investigating the issue have
mostly focused on examining motivational and psychosocial development aspects.
According to the National Research Council (2011), ‘‘Evidence about the effec-
tiveness of games in supporting science learning is only beginning to emerge, and
the body of evidence is much smaller and weaker than the body of evidence related
to the effectiveness of simulations’’ (p. 37).

Having clarified these differences, it is also important to note that games and
simulation do overlap to some degree; for example, both simulation games and
instructional simulations have explicit goals, rules, and scores; they may both also
present elements of inter-participant competition (Fig. 1.1).

1.5 What is Simulation?

As described above, the main feature of a simulation is the reproduction of a
particular aspect of an observed or possible reality. It is not, however, a static
reproduction, but an active, or rather, an ‘‘interactive’’ one. Parisi (1997)

3 Each tree node represents a situation and branches into potential decisions concerning that
specific situation. Numerical weights can be incorporated into the nodes, but the simulation flow
will ultimately depend on the player’s qualitative decisions.

1.4 Differences Between Simulation and Games 5



distinguishes interactivity ‘‘between images’’ from interactivity ‘‘with images.’’
The first type of interactivity is hypertextual, in which the user moves from one
image to another by clicking on the links indicated. The second type of interac-
tivity is based on simulation, in which an image conceals its own underlying
model. Specifically, the image changes in function of the action the user performs
indirectly on the model by interacting directly with the image (via key-press,
mouse-click, screen-touch, etc.). These considerations therefore lead to the fol-
lowing definition:

• A simulation is an interactive representation of the system to be studied, based
on a model of the system.

The aim of this definition is to limit the meaning of the term simulation to
situations more easily encountered in scientific and educational contexts, and to
couple it with the terms model and system, which appear elsewhere herein and can
be defined as follows:

• A model is a simplified representation of a real or imagined system.
• A system is a collection of different elements whose combination yields results

that are unobtainable by the elements alone.

These definitions allow us to imagine a series of epistemic transitions, from a
reality or an idea to a system, from the system to a model, and from the model to a
simulation. Although these entities are conceptual in nature, during the con-
struction process of a simulation, they become cognitive artifacts, such as physical
models, data files, written descriptions, visual representations, mathematical
formulas, formal specifications, and computer programs. Moreover, the above
definition’s emphasis on the interactive nature of simulation distinguishes it from
other forms of knowledge representation and focuses on its potential for creating a
relation of interpenetration and synergy between a human mind and a computer.
For example, when a student uses a simulation, students using a simulation do not
typically interact directly with a given model, but exclusively via mediation of

Fig. 1.1 The relation between simulation and games
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the simulation program’s user interface, and with the goal of gaining a better
understanding of the modeled system (Fig. 1.2).

When attempting to define the relation between simulation and learning, a
useful approach is to list the advantages of actions implemented in a simulated
system versus a real system, and specifically

• independence from spatial dimensions, that is, the opportunity to examine
extremely large or small systems and related processes, which would otherwise
be difficult or impossible to analyze (e.g., galaxy formation or alpha particle
emission from an atomic nucleus);

• time compression (or expansion), that is, being able to observe either real-world
phenomena requiring very long time spans in a few minutes only (such as
continent formation) or which occur too quickly for observation by the human
eye (such as molecular vibration or action potential propagation in the axon of a
neuron);

• feasibility of the impossible, that is, the opportunity to perform actions that are
impossible in reality (e.g., eliminating friction on a flat surface, causing an
earthquake, shifting the planets’ positions in the solar system);

• safety, that is, being able to interact safely with potentially dangerous systems
(e.g., an erupting volcano) and to carry out actions that would cause consider-
able damage in the real world (e.g., releasing a pollutant into a lake, to analyze
the ecosystem impact);

• cost-effectiveness, because acquiring data from a simulation costs much less
than doing so from a real system.

Thus, simulation allows us to practice without time or space constraints and,
therefore, to proceed by trial and error safely and cost-effectively, to verify
alternative hypotheses, and to reflect on the structure of the system itself and our
own decisional processes concerning it. In suitable conditions, this approach can
also enhance cognitive processes that are crucial to learning, such as

• selecting key information;
• organizing this information into a cognitive structure;
• integrating this new information with previous knowledge;

Fig. 1.2 Computer-based simulation as mediator between student and system
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• accessing and creating appropriate analogies and metaphors;
• generating inferences;
• reorganizing cognitive structures.

Overall, these steps can facilitate the construction of new cognitive structures or
the modification, or even replacement of preexisting ones, favoring complex
learning processes thereby (Chi and Ohlsson 2005; Mayer 2005; Seel 1991, 2003).

1.6 The Need for a Multidisciplinary Approach

Scientists and educators wanting to investigate the learning potential of simulation
must first deal with the problem of a knowledge scattered among many disciplines.
Thus, in addition to the variety of meanings of the term simulation, important
differences along three key dimensions—that is, simulation paradigm, learning
goals, and curricular development—must be kept in mind.

1.6.1 Simulation Paradigm

Simulation paradigms are the theoretical frameworks that guide the modeling
practices of simulation experts. They therefore guide decisions as to the selection
of phenomena to be modeled, modeling methods, software tools, validation cri-
teria, and the ways in which the simulation results will be interpreted. The present
book focuses on the paradigms and methods that are most frequently encountered
in educational contexts, and specifically

• Equation-based modeling;
• Molecular Dynamics;
• Agent-based modeling;
• System Dynamics;
• Cellular Modeling and Simulation.

(Other simulation paradigms used predominantly in the fields of applied
mathematics or systems engineering, such as Monte Carlo Simulation (Rubinstein
and Kroese 2008) and Discrete-event Simulation (Banks et al. 2009), are not
examined herein).

The above-mentioned issue of knowledge fragmentation is due to the fact that
each paradigm listed above has its own individual or organizational supporters,
who tend to underscore the benefits and strengths of their chosen paradigms. Yet,
the variety of phenomena to be modeled does not allow for the exclusive use of a
single paradigm; nor is there a single modeling method or tool that suitable for all
instructional situations. In fact, different educational contexts call for different
approaches. A useful perspective is therefore that of applying and comparing many
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approaches. Moreover, in doing so, it is important to remember that one’s choice
of a simulation paradigm is not just a technical matter: Every paradigm comes with
its own set of assumptions about the types of phenomena that can be modeled, the
model characteristics required, and potential simulation uses in that context.

1.6.2 Learning Goals

Many studies do not thoroughly investigate the instructional effectiveness of
simulation, and specific learning goals have therefore not been clearly defined,
nor have they been expressed in terms of measurable learning outcomes. For
example, implicit learning goals can be those of developing general thinking skills
(e.g., critical thinking skills, higher-order thinking skills, problem-solving skills)
or acquiring more specific subject matter knowledge (e.g., physics, biology,
economics). Adding to the confusion is the frequently unstated motivational
purpose of a proposed simulation, that is, to increase student’s overall interest in
science, with no reference, however, to specific learning goals. The above-cited
National Research Council (2011) report on Learning Science Through Computer
Games and Simulations states, somewhat cautiously, that ‘‘There is moderate
evidence that simulations motivate student’s interest in science and science
learning. Less evidence is available about whether simulations support develop-
ment of science process skills and other science learning goals’’ (National
Research Council 2011, p. 54).

1.6.3 Curricular Development

In curricular development, the development and application of modeling and
simulation skills are not easily encountered among courses offered by schools or
universities. A distinctive feature of simulation is that a relatively small number of
models can be applied to a wide range of phenomena in different fields. This fact
entails, however, a systemic view of science, which focuses on similarities rather
than differences between phenomena. It also does not harmonize well with the
distinction-among-discipline view, which still represents the main criterion for
designing curricula at any level of education. One way to overcome this obstacle is
to develop science education programs by focusing on a small number of unifying
concepts and processes, as indicated, for example, in the Benchmarks for Science
Literacy (American Association for the Advancement of Science 1993), the
National Science Education Standards (National Research Council 1996), the
Science College Board Standards for College Success (College Board 2009), and
the Framework for K-12 Science Education (National Research Council 2012).
Some ways in which the instructional use of simulation could support this
endeavor are illustrated throughout this book.
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The integration of simulation into curricular development requires a multidis-
ciplinary approach, that is, an approach that continuously takes the various
contributions of diverse disciplines into due account. The aim thereby is to acquire
sufficiently broad-based knowledge of the general aspects of simulation and their
implications for learning, so as to make informed decisions about how simulation
can be used in instructionally effective ways. The reader might wonder whether
this type of a multidisciplinary approach is actually possible and whether the
various contributions of such a multidisciplinary approach could be integrated in a
unitary framework. The answer, of course, is affirmative. Indeed, an in-depth look
at the instructional uses of simulation reveals some recurring themes an exami-
nation of which provides great potential for increasing the effectiveness of
simulation-based learning, and namely

• cognitive processes involved in simulation-based learning;
• teacher’s and student’s epistemic beliefs about simulation;
• a simulation project’s activities and outputs;
• instructional strategies informing the design and use of simulation-based

learning environments.

1.6.4 Cognitive Processes

The cognitive processes involved in simulation-based learning can be analyzed in
light of the concepts of mental model and mental simulation, which have been
extensively studied in many areas of Cognitive Science (Johnson-Laird 1983;
Goldman 2006; Gibbs 2006a; Barsalou 2008a). As described in the next chapter, a
large body of cognitive science research evidence provides support for the idea
that mental simulation is a fundamental capacity of the human brain, as it allows
us to move from static to dynamic mental representations. This process, in fact,
helps us imagine events that could happen in the world as a consequence of our
own actions. Furthermore, the mental simulation system is linked closely with the
linguistic system and, therefore, has wide-ranging implications for learning.

1.6.5 Epistemic Beliefs

The teacher’s and student’s epistemic beliefs about simulation are related to the
ways in which simulation can yield knowledge about the world to us. For example,
a simulation might be viewed as an imperfect copy of reality and, therefore, as an
only partially reliable source of knowledge. A related issue is that of the com-
parison between simulation and laboratory experiments—that is, whether, and if so
to what extent, a simulation can be considered a sort of ‘‘numerical experiment,’’

10 1 An Introduction to Simulation for Learning



which is analogous to a physical experiment. These and other similar issues are
studied in Philosophy of Science under the more general category of scientific
models (Knuuttila 2005; Frigg and Hartmann 2009). Philosophers of science have
also shown growing interest in the distinctive features of simulation models and in
the uses of simulation for representation, prediction, explanation, and policy
decisions (Grüne-Yanoff and Weirich 2010; Winsberg 2010).

1.6.6 Activities and Outputs

The activities and outputs of various simulation projects have been described in
detail by researchers and experts in the field of modeling and simulation (M&S).
M&S developed in the context of systems science, and its main fields of appli-
cations are industry, defense, and health care (Birta and Arbez 2007; Robinson
2004; Sokolowski and Banks 2010). Interestingly, M&S experts have analyzed
general simulation project aspects that are common to different application areas
and simulation paradigms. Thus, the conceptual and methodological contributions
of M&S could also be usefully applied in educational contexts, and particularly
in situations requiring learners to build their own simulation models or to evaluate
a model constructed by someone else.

1.6.7 Instructional Strategies

A useful theoretical framework for analyzing the best suited instructional
strategies for simulation-based learning is that of model-based learning and
teaching (Buckley 2012a, b). The framework views learning as a series of
mental models successively progressing from an initial state to a final desired
one. Simulation (both mental and computer based) is seen as a tool that can
facilitate this progression process and is particularly effective when learning
goals require the restructuring of student’s mental models, as in the instance of
conceptual change. Cognitive load theory (Sweller 2010) has also made an
important contribution to this field of inquiry. This instructional theory focuses
on the role of working memory in learning processes and provides a set of
principles and guidelines for the design of efficient simulation-based learning
environments.

The disciplines illustrated in Fig. 1.3 can serve to more accurately define the
relation between simulation and learning. These contributions, of course, must be
meaningfully integrated to obviate the risk of finding ourselves in the ancient
Indian story of the blind wise men and the elephant: although each man touched
the same animal, his understanding of ‘‘the elephant’’ pertained to only a part of
the elephant (trunk, ear, tail, leg, etc.) and, indeed, the story warns us of the
difficulty in achieving a full understanding of ‘‘elephant’’ in its entirety.
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It is therefore proposed herein that one fruitful way to integrate the above
contributions into a unitary framework is to carefully consider the link between
processes ongoing in the student’s mind and those occurring in the computer, as
well as the technical and cultural interfaces, that make this connection possible.

The following chapters are, respectively, dedicated to examining the topics of
mental models and mental simulation (Chap. 2), models in general (Chap. 3), their
relation to simulation (Chap. 4), simulation-based learning (Chap. 5), and the
relation between mental and computer simulation (Chap. 6).

Fig. 1.3 Other discipline’s contributions to simulation-based learning and instruction
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Chapter 2
Simulation and Cognition

Music is a horizontal force that unfolds in time.
Leon Fleisher (American pianist and conductor)

2.1 Mental Models

What if mental simulation is not just a way to discuss and to solve problems, but
also an essential aspect of brain functioning? Indeed, what if this process lies at the
very foundation of our ability to understand other peoples’ intentions and emo-
tions, to remember past events, to create new ideas, and to imagine the future?
A growing body of cognitive science literature on human ‘‘mental simulation’’
capacity points to the cogency of this view. The present chapter begins by
examining a particular kind of model, i.e. ‘‘mental models’’, to more closely
investigate the relation between simulation and cognition.

Mental models are internal representations people commonly use to compre-
hend, reason about, and predict events in the world. In his 1894 work ‘‘Principles
of Mechanics’’, Heinrich Rudolf Hertz clearly expressed the idea that our thought
processes are based on internal representations that allow us to simulate the
external world: ‘‘We make for ourselves internal images or symbols of external
objects, and we make them in such a way that the consequences of the images that
are necessary in thought are always images of the consequences of the depicted
objects that are necessary in nature… Once we have succeeded in deriving from
accumulated previous experience images with the required property, we can
quickly develop from them, as if from models, the consequences that in the
external world will occur only over an extended period or as a result of our own
intervention’’ (in Niehans 1990).

As early as 1943, the English psychologist Kenneth Craik laid the foundations
for more recent mental models theories (in his book entitled ‘‘The Nature of
Explanation’’) by stating that the mind develops ‘‘small-scale models of reality’’
on the basis of experience and uses these models to think, to predict future events,
and to provide explanations: ‘‘If the organism carries a ‘small-scale’ model of
external reality and of its own possible actions within its head, it is able to try out
various alternatives, conclude which is the best of them, react to future situations
before they arise, utilize the knowledge of past events in dealing with the present
and the future, and in every way to react in a much fuller, safer, and more
competent manner to the emergencies which face it’’ (Craik 1943, p. 61).
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Interestingly, he prophetically viewed this predictive power as not pertaining
exclusively to the human mind. The word ‘‘simulation’’ never actually appears in
Craik’s book, given that the computer, as we know it, had not yet been invented.
He did use, however, the example of Kelvin’s tide predictor—a mechanical cal-
culator that is also an analog computer. Moreover, by stating that a thought process
can be divided in three steps: (1) representation by symbols, (2) calculation, and
(3) retranslation into events, he was implicitly referring to a form of mental
simulation.

Craik’s ideas subsequently lay fallow for many decades, one of the causes being
the growing behavioral psychology movement’s rejection of all forms of ‘‘men-
talism’’. Yet, later on, during the 1970s, in the newly consolidated field of cog-
nitive psychology, Shepard and Metzler’s experiments on the mental rotation of
images brought researchers’ attention back to the subject of mental representation
(Shepard and Metzler 1971). Shortly thereafter, Kosslyn and his collaborators
found interesting experimental evidence for the mental scanning of images
(Kosslyn 1973, 1980). In Shepard and Kosslyn’s ‘‘pictorialist’’ approach, thought
was considered to operate through some process of visual imagery and therefore,
to be capable of representing information analogically, i.e., by maintaining the
visuospatial features of visual perception. Pylyshin’s (1973) ‘‘computational’’
approach conversely considered mental images to be akin every other kind of
thought, and therefore based on linguistic representations, with none of the visu-
ospatial features of images. An analogy can be made with the images on a com-
puter screen, which are actually based on a binary language decoded by the
software. In any event, regardless of whether images are analogical or proposi-
tional in nature, these experiments demonstrated that they can be analyzed, rotated,
and/or scanned, as occurs with perceptual images and that they ‘‘behave’’ like the
physical objects they represent.1

The concept of mental models came to the forefront in 1983, when two books
with the same title ‘‘Mental Models’’ (but representing two different approaches)
were respectively published by Gentner and Stevens (1983) and by Johnson-Laird
(1983). The first approach originated in the field of Artificial Intelligence and
conceived mental models as being knowledge structures people use to understand
specific knowledge domains (Gentner and Stevens 1983). The domains analyzed
were simple physical systems or artificial devices, and participants tended to rely
on ‘‘naïve theories’’ to describe and explain them. These theories are similar to
scientific ones, as they have axioms and rules, but are ‘‘naive’’ because they are not
formalized and are occasionally wrong. The knowledge representation formalisms
used in this approach were those of Artificial Intelligence. The second approach
focused on mental models viewed as a special kind of mental representation
supporting speech comprehension and logical reasoning (Johnson-Laird 1983).

1 Auditory, olfactory, and tactile mental models have also been studied. In particular, Halpern
(1988) used experiments similar to those of Kosslyn to investigate the mental scanning of
auditory images produces by familiar songs. Visual mental models, however, have been the most
widely studied.
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According to Johnson-Laird, mental models are structural analogues of the
world: ‘‘they are analogies because structural relations between their elements
correspond to the perceptible relations between the elements of the corresponding
real-world objects’’ (1983, p. 147). These kinds of mental models are iconic
representations; that is, they have a relation of similarity with the corresponding
real-world situation, as opposed to propositional representations, in which the
relation is of a purely conventional nature. This similarity relation has a spatial
nature, because the disposition of the elements (‘‘tokens’’) in the mental model is
isomorphic with that of corresponding real-world elements. Based on the ana-
logical relation between their supposed structure and the situation they represent,
Johnson-Laird (2004) compared mental models to architects’ and molecular
biologists’ models and to scientific diagrams. Moreover, he formulated the
hypothesis that mental models can also contain abstract symbols that allow for the
representation of propositional connectives, such as negation and disjunction, used
in logical reasoning. According to Johnson-Laird’s ‘‘triple code’’ hypothesis,
mental models are a type of representation that differs from both propositional
representations and mental images.

Johnson-Laird also saw the most important forerunner of mental model theory
in the American philosopher Charles Sanders Peirce, the father of pragmatism.
Peirce considered himself mostly a logician and made many important contribu-
tions to the domain of logic. In particular, he invented two kinds of logical
notation: one symbolic, as currently used in mathematical logic, and the other,
graphic—i.e., ‘‘existential graphs’’ or ‘‘logical diagrams’’. In an existential graph,
logical relations are represented by spatial relations among different types of signs,
as in Venn diagrams. Existential graphs support a type of reasoning Peirce termed
‘‘diagrammatic reasoning’’, consisting in the manipulation of relations among the
diagram’s signs, by following specific rules to obtain other relations among them.
These diagrams therefore constitute a deductive system in which the signs and the
rules for manipulating them represent the diagram’s syntactical aspect, and the
relations among the signs and objects make up the semantic aspect. With regard to
semantics, the problem is to understand how a graphic sign in a diagram can
represent something else other than itself. Pierce’s response lay in the triadic
model of the sign, which he began to illustrate in 1897, in his work titled ‘‘On a
New List of Categories’’ and further developed in his later works. In this model,
which is currently used in semiotics, a sign is defined by the relation among a sign-
vehicle (or ‘‘representamen’’), an object, and an interpretant, and this relation can
be represented as a triangle (Fig. 2.1).

The sign-vehicle is commonly called ‘‘sign’’, and as Peirce stated, it is
‘‘something which stands to somebody for something in some respect or capacity’’
(1897, p. 228). The object is what the sign refers to—i.e., a real-world thing or
another representation. The most difficult concept to grasp, however, is that of the
interpretant. It refers to a further kind of a sign, created in the mind of a subject as
the effect of a material sign. In his various works, Peirce specifically addressed the
mental nature of the interpretant: ‘‘A representation is that character of a thing by
virtue of which, for the production of a certain mental effect, it may stand in place
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of another thing. The thing having this character I term a representamen, the
mental effect, or thought, its interpretant, the thing for which it stands, its object.’’
(1899, p. 1564). ‘‘A Sign is a Representamen of which some Interpretant is a
cognition of a mind’’ (1903, p. 291). Peirce argued that thoughts are signs, too, and
it is this position that reveals a clear analogy between Pierce’s existential graphs
and Johnson-Laird’s mental models. Pierce moreover classified signs into the three
categories of icons, indexes and symbols (Table 2.1), according to the type of
relation that exists between the sign and the corresponding real-world object.

Both the mental models in Johnson-Laird’s theory and Peirce’s existential
graphs are multimodal or heterogeneous information representation systems,
because they can contain different types of signs, and specifically iconic elements,
spatial elements, and symbols (Shin 2002).

In this parallelism between internal and external representation, some confusion
arose as to the different formats Peirce assigned to icons. In fact, at times he
compared them to pictures, as in the instance of a portrait or statue of a person, and
other times, to diagrams. He actually meant, however, both meanings: In the first
case (icons as pictures), the element in common with the object is a visual feature
(e.g., a statue partakes its shape with the original), and thus the relation between
sign and object is a similarity relation. In the second case (icons as diagrams), sign
and object share a spatial feature (e.g., a diagram partakes the spatial structure of
an object’s elements), and the sign-object relation is one of analogy. Moreover,
although it was not possible for Pierce to foresee it, the difference between these
two kinds of iconic representations can also shed some light on the difference
between mental images and mental models (Table 2.2).

Fig. 2.1 Peirce’s triadic sign
theory

Table 2.1 Kinds of signs in Peirce’s semiotics
Kind of sign Relation between sign-vehicle and object Example of sign-vehicles

Icon Features partaking A picture with a cat
Similarity or analogy A subway map

Index Direct connection The mercury level in a thermometer
A hand pointing an object

Symbol Convention or habit The letters of the alphabet
A dove as the symbol of peace
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It is important to note that the above-mentioned knowledge-based (Gentner and
Stevens 1983) and speech comprehension and logical reasoning-based (Johnson-
Laird 1983) accounts for mental models also differ at the neuropsychological level.
In the first instance, mental models are considered to be structures in long-term
memory, and in the second, they are thought to be temporary representations (i.e.,
‘‘constructed at the moment’’) in working memory, to make inferences or to solve
problems.

The concept of a mental model as being a relatively stable cognitive structure at
times overlapped with that of ‘‘schema’’. Head and Holmes (1911) introduced the
latter concept in the terms of neurology to explain control body posture and
movement control mechanisms. They defined the term ‘‘body schema’’ as an
‘‘organized model of ourselves’’. In psychology, the schema concept was applied
by the German psychologists Otto Selz (1913) and Karl Bühler in the field of
productive thinking and cognitive development. British psychologist Frederic
Bartlett (1932) used the concept of schema to account for the constructive nature
of the act of remembering. Bartlett viewed schemas (also called ‘‘schemata’’) as
organized mental structures, which provide a framework for understanding and
remembering information. Thus, the schema concept was characterized early on in
two different ways: one linked to sensorimotor experience and the other to abstract
knowledge representation. Schemas also play a key role in the psychology and
epistemology of Jean Piaget (1954), who considered them to be the mental
structures children form to adapt to their physical and social environment. Piaget
achieved a synthesis of the neurological and psychological approaches, by pin-
pointing the foundations of language and of abstract thought in young children’s
eye-hand coordination schemas. Moreover, he proposed that this type of adapta-
tion occurs via the two complementary processes of assimilation and accommo-
dation, which refer, respectively, to the incorporation of new knowledge into a
previously existing schema and to modification of the schema itself. During the
1970s and 1980s, the schema concept was popular in many theories of cognition.
For example, in Neisser’s (1976) approach to visual perception, ‘‘anticipatory
schemas’’ were viewed as being plans for perceptual action and readiness for
particular kinds of sensory structures. They were therefore considered to make up
part of the perceptual cycle we use to explore our environment, and are in turn
modified by information picked up from the environment. The concept’s most
important influence on cognitive psychology, however, occurred in Artificial
Intelligence, which developed schema-like constructs—such as ‘‘frames’’

Table 2.2 Difference between mental images and mental models
Representation
type

Representation
relation

Features

Mental images Similarity Varyingly vivid visual representations of persons, objects,
shapes, and colors (auditory, olfactory, and tactile mental
images are also possible)

Mental models Isomorphism Spatial representation, of an abstract and schematic nature
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(Minsky 1977) and ‘‘scripts’’ (Schank and Abelson 1977)—as ways to represent
the generic knowledge people have about objects, situations, and actions in a
computer program. For example, Mandler (1984) developed a schema theory
based on findings from her research on the ways in which young children recall
stories read to them. The theory proposed that a schema is an abstract knowledge
framework for interpreting and constructing stories and that when children listen to
a story, they implicitly place the story’s specific details into a schema’s categories,
and then reconstruct the story based on these categories.

Rumelhart and Norman (1978) further developed the concept of schema in the
psychology of learning, by viewing schemas as ‘‘active data structures’’, which
control and direct the comprehension process. These authors also proposed three
qualitatively different mechanisms of learning, which were respectively based on:

• schema accretion, i.e., adding new information to an existing schema;
• schema tuning; i.e., modifying a schema by ‘‘fine tuning’’ its structure;
• schema restructuring; i.e., reorganizing an existing schema or creating a new one.

The reader might note that the schema accretion mechanism clearly corre-
sponds to Piaget’s assimilation process and that schema tuning and restructuring
correspond to his concept of accommodation.

This body of research also impacted educational psychology and instructional
theories—e.g., in Anderson’s (1978) and Spiro’s (1980) theories on the role of
schemas in text comprehension and recall.

Over the years, various authors have used the term ‘‘schema’’ in different ways
and to different purposes. In its broadest sense, the term now denotes all forms of
complex knowledge representation, although its narrower meaning refers to a form
of mental representation pertaining only to generic and abstract knowledge. In
fact, the limitations of the concept of schema for representing all form of
knowledge led to the introduction of other cognitive structures, such as mental
models and naive theories, to represent specific (i.e., non-schematic) aspects of
knowledge.

Seel (2003, 2012b) recently investigated the relation between mental models
and schemas in the context of his approach to model-based learning, which will be
examined in Chap. 5.

2.2 Mental Models as Simulations

The previously described analogy with molecular models and diagrams at times
connoted mental models as static structures to be visually inspected, as occurs with
a physical model or a picture. Yet, a mental model can represent causal or time
relations among events, and is capable of making this information available to
other cognitive subsystems by way of mental simulation. Indeed, this meaning
underlies Hertz and Craik’s idea of mental model. Similarly, Norman (1983)
noticed that ‘‘it should be possible for people to ‘run’ their models mentally’’
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(p. 12), and Gentner stated that ‘‘mental models often permit mental simulation:
the sense of being able to run a mental model internally, so that one can observe
how it will behave and what the outcome of the process will be’’ (2002, p. 9684).
Johnson-Laird recently stated that ‘‘reasoning is a simulation of the world fleshed
out with our knowledge, not a formal rearrangement of the logical skeletons of
sentences’’ (2010, p. 18243).

Rumelhart et al. (1986) provided a very germane analysis of the relation
between mental models and simulation by describing a view of mental models and
sequential thought based on the parallel distributed processing (PDP) paradigm. In
this approach, the cognitive system consists of two types of processing units:

1. an interpretative system, which obtains input from the world and produces
action;

2. a model of the world, which obtains the actions produced by the interpretative
system as input and predicts the way the input should consequently change
(Fig. 2.2).

As the authors stated: ‘‘Now, suppose that the world events did not happen. It
would be possible to take the output of the mental model and replace the stimulus
input from the world with input from our model of the world. In this case, we
could expect that we could ‘run a mental simulation’ and imagine the events that
would take place in the world when we performed a particular action. This mental
model would allow us to perform actions entirely internally and to judge the
consequences of our actions, interpret them, and draw conclusions based on them’’
(p. 42). As shown in Fig. 2.2, this is a cybernetic model, because it structurally
represents an internal control system, consisting of two units interacting through a
feedback circuit. This characterization of mental models underscores the role of
mental simulation and its adaptive value from an evolutionary perspective. For
instance, one need only reflect on the need for prehistoric humans to mentally
simulate a hunting strategy or to predict their group members’ social behavior.

The term ‘‘mental model’’ is also recurrently used in the branch of research
examining the mental representations people form to understand the functioning of
simple mechanical systems starting from their description in the form of texts and
diagrams. For example, Hegarty and Just (1993) investigated participants’ thought
processes concerning gears, pulley systems, and hydraulic devices. They conse-
quently proposed a dynamic view in which people ‘‘run’’ a mental model of the

Fig. 2.2 A simplified representation of the PDP model of mental models (Rumelhart et al. 1986)
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system in their heads to understand the working of these systems. Hegarty (2004)
reviewed the evidence and concluded that mental simulation is a strategy available
to humans to reason about mechanical systems. She also underscored a key dif-
ference between visual imagination and mental simulation, by stating that visual
imagination is based on the holistic inspection of a mental image of the moving
system, and that mental simulation is conversely based on:

• the piecemeal simulation of the events;
• some information, both visual or otherwise (e.g., force or density);
• the representation of the associated motor actions.

It is also important to note Schwartz and Black’s (1996) findings, however, that
participants knowing verbal rules to infer a movement rely on these rather than on
simulation, so as to solve the problem more quickly. Figure 2.3 summarizes the
interaction between mental model and mental simulation according to these ideas.

2.3 Simulating Other Minds

Mental simulation is one of the mechanisms that possibly underlies ‘‘theory of
mind’’ (ToM), i.e., people’s ordinary capacity to refer to specific mental states, in
particular beliefs and desires, to understand and predict other peoples’ thoughts,
intentions, and emotions. Two conflicting arguments have been proposed to
account for this capacity (known as ‘‘mindreading’’ or ‘‘mentalization’’). In the
‘‘theory-theory’’ (TT) perspective, ToM is seen as a naïve theory (a ‘‘folk psy-
chology’’ known by tacit agreement) with posits, axioms, and rules of inference
(Stich and Nichols 1992). Developmental psychologists offer two different
explanations for the origin of this theory during childhood. In one version, children
are thought to acquire it through the same kind of empirical methods scientists use
to test their scientific theories (Gopnik and Wellman 1994). This point of view,
also known as the ‘‘child-scientist’’ perspective, is a part of a more general
approach that aims to explain children’s cognitive development in terms of

Fig. 2.3 The interaction
between mental model and
mental simulation
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analogy with change in scientific theories. In the second version of TT Theory, the
basic elements of the theory are innate modules, which are progressively activated
during children’s early years in a process of biological maturation (Leslie 2000).

The ‘‘simulation theory’’ (ST) (Gordon 1986; Harris 1994) conversely states
that human beings use their mental resources to simulate the psychological causes
of other people’s behavior, with no need for an internal body of knowledge
structured as a theory. Two theories have been proposed to account for the ways in
which this process might occur: In the role-taking approach (Gordon 1995), people
pretend to be the person in a specific situation and simulate the thoughts of that
person, by imagining what they might be (as in the metaphor ‘‘putting yourself in
someone else’s shoes’’). For instance, to understand how John feels when he goes
to school in the morning, we can imagine that we are John walking along the path
he takes to school; we can also simulate the way he feels. Conversely, the
introspection approach (Goldman 2006) holds that people take specific beliefs and
desires as mental input and simulate possible and consequential mind states
thereby. They then use analogy to infer from those states how another person
might be thinking and/or feeling. For example, to understand the way Mary feels
when she gets a good grade, we can simulate the way we might feel getting the
same grade, and infer Mary’s feelings from our own. These examples also indicate
that simulation-based mindreading can be inaccurate at times: By mentally sim-
ulating the way John feels while walking to school, we risk counting too much on
our own past experiences and feelings, and thereby attributing an emotional state
to John that is not really his own. These kinds of errors, resulting from the pro-
jection of our mental states onto those of another person, are called ‘‘egocentric
biases’’.

ST obtained a great deal of support with the discovery of ‘‘mirror neurons’’.
These are a special kind of neurons found in the human and primate brains, which
activate in individuals both when making specific movements and when they see
others do the same movements (Rizzolati et al. 2006). Mirror neurons activate not
only when viewing an action, but also in comprehending the movement’s goal and,
therefore the intentions of other individuals making the same movement. Gener-
ally in cognitive neuroscience, the term ‘‘mirroring’’ (or ‘‘resonance’’) refers to a
process of neural imitation of the behavior observed in another person which under
normal conditions, is similar to the neural process underlying this behavior. For
instance, neuroscientists have observed neuron populations that activate both when
people report experiencing an emotion and when they observe someone showing
the same emotion in a video. Gallese and Goldman (1998) therefore suggested that
mirror neurons might represent the substratum of the human brain’s simulation
capacities. More recently Goldman (2006) introduced a distinction between two
kinds of mental reading and two respectively corresponding types of simulation:

• ‘‘low-level’’ mental reading—i.e., simple ways to assign mental states to another
person, such as attributing emotions to people based on their facial expressions;
the associated simulation is based on automatic, unconscious mirroring
responses such as the mimicking of facial expressions and body movements;
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• ‘‘high-level’’ mental reading, involving imaginative reasoning, such as that
involved in predicting someone else’s decision in a complex situation; in this
instance, the associated simulation requires at times conscious effort and is
guided by information in long term memory.

High-level simulation is similar to scientific simulation, because task-specific
knowledge is used as a model to predict and anticipate behavior. Moreover,
Shanton and Goldman (2010) outlined some similarities between mental reading
and other cognitive skills, such as episodic memory (the capacity to consciously
remember personally experienced events and situations with the accompanying
feeling of mentally reliving them and prospection (predicting what will happen).
They considered these similarities as indirect evidence that memory and mental
reading actually tap the same kind of simulation mechanism.

2.4 Grounding Cognition in Simulation

Independently of ToM, the idea that many different cognitive abilities depend on
the basic mechanism of simulation has developed in other areas of cognitive
science, particularly in theories of ‘‘embodied cognition’’ (Gibbs 2006a; Shapiro
2010) and ‘‘grounded cognition’’ (Barsalou 2008a). The core idea of the embodied
view is that cognition arises from the interaction of the brain with the body and
with the rest of the world. In other words, the body and the social and physical
world shape the very nature of our cognitive processes and thus, the ways in which
we perceive and conceive the world. This embodied view runs counter to the neo-
Cartesian stance, which is founded on an ontological separation between mind and
body. This latter view is reflected in the separation between mental states and
physical substratum in the functionalist philosophy of mind, between the algo-
rithmic and implementation levels in artificial intelligence, and between cognitive
and sensorimotor processes in psychology. We can find the origins of the
embodied cognition account in many fields of cognitive science, and particularly,
in:

• the cognitive linguistics literature on conceptual metaphor (Lakoff and Johnson
1980);

• the construction of robots based on biological principles (Brooks 1991; Pfeifer
and Bongard 2006);

• the field of active perception in human and computer vision (Ballard 1991; Noë
2004);

• the dynamical approach to developmental psychology (Thelen and Smith 1994);
• studies on the role of action in cognition and meaning (Glenberg and Kaschak

2002).

Barsalou (2008a) summarized a large body of research supporting the existence
of modal representations and simulations in all aspects of cognition—e.g., in
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perception and action, memory, knowledge and conceptual elaboration, language
comprehension, reasoning, social cognition, and developmental psychology. All of
these different branches of research are critical towards the traditional cognitive
science view, which is based on formal logic and computer science. In this latter
approach, human cognition is considered to be the result of a ‘‘physical symbol
system’’, i.e., a set of symbol structures manipulated by processes to produce other
symbol structures (Newell and Simon 1976). Specifically, a symbol structure is
made up of a certain number of fixed instances (or tokens) and of processes acting
on the symbol structures in concert with syntactic rules, similar to those of a
formal language. Newell (1980) considers this kind of system as equivalent to a
universal Turing machine (an early, abstract model of what later became the
digital computer). It is the cognition-computation analogy established thereby (and
similarly between mind and software) that informed the classic cognitive approach
in psychology (Pylyshyn 1980).

Embodied cognition diverges from classical cognitive science on the issue of
the nature of mental representations and of processes operating on them. In par-
ticular, symbols are not viewed as fixed entities to be manipulated from formal
rules, but neural activity elements that are analogically coupled with perceptual
and motor states.2 According to the ‘‘dynamical hypothesis’’ (van Gelder 1999),
cognitive processes are best described not in the language of formal systems, but in
the language of dynamical systems theory, i.e., as ‘‘a set of quantitative variables
changing continually, concurrently, and interdependently, over quantitative time in
accordance with dynamic laws described by some set of equations’’ (ibid., p. 245).
A further difference from traditional cognitive science concerns the semantics of
mental representations. In the traditional approach, the meaning of a symbol has a
conventional nature, as occurs with the words of a language or with the zero and
one sequences of a computer’s binary code. Searle (1980), however, criticized the
idea that a system can be intelligent if the meaning of its symbols originates only
out of its internal relations with other symbols, as in a dictionary or in a semantic
network. According to Harnad (1990), symbols must be somehow based on direct
relations with their external referents, and the issue of specifying the nature of this
relation has been called the ‘‘symbol-grounding problem’’. These ideas were
further developed in embodied cognition theory, which states that a symbol takes
on meaning through perception and action, i.e. through the causal pairing with
external objects or environmental features. What happens, however, when this
sensorimotor pairing is not possible, because the external object is unavailable, as
occurs, e.g., when we recall a past event, attempt to grasp an abstract concept, or to
make future plans? As illustrated below, in this instance, the symbol-grounding
problem solution might lie in the concept of mental simulation.

2 A radical version of the embodied cognition view, influenced by dynamical systems theory and
by ecological psychology, actually denies the existence of mental representations (Chemero
2009). Most proponents of embodied cognition, however, continue to view representational states
as being fundamental to a theory of cognition.
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Barsalou (1999, 2008a), in fact, examined the idea of mental simulation as a
solution for the grounding of conceptual and abstract mental representations. In his
‘‘grounded cognition’’ approach, simulation is considered a fundamental form of
computation in the brain, and this simulation ability is thought to underlie many
cognitive skills such as perception, memory, language, and problem-solving.3 In
Barsalou’s definition: ‘‘Simulation is the re-enactment of perceptual, motor, and
introspective states acquired during experience with the world, body, and mind’’
(2008a, p. 618). At the basis of cognition there are ‘‘perceptual symbols’’, i.e.,
subsets of perceptual states extracted from the above-mentioned states to serve as
symbols and to support superior cognitive functioning. These symbols are called
‘‘modals’’ because they preserve the modality-specific information of the per-
ceptual states from which they derive, as opposed to the ‘‘amodal’’ symbols of
computational theories, which are arbitrary transductions of perceptual states.
Some examples of modal symbols in the human brain are mental images and
feature detectors. The different modalities’ information is combined in neuron
populations called convergence zones (Damasio 1989). Representations of con-
ceptual knowledge are conversely multimodal, as they integrate visual, auditory,
motor, tactile, gustatory/olfactory, emotional, and motivational information.
Barsalou explains how mental simulation works thereby ‘‘As an experience occurs
(e.g., easing into a chair), the brain captures states across the modalities and
integrates them with a multimodal representation stored in memory (e.g., how a
chair looks and feels, the action of sitting, introspections of comfort and relaxa-
tion). Later, when knowledge is needed to represent a category (e.g., chair),
multimodal representations captured during experiences with its instances are
reactivated to simulate how the brain represented perception, action, and intro-
spection associated with it.’’ (2008a, p. 618). Barsalou also suggested the possible
neuronal architecture of these processes: during the storage phase, the superior
associative areas in the temporal, parietal, and frontal lobes capture the modality-
specific sensory, motor, and introspective activation patterns, and integrate them in
a multi-modal mental representation. In the simulation phase, the same associative
neurons reactivate the original patterns, allowing for simulation to begin thereby.
It is important to note, however, that simulations:

• never completely recreate the original experience, but are always partial
recreations and can therefore contain biases and errors;

• can be unconscious, as most frequently is the case, or conscious (as in mental
imagination).

Barsalou proposed a ‘‘simulator’’ mechanism—essentially, a distributed mul-
timodal system—to account for how simulations can represent not only individual
instances, but also categories. In this view, a ‘‘simulator’’ forms after several

3 Barsalou calls his approach grounded cognition, as he believes that the term embodied
cognition places too much emphasis on the role of the body in cognition, and that cognition can
be grounded in many ways, including through simulation and situated actions, not only through
body states.

24 2 Simulation and Cognition



experiences with individual instances of a category, and corresponds to the
concepts or types of traditional cognitive theories. Importantly, once a simulator is
formed, it can reactivate its perceptual symbol subsets as specific simulations and
can create an infinite number of simulations depending on the situation. For
instance, as described above, a simulator for the concept of ‘‘chair’’ forms after
several experiences with this type of object; it can then create simulations of
events, such as those of standing on a chair, sitting in the armchair of a cinema,
lifting a chair and taking it to another room, etc… . It is the context that determines
which simulation will be activated. Simulators for abstract concepts form in the
same way, but tend to capture even more multimodal simulations of events
extended over time and their corresponding introspective states. For example, a
simulator for the concept of ‘‘success’’ can create the simulation of a sports race,
including the start, race, and finish line phases, as well as internal perceptions, such
as motivation to continue the race, the belief you can win, and the emotion of
winning.

2.5 Simulation and Metaphor

Simulation has also been gaining ground in another area of cognitive science—
Cognitive Linguistics—which analyzes natural language through the lens of the
conceptual and experiential bases of linguistic categories (Evans and Green 2006).
The fundamental assumption of cognitive linguistics is that language reflects the
organization of thought and is therefore a window on cognitive functioning. The
most well-known cognitive linguistics studies were conducted by George Lakoff
and Mark Johnson during the 1980s (Lakoff and Johnson 1980; Lakoff 1987) and
investigated the topic of conceptual metaphor. These authors found that metaphor
is not only a figure of speech, but also the way in which the conceptual system
organizes abstract concepts in terms of concrete experiences. In conceptual met-
aphor, a conceptual domain (target) is understood in terms of another conceptual
domain (source), which is typically less abstract or complex than the target
domain. This process is achieved through a series of systematic correspondences,
or ‘‘mappings’’, between elements and relations in a source domain and those in its
target domain. For example, in the conceptual metaphor of LIFE IS A JOURNEY,
the domain ‘‘life’’ is comprehended in terms of the domain ‘‘journey’’, as the latter
is less abstract and complex than the former.4 According to Lakoff and Johnson
(1980), metaphorical relations between conceptual domains do not emerge from
their intrinsic similarities but from recurring physical experiences that provide the
bases for correlations between specific domains. For instance, in the metaphor
MORE IS UP, which is inherent in phrase such as ‘‘the temperature rose’’ or ‘‘high

4 In cognitive linguistics, conceptual metaphors are usually written in capital letters to
distinguish them from corresponding expressions in everyday language.
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energy particles’’, the abstract conceptual domain of ‘‘amount’’ (target) is based on
the domain of ‘‘level’’ (source). This latter domain is more concrete because it is
grounded on the common experience of pouring a liquid into a container and
watching the level rise, or of placing an object on a pile and watching the pile grow
as more objects are piled on. In this example, the experiential basis is that of the
behavior of physical objects, but in other cases, it can be of a bodily nature, as in
DESIRE IS HUNGER, or of a social and cultural nature, as in LIFE IS A
GAMBLING GAME.

According to a theory developed by Grady (1997), more complex metaphors
can be broken down into elementary structures called ‘‘primary metaphors’’. For
instance, the metaphor THEORIES ARE BUILDINGS depends on expressions
such as ‘‘the foundation of a theory’’, ‘‘facts solid enough to support the
hypotheses’’ or ‘‘a shaky argument’’. It can result from two primary metaphors:
ABSTRACT ORGANIZATION IS PHYSICAL STRUCTURE and VIABILITY
IS ERECTNESS. In a primary metaphor, the source domain is always made up of
a body experience having a sensorimotor or interoceptive nature, whereas the
target domain does not consist of an abstract concept, as generally occurs, but of a
subjective one. For example, in the metaphor AFFECTION IS WARMTH, both
concepts are linked to direct experiences, but the former is more personal and
subjective than the latter. Their role of linking mind and body allow primary
metaphors to be considered a solution offered by cognitive linguistics to the
symbol-grounding problem. Another solution has been suggested by image-
schema theorists.

In 1987, in his book ‘‘The Body in the Mind’’, Mark Johnson described image-
schemas as being abstract structures emerging from sensorimotor experiences,
such as a movement in space and the handling of objects, or from introspective
experiences, such as sensations and emotions. For instance, the image-schema
PATH results from the physical experience of following a movement with your
eyes or of moving from one place to another. The image-schema CONTAINER
results from several experiences with physical objects, such as glasses, boxes or
closets, and from interoceptive body experiences, for example, sensations linked to
the consumption of drink and food. Some image-schemas have a complex struc-
ture, such as CONTAINER (once again), as it can be considered to be made up of
the elementary image-schemas of INSIDE, OUTSIDE, BOUNDARY. Table 2.3
lists our most basic image-schemas.

In language comprehension, a word describing spatial relations, such as ‘‘in’’,
activates an instance of the schema CONTAINER and of its elements. Thus, when
we hear the phrase ‘‘in the bottle’’, we naturally associate the parts of the bottle
with the elements of the schema. The reader should note that image-schemas are
non-propositional representations and are therefore non-linguistic in nature. At the
same time, however, they are also not mental images, as they represent knowledge
at a more general and abstract level than that of a specific image. Moreover, they
are analogical, because they maintain a relation of similarity with the same type of
sensorial experience that creates them. In cognitive linguistics, image-schemas are
commonly illustrated via diagrams (Fig. 2.4) with the accompanying caution to

26 2 Simulation and Cognition



consider them simple visual aids. In fact, image-schemas are not directly available
for conscious introspection, and should therefore not be confused with any type of
image.

The importance of image-schemas lies in the fact that, in addition to organizing
the experience and comprehension of concrete events, they are also the foundation
of abstract thought, given that they serve as source domains for many conceptual
metaphors. For example, the image-schema SOURCE-PATH-GOAL is the source
domain of the metaphor PURPOSES ARE DESTINATIONS, linked to phrases
such as ‘‘going ahead with our plans’’ and ‘‘working our way around obstacles’’.
The dynamic and knowledge-organizing nature of image-schemas leads us once
more to the topic of simulation.

In cognitive linguistics, mental simulation has been proposed as a compre-
hension mechanism for figurative language and conceptual metaphors.5 Matlock
(2004) experimentally studied the comprehension of fictive motion sentences such
as ‘‘the road runs through the valley’’ or ‘‘the trail goes from El Portal to
Yosemite’’. These kinds of sentences use a motion verb in a non-literal way,
to communicate the idea of a situation in which nothing is actually moving. To
understand these metaphors, the listener assumes a perspective in the scene and

Table 2.3 List of image-schemas (from Evans and Green 2006, p. 190)

Space Up–down, front–back, left–right, near–far, centre–periphery, contact, straight,
verticality

Containment Container, in–out, surface, full, empty, content
Locomotion Momentum, source-path-goal
Balance Axis balance, twin-pan balance, point balance, equilibrium
Force Compulsion, blockage, counterforce, diversion, removal of restraint,

enablement, attraction, resistance
Unity/

multiplicity
Merging, collection, splitting, iteration, part–whole, count–mass, link (age)

Identity Matching, superimposition
Existence Removal, bounded space, cycle, object, process

Fig. 2.4 Examples of graphic representation of image-schemas

5 Several psycholinguistics studies (see Fischer and Zwaan 2008, for a review) have examined
the role of perceptual and motor simulation in the comprehension of literal, and thus non-
metaphorical, language.

2.5 Simulation and Metaphor 27



unconsciously simulates moving through it or scanning it. According to Gibbs
(2006b), when people encounter abstract conceptual metaphors or metaphors
concerning physically impossible actions, they create mental simulations of their
bodies performing the actions described in the metaphor. For example, in the
context of a romance, understanding the sentence ‘‘Your relationship was moving
along in the right direction’’ induces listeners to imagine they are physically
moving along a path to a destination. The image-schema SOURCE-PATH-GOAL
constitutes the model underlying the simulation (Fig. 2.5).

Embodied simulations such as these allow us to understand abstract entities as
if they were concrete objects and to mentally act on them thereby, as for example,
in phrases such as ‘‘grasping a concept’’, ‘‘chewing on an idea’’, ‘‘swallowing
one’s pride’’, ‘‘coughing up a secret’’, or ‘‘breaking off the relationship’’ (Gibbs
2006b, p. 444). Also in this case, simulation presumably involves the automatic
recruitment of the brains’ perceptual and motor areas corresponding to the exe-
cution of real action. It is underscored, however, that these research findings do not
suggest that people necessarily use embodied simulations every time they hear
metaphorical phrases. The conventional nature of these phrases suggests that in
ordinary discourse, people rely on lexical (and thus more automatic) compre-
hension mechanisms. Simulation processes are most probably marshaled, con-
versely, when reasoning and problem solving tasks require that a given metaphor
phrase be used to make inferences.

Lastly, Ritchie (2008) proposed a mechanism for the interpretation of con-
ceptual metaphors based on Barsalou’s perceptual symbol theory. In this account,
global actions described in the metaphor are not simulated, but the partial simu-
lations of perceptual experiences, moods and emotions are, and remain uncoupled
from any particular experience. The simulation of a specific perceptual symbol
depends on its importance in a given context. Thus, ‘‘the perceptual simulations
activated by a metaphor such as depths of a dark cave or filled with discoveries are
complex and subtle; they will be experienced differently by each reader, and they
defy simple labels’’ (ibid.). Ritchie moreover maintains that three processing levels
can be identified, in function of whether the construction of meaning is based on:

1. linguistic relations among lexical elements;
2. the partial activation of perceptual simulations;
3. the complete activation of the body action simulations.

Fig. 2.5 The comprehension of a metaphorical sentence based on embodied simulation
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The first level is considered more ‘‘superficial’’, and the other two, of
respectively increasing depth.6

In the 1970s, Newell and Simon concluded their presentation of the Physical
Symbol System Hypothesis, by stating that, ‘‘the principal body of evidence for the
symbol system hypothesis that we haven’t considered is negative evidence: the
absence of specific competing hypotheses as to how intelligent activity might be
accomplished whether by man or machine’’ (1976, p. 120). Nowadays, however,
embodied cognition has indeed become a competing hypothesis by attributing
simulation with a key role as a form of computation that is a plausible alternative
to the one traditionally conceptualized in classical cognitive science.

6 The difference between superficial and deep processing is crucial in instructional contexts and
will be examined in reference to simulation, in Chap. 7.
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Chapter 3
Models Everywhere

The original is unfaithful to the translation.
Jorge Luis Borges, Sobre el Vathek de William Beckford
(1943)

3.1 A Concept at the Crossroads of Different Disciplines

In early human history, the main function of mental models was most probably
that of fostering human environmental adaptation. Mental simulation capacity
made it possible to predict the behavior of other humans and to plan and organize
complex action sequences, such as large animal hunts. Yet, if the models available
to those early humans had remained only mental models, we likely would not have
progressed much from prehistoric to modern times! At one point during human
evolution, humans began to externalize their own mental models and share them
with their companions, launching the ‘‘cognitive revolution’’ of the upper Paleo-
lithic period (40,000–10,000 years ago) thereby. Some anthropologists believe that
this change was due to enhanced working-memory capacity (Coolidge and Wynn,
2005), which allowed for the growing use of spoken language and tool con-
struction as well as the beginnings of new forms of language, such as rituals, visual
arts, and music. Several millennia later, humans began to wonder about the
relations that might exist between their symbolic creations and reality. For
example, Plato described the cognitive role of models or ‘‘paradeigmata’’
(‘‘paqadei9clasi’’) in his dialog ‘‘Politicus’’ (the Statesman). One of the characters
therein referred to the model of the weaver to illustrate the nature of the statesman
and compared his method to that of weaving various fibers to create a single fabric.
More generally, Plato described the usefulness of models in terms of a process that
involves identifying similarities and differences. When examining the conceptual
similarities and differences between a model and a phenomenon under examina-
tion, people transform their initially confused and approximate ideas into more
precise and rigorous comprehension. As described in the following chapters, this is
also what occurs when students compare their own mental models of a system to a
simulation model.

Currently, models are a topic of interest for philosophers of science who are
particularly interested in the relation that exists between models, scientific theo-
ries, and experiments. Yet, the epistemic role of models was initially investigated,
and the first working models of the human nervous system were constructed,
shortly after World War II in the field of cybernetics.

F. Landriscina, Simulation and Learning, DOI: 10.1007/978-1-4614-1954-9_3,
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3.2 From Logic to Representation

For many years, the prevailing view in philosophy of science was that of logical
empiricism, according to which knowledge is based on logical inferences derived
from observable facts. In this view, a scientific theory is made up of axioms (the
‘‘laws of nature’’) and of correspondence rules that connect theoretical terms to
observational ones (Carnap 1956; Nagel 1961). A theory can therefore be
described in a formal language, such as that of logic. To assign a meaning to
symbols of a formal language, one must resort to a form of interpretation that
renders a particular statement true (or false), and indeed, this interpretation is
called a ‘‘model.’’ In other words, a model is a function that connects a predicate
with a series of values, making it true or false. Since the 1960s, this linguistic
approach to theories has presented many problems, linked both to difficulty in
discerning the theoretical from the observational parts of a language and to its
limited applicability to theories other than those of physics. Moreover, in the latter
part of the twentieth century, philosophy of science increasingly focused on the
historical process of changes in scientific theories—a view influenced by Khun’s
1962 publication of ‘‘The Structure of Scientific Revolutions.’’ As a result of these
studies, the conceptual picture of empiricism was increasingly perceived as being
detached from true scientific practice, and several alternative conceptions devel-
oped over the intervening years.

One such conception is the ‘‘semantic view’’ of scientific theories: It conversely
places models at the very center of scientific activity and affirms that a theory is a
‘‘family of models’’ (Suppes 1960; Suppe 1977; van Fraassen 1980). In this
context, the term ‘‘model’’ indicates an abstract structure that can be described, not
linguistically, but through set-theoretical methods, that is, as a set of objects with
properties and relations defined in that set. The semantic view holds that a model’s
epistemic value does not lie in its provision of a way to interpret a formal system,
but in its representation of a part of the world and in its allowing for true
deductions about it. The solution proposed to account for this representational
capacity is the existence of a relation R connecting a target system S and a model
M, as shown in Fig 3.1

The arrow indicates that the relation is asymmetric: M represents S, but S does
not represent M. To ensure the accuracy of this representation, van Fraassen
(1980) proposed the existence of a relation of isomorphism between the target
system and a substructure of the model. This type of relation is based on the
presence of correspondences between the S and M elements and relations, such
that each S element corresponds to an M element, and the correspondence
maintains binary relations between the respective elements. Thus, when a pair of S

Fig. 3.1 Dyadic relation between target and model system
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elements is linked by a certain relation, the two corresponding M elements are
connected by an analog relation. More simply put, two entities are isomorphic if
they have the same structure, even if differing in substance or appearance. For
example, two cubes can be isomorphic due to the number and spatial disposition
similarity of their faces, even when made of different materials, colors, or sizes.
Isomorphism, however, turned out to be too restrictive a criterion to account for
the models used in scientific practice, which are idealized structures that can
seldom be isomorphic with the system they represent. Moreover, scientists typi-
cally use even partial or inexact models. Thus, as an alternative to isomorphism,
Giere (1999) proposed the criterion of similarity, according to which even an
idealized model may be compared with a real system in terms of its degree of
similarity with it.

In his book ‘‘Languages of Art’’ (1968), the philosopher Nelson Goodman
outlined a general characterization of the representation relation based on the
concept of ‘‘denotation.’’ Goodman maintained that resemblance is not a necessary
and sufficient criterion for one object to represent another. The resemblance
relation is symmetrical, contrarily to that of representation: ‘‘while a painting may
represent the Duke of Wellington, the Duke doesn’t represent the painting’’ (ibid.
p. 4). An object X can be similar to an object Y but that does not necessarily mean
that it is a representation of Y: ‘‘none of the automobiles off an assembly line is a
picture of any of the rest; and a man is not normally a representation of another
man, even his twin brother’’ (ibid.). Moreover, resemblance is not a necessary
criterion, given that an object can refer to another one, via even symbolic con-
vention and thus with no resemblance to it.

So, what then might be the general feature of representation? Goodman sees it in
the denotation relation, which means that, to represent an object, a picture ‘‘must be a
symbol for it, stand for it, refer to it’’ (ibid., p. 5). At the same point, he states that
resemblance is the feature of a particular kind of denotation, in addition to other
kinds of denotation, such as verbal and diagrammatic forms. By considering models
in this light, isomorphism and resemblance become just two of many ways for a
model to refer to a system. We can say that a model M denotes a system S if it is
isomorphic to S, but also if it is similar to S; it describes S; it symbolizes S; and so on.
These different kinds of denotation are not mutually exclusive, and in a scientific
model, they rather frequently appear together. For example, in a three-dimensional
model of DNA, the shape of the spiral coils is similar to the DNA double helix; the
pairing between nucleotide couples is isomorphic to that of the molecule, and its
chemical elements are symbolized by different-colored materials (Fig. 3.2).

3.3 Models and Problem Solving

With respect to the different ways a system can be represented, and the role of
these in different forms of reasoning, several general considerations can be derived
from the historical mathematical problem of the ‘‘Seven Bridges of Königsberg.’’
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Specifically, the city of Königsberg (currently Kaliningrad, in Russia) once
straddled the two banks of the Pregel River with an island in the middle and
the river forking off into two branches downstream of it. In the city’s earlier days,
the island and the land areas were connected by seven bridges (Fig. 3.3, left). The
problem, solved in 1735 by Leonhard Euler, had been posed in terms of how one
might stroll through the city by crossing each bridge only once.

Euler’s solved the problem by imagining (and drawing) the bridges in a sim-
plified map (Fig. 3.3, right) and by marking the different land areas separated by
the river, respectively, with a capital letter (A, B, C, D) and each bridge with a
small letter (a, b, c, d, e, f, g). He wrote: ‘‘My entire method rests on the

Fig. 3.2 Three-dimensional
model of DNA molecule
(from Wikipedia)

Fig. 3.3 An inkprint of Königsberg in seventeenth century and Euler’s map of the city bridges
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appropriate and convenient way in which I denote the crossing of bridges’’ (1741,
Newman 1956, p. 574). Thus, each bridge crossing was assigned two letters, the
first indicating the departure point and the second, the point of arrival (for
example, AB denoted the path from A to B). Each path conversely was assigned a
series of letters. The type of representation Euler chose allowed him to rapidly
demonstrate that it was impossible to cross each bridge only once. His reasoning
was based both on the aforementioned graphical representation and on combina-
torial methods. Euler also found a general solution for the problem, by developing
some simple rules to determine whether the task was possible, given any river
branch pattern and number of bridges.

Hence, Euler essentially used an abstract structure that was characterized by a
relation of isomorphism with the city’s bridges. Today, this type of structure is
called a ‘‘graph’’ and can be visually represented with a set of points (vertices)
connected by lines (edges).1 In this representation, the land areas correspond to the
vertices and the bridges, to the edges (Fig. 3.4, left). Moreover, the same structure
can be represented as an ‘‘adjacency matrix,’’ that is, a matrix in which the element
in line j and column k equals the number of edges linking the nodes j and k
(Fig. 3.4, right).

Thus, the system of the city’s bridges can be represented via different models
characterized by increasing level of abstraction:

• a pictorial model (the inkprint of Königsberg in seventeenth century) linked to
his original by a relation of resemblance;

• a schematic visual model (Euler’s map of the city bridges), which preserves the
spatial relations among represented elements;

• a diagrammatic visual model, which preserves only the topology of links among
elements;

• a mathematical model (the matrix) consisting of numbers and symbols com-
bined according to the rules of matrix algebra.

All of the above-listed models are isomorphic with the represented system and
with each other—that is, they all represent the same abstract topological structure.
As described in Sect. 2.1, isomorphism was also a property that Johnson-Laird

Fig. 3.4 The bridges of
Königsberg represented as a
graph and as an adjacency
matrix

1 Although Euler’s work is historically considered to be the origin of graph theory, both the term
‘‘graph’’ and its visual representation appeared more than a century later. The English
mathematician Arthur Cayley, inspired by the molecular structures of organic chemistry, was the
first to represent a graph as we know it today.
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assigned to mental models, which he moreover compared to scientific diagrams
and graphs. It is interesting to note that Euler’s original map can play a cognitive
intermediation role between the realistic and more abstract types of representation.
In fact, the schematic representation and letters he used rendered the respective
correspondences between the picture’s elements and those of the graph much more
salient and, consequently, the meaning of the graph itself. This example brings us
back to the topic of the role of models in reasoning, which the next section will
examine in the context of scientific practice.

3.4 Types of Models

Research on the role of models in scientific practice reveals that they are neither
linguistic statements nor abstract structures, as maintained by logical empiricism
and by the semantic view of theories, respectively, but are objects constructed and
used in many different ways (Black 1962; Hesse 1966; Cartwright 1983; Morgan
and Morrison 1999). Models can differ in terms of their denotation relation, rep-
resentation format, media used, and information representation standards.
Table 3.1 shows a taxonomy proposed by Gilbert and Boulter (1998) in the context
of a model-based approach to learning and instruction. Here, the classification
criterion is the mode of representation, that is, the way in which a model can be
expressed by a person through action, speech, written description, and other
material depictions.

Table 3.1 Main types of models based on the mode of representation (Gilbert and Boulter 1998).
(descriptions and examples provided by Author)
Mode Description Examples

Concrete Plastic, wood, or metal
objects; laboratory
equipment

The sticks-and-balls model of a molecule. The
scale model of a building or of a plane

Verbal The written or spoken
description of a system

The text explaining a scientific picture in a book.
A teacher’s verbal explanation of a physical
phenomenon

Mathematical Mathematical equations and
formulas

The equation of motion of a body. A system of
differential equations describing a population
model in biology. A statistical formula

Visual Pictures, animations, maps,
graphs, and diagrams

The picture of a cell in a biology book. The
animation of oceanic currents. The diagram
of a mechanical system

Symbolic Chemical formula and
symbols, circuits, technical
schemas

A chemical equation. An electronic circuit. A
musical score

Gestural Gestures and body movements The movement of the hands made by someone to
support his/her explanation of a concept
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Another way to classify models is based on the distinction between propositional
and diagrammatic representations, mentioned in the previous chapter. Larkin and
Simon (1987) used this distinction to highlight the ways in which two formats can
convey different kinds of information and allow for different actions. In particular,
propositional and diagrammatic models can contain the same information, but differ
in terms of computational efficiency. Specifically, whereas a diagram explicitly
preserves spatial relations among the system’s components, spatial relations remain
implicit in a propositional model (e.g., a verbal description or a computer program).
Conversely, a propositional model can preserve other kinds of relations, such as
temporal or logical sequences. Differences among representational formats can also
be interpreted in terms of a model’s specific ‘‘cognitive affordances,’’ that is, the
ways in which it supports and facilitates thought and knowledge (Zhang 1997). For
instance, whereas a 3D model ‘‘invites’’ the manipulation and spatial exploration of
the object represented, a simulation program invites the observer to modify the
parameters of a curve to view a corresponding change in the curve’s shape.
Knuuttila (2005) discussed the characterization of a model in terms of affordances
and constraints in her conception of models as ‘‘epistemic artefacts,’’ that is,
material objects constructed via a specific medium and used in different ways to
produce new knowledge.

Another distinction is that of static versus dynamic models, given that static
models are structural representations of a system and dynamic models show the
time-related change in a system. In a static model, such as a molecular structure
model or an architectural model, the time variable is not rendered explicit, whereas
in a dynamic model, time takes on a primary role, as in the case of educational
animations. Yet, if we include the person using the model, the distinction between
static and dynamic models is not as clear-cut as it seems. Hegarty’s experiments
(1992) on the comprehension of simple mechanical systems’ diagrams showed that
even a static picture can be interpreted dynamically and can be mentally animated.
Specifically, if a picture contains arrows or other symbolic elements suggesting
movement, people tend to interpret it as a functional description of the system,
making inferences as to the movement of its parts thereby (Heiser and Tversky,
2006).2 Thus, these inferences essentially employ the ‘‘tool’’ of mental simulation
(Hegarty 2004). Movement is not simulated continuously, but is broken down into
small steps, which are animated in a sequence that corresponds to a causal chain of
events. Similarly, when people observe a continuous process in an animation, they
tend to interpret it and remember it part by part, probably due to the human mind’s
general tendency to structure experience by segmenting it into meaningful units
(Tversky et al. 2008). A similar phenomenon was observed by Bogacz and Trafton
(2002) in studies with experienced weather forecasters, who were found to men-
tally animate static meteorological visualizations. In particular, the forecasters

2 Many scientific images contain extrapictorial elements, such as arrows and other conventional
graphic signs, to represent, for example, the lines of force of a magnetic field in a conductor and
facilitate comprehension thereby.
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examined very few dynamic visualizations, although animations were available.
Based on the forecaster’s talking aloud descriptions, the authors concluded that
they preferred mentally animating their own weather models over viewing explicit
animations.

The models presented in the context of the Königsberg bridge problem were all
static, given that a structural description sufficed to solve the problem. One way to
untangle the problem, however, would have been to mentally simulate walking
over the bridges and through the town. Yet, simulating all possible walks would
have been tedious and difficult, due to the high number of possible combinations,
and thus, formal reasoning was more appropriate to solving the problem. In the
final analysis, a model may be interpreted as being static or dynamic, but this
outcome will ultimately depend on the user’s goals and mental models. This is
therefore another instance of the subtle interaction between models and thought
processes.

3.5 The Pragmatic Perspective

The semantic view of theories, which holds that a model is an abstract structure,
has been called into doubt by more recent studies on the history of science, which
highlight both the variety of models used in scientific research and the importance
of their material dimension. Even the idea that the epistemic value of a model
consists in the accurate representation of a part of the world has run counter to a
series of objections, due to the fact that representation is merely one of a model’s
possible uses. This situation has led philosophers of science to develop new
conceptions about the nature of scientific models. Their point of departure is the
observation that the simplification of reality accompanying the construction of a
new scientific model always entails unrealistic assumptions, which can take on the
following forms:

• abstractions: these do not take target system properties thought to be irrelevant
into account. For example, the effect of air resistance is disregarded in projectile
trajectory calculations, and the ideal gas law similarly does not take the effect of
molecular volume and intermolecular forces into account;

• idealizations: these models contain elements that do not exist in the target
system, such as frictionless planes and point masses in mechanics, isolated
populations in biology, or agents with perfect information in economics.

Thus, omissions and distortions are as much a part of a model as its corre-
spondences with the original. Moreover, a model can be created without any links
to an actual target system, as in the instance of the Goodwin oscillator. This
mathematical model of enzymatic control processes was conceived during the
1960s and linked to a real biologic mechanism only after specific scientific dis-
coveries were made later on, in the 1980s and 1990s (Bechtel and Abrahamsen
2010). In the instance of models that refer to future events (e.g., prediction or
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prototype models), the systems they represent do not even exist yet. Furthermore,
many scientific models do not aim to represent real systems, because they are used
as demonstrations or proofs of existence. Noteworthy examples are John Con-
way’s Game of Life, which inspired further research on self-organizing systems,
and artificial neural networks, invented as an information processing mechanism
alternative to those of classic cognitive science. Similarly, the ‘‘toy models’’ of
theoretical physics are highly idealized representations with no direct links to
observable physical phenomena. They are invented to render complex systems
such as quantum fields or black holes mathematically tractable and to yield
insights for the development of new theories. Lastly, scientists also use models
with errors or which have been superseded by other more accurate models, if they
consider them to be useful for practical tasks or teaching purposes. Coll and
Lajium (2011) cite two examples from chemistry, that is, the Aufbau principle and
the ligand field theory, which are still used in textbooks and in laboratory practice,
in spite of their limitations. The economist Milton Friedman (1953) famously
defended economic models that contain false assumptions, as long as they yield
satisfactory predictions. Thus, if models can contain overt omissions or distortions,
not represent a real system, and can be used even if they contain mistakes, their
epistemic value is nearly completely independent from their ability to represent
reality in an accurate way.

The limitations of the representational view led to new explanations consid-
ering the pragmatic aspects of representation, that is, the intentions of the model
creator and its user. These intentions are indeed an essential aspect for creating the
directionality required by the representation relation, because to represent some-
thing else, a representation must be constructed or used intentionally. This view
requires, however, a shift of attention from the idea of representation to the action
of representing and thus to the purposes and goals of the person carrying out this
activity. Unrealistic assumptions in the construction of a model are not arbitrary,
insofar as they satisfy the purpose for which the model was created and the
conventions and standards of the community to which it is addressed. Specifically,
Giere (2004) proposed the following triadic relation as an alternative to the dyadic
relation discussed at the beginning of the present chapter:

• S uses X to represent W for purposes P (p. 743);

where S can be a person, a group or a community, and W is an aspect of the real
world. This means then that the choice of a model depends on the problem at hand
and on the users’ goals. Yet, why should one choose one model over another to
represent a given system? Suarez (2004) identified a selection criterion in the
model’s objectivity, conceived as its ability to convey specific information about
the target system. Thus, a model can allow for true, informative, and scientifically
appropriate inferences on a target system without necessarily being isomorphic
with it or similar to it.

The progressive refining of the concept of model has had a consequent impact
on how the model–theory relation itself is conceived. As described in Sect. 3.2, in
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the linguistic approach of logical empiricism, models had a marginal position as
compared to theories, given that the latter were considered the very core of
scientific knowledge. Conversely, the structuralist view holds models to be the
fulcrum of scientific theorization. Yet, both paradigms define a model in relation to
a theory: It is always ‘‘the model of’’ a theory. A more thorough analysis, however,
of the ways in which models are actually constructed and of their functions, has
shown that a model can be relatively independent from a theory. According to
Cartwright (1983), models are a bridge between theory and data: ‘‘To explain a
phenomenon is to find a model that fits it into the basic framework of the theory
and thus allows us to derive analogs for the messy and complicated phenome-
nological laws which are true of it’’ (p. 152). To serve this function, a model must
include some attributes of the target system but can also possess elements of
convenience or imagination. For instance, in London’s model of superconduc-
tivity, the model’s equations cannot automatically be derived from Maxwell’s
equations of electromagnetism, but are motivated by phenomenological consid-
erations and are the result of intuition and creativity. The effectiveness of the
model does not depend on its capacity to verify a theory, but on its capacity to
account for the Meissner effect (i.e., that a material crossing the threshold of
superconductivity expels all internal magnetic fields3). Morgan and Morrison’s
(1998) models as mediators conception also places models somewhere between
theory and reality, and indeed, it is their partial autonomy from both that renders
them such effective investigation and learning tools. The autonomy of models is to
be seen in their ability to mediate not only between theory and data, as in Cart-
wright’s account, but also to mediate among theories and paradigms. For example,
the ‘‘small-world’’ and ‘‘scale-free’’ networks proposed in the 1990s (Watts and
Strogatz 1998; Barabasi and Albert 1999) are now used in the domain of neuro-
science as mediators between the theoretical approaches of computational neu-
roscience and the anatomic and functional studies of brain networks (Stam and
Reijneveld 2007).

Knuuttila’s conception of models as epistemic artifacts is very much in line
with these pragmatic approaches and holds that models are material objects used in
many ways to create knowledge (Knuuttila 2005). In this conception, models are
not considered just any type of material objects, but the materialization of theo-
retical, abstract, or ideal objects through the use of some medium. Thus, their
material dimension makes them shared objects of knowledge and therefore able to
serve a mediation function among diverse people and practices. Moreover,
Knuuttila took a radical step in setting aside the representational view and in
stating that models can be independently researched in and of themselves: ‘‘Our
understanding of modeling should not be restricted to the view that models rep-
resent some external target systems accurately. Apart from being representative
things, models are typically also productive things whose workability and test-
ability are crucial for their epistemic value. Models can function not only as tools

3 The Meissner effect can produce the phenomenon of magnetic levitation.
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and inference generators, but also as research objects in their own right’’ (ibid.,
p. 3). Thus, models do not only represent, but produce new knowledge, during
their construction, through experimentation and by allowing alternative uses. As
described in Chap. 5, this conception is particularly appropriate for characterizing
the epistemic role of simulation models, which, due to their complexity and
interactivity, lend themselves well to investigation and experimentation (Knuuttila
and Merz 2009; Knuuttila and Loettgers 2010).

3.6 The Cybernetic Perspective

The idea that the epistemic value of models cannot be based on a constant and
absolute relationship with reality had already been stated in cybernetics, an
interdisciplinary research program conceived in the 1940s, the purpose of which
was the study of abstract principles of organization in complex systems.4 Most
cybernetic themes emerged during the Macy Conferences on cybernetics
(1946–1953), which aimed to establish the bases of a general science of the human
mind. Among many participants, Norbert Wiener, William Ross Ashby, Warren
McCulloch, and Arturo Rosenblueth are considered to be the founders of this
discipline (Heims 1991). In particular, they employed the mathematical tools of
dynamical systems’ theory and servomechanism theory to study the brain and the
nervous system. A servomechanism is an automatic device, which regulates var-
iation through differences between current and desired value, that is, through a
feedback circuit. Cybernetics was the first discipline to recognize the importance
of feedback mechanisms in determining the goal-directed behavior and self-
organization of all types of complex systems, including biological and social
ones.5 The main cybernetics research method was that of using electronic and
electromechanical devices to construct working models. For example, Ashby’s
homeostat (1952) was the model of an abstract, self-organizing system made up of
four reciprocally interacting parts (see Sect. 4.10). A system of differential
equations was used to describe the homeostat, and it was physically built as an
electronic device. In a similar way, Grey Walter’s ‘‘turtle robots’’ (1953) were
small roller robots that could move about a room and respond to external stimuli.
The cyberneticians’ approach consisted in deriving general principles from the
analysis of these working models’ conduct. Pickering (2010) called this type
of approach as ‘‘performative epistemology’’ and described it as ‘‘a vision
of knowledge as part of performance rather than as an external controller of it’’
(ibid., p. 25).

4 For a more thorough discussion on the history of this discipline, see Heims (1991) and
Pickering (2010). Previous influences from physiology and psychology are described in
Cordeschi (2008).
5 The opening Macy Conference (1946) was entitled ‘‘Feedback Mechanisms and Circular
Causal Systems in Biological and Social Systems.’’
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In the 1970s, cybernetics began to rapidly cede ground in university’s computer
science departments to the new paradigm of artificial intelligence, which prevailed
over the following decades. This also occurred in the social sciences, where
artificial intelligence methods provided the nascent cognitive revolution with its
‘‘mind as software’’ metaphor. Later, cybernetic electromechanical models came
to be considered nearly obsolete with respect to computers and programming
languages. Nonetheless, like an underground river occasionally surfacing, the
ideas of cybernetics continued to influence subsequent scientific developments in
the fields of cognitive science and simulation, such as behavior-based robotics
(Brooks 1991), Kaufmann’s theory of complex adaptive systems (1995), and
dynamical approaches to cognition (van Gelder 1998) (Fig 3.5).

Ashby, one of the founding fathers of cybernetics, analyzed the nature of the
relation between models and reality on various occasions through the years. For
example, in his ‘‘Introduction to Cybernetics’’ (1957), he explained this relation in
terms of isomorphism, by using the example of a dynamic system that can be
represented in three ways—that is, via mechanical, electrical, and mathematical
models—each of which is isomorphic with the system it represents. In the same
work, he proposed the less-restrictive criterion of homomorphism, which preserves
the binary relations between the elements of two systems, but, differently from
isomorphism, does not require a one-to-one correspondence between the elements of
each system. This criterion makes it possible to consider only certain aspects of a
system and its model: ‘‘the model is itself seldom regarded in all its practical detail:
usually it is only some aspect of the model that is related to the biological system;
thus the tin mouse may be a satisfactory model of a living mouse—provided one
ignores the tininess of the one and the proteinness of the other’’ (ibid., p. 109). A few
years later, Ashby (1967) described his own homeostat theory with a structuralist
approach similar to the one used many years later by proponents of the semantic
view of scientific theories. In 1970, Conant and Ashby demonstrated a theorem by
which any ‘‘good regulator’’ of a system is also a part of that system, and concluded
that modeling is a necessary part of the regulation of a complex system and,
therefore, also of the human brain. In 1972, Ashby’s previous structuralist consid-
erations yielded to a more pragmatic approach: ‘‘Nothing can exceed, or even equal,
the truth and accuracy of the real system itself. Every model is inferior, a distortion

Fig. 3.5 Cybernetics as an intermediary between time-separated approaches
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and a lie. Why then we bother with models? Ultimately, I propose, we make models
for their convenience’’ (1972, p. 94). Ashby described the relation between a
dynamic system and its model as a series of operations that map a succession of
system states onto a succession of model states (Fig. 3.6).

Suppose the system S is the orbit of a planet, then the model M gives a
description of the planet’s coordinates in time to predict its positions. Let us also
imagine a change C in S, that is, from an initial position S1 of the planet to a
position S2 one year later. In model M, a corresponding change C0 from an initial
coordinate M1 to a subsequent coordinate M2 will occur. If the model is to be
useful, it must have a correspondence rule, l, such that if we use l to translate the
real state S1 to obtain a corresponding M1, and thereby impose C0 to obtain M2,
followed by the inverse rule l-1, we finally obtain S2. Thus, three model opera-
tions correspond to a single direct operation in real world:

l!1 C0 l ¼ C

In Ashby’s own words: ‘‘What science has found is that many cases exist in
which the use of the three operations is actually more convenient than the use of
one. It seems to me that this purely pragmatic reason for using a model is fun-
damental, even if it is less pretentious than some of the more ‘philosophical’
reasons’’ (p. 96), concluding that: ‘‘from here on, then, I shall take as a basis the
thesis that the first virtue of a model is to be useful’’ (ibid.). The idea that a model
depends on the goal for which it was conceived, ignores some aspects of the
system to be understood, and changes some other aspects is at the root of a later
development in cybernetics known as ‘‘second-order cybernetics,’’ whose main
exponent was Heinz von Foerster. According to von Foerster (2003), most models
are not models of an objective reality but of other models (thus second-order
models), and it is for this reason that second-order cybernetics focuses on the
interaction between an observer and the system.

3.7 A General Theory of Models

Considering the general focus of cybernetics on models, it should come as no
surprise that a general theory of models emerged from this discipline in the 1970s.
This theory was formulated by Herbert Stachowiak, a German philosopher and
mathematician with a cybernetics background. In 1973, Stachowiak published a

Fig. 3.6 Relations between a
dynamic system and its
model (adapted from Ashby
1972, p. 96)
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book in German entitled ‘‘Allgemeine Modelltheorie’’ (A General Theory of
Models), presenting a model-based conception of knowledge and action. This
conception, called ‘‘systematic neo-pragmatism,’’ was based on Peirce’s prag-
matics and semiotics, on cybernetics, and on a structuralist view of scientific
theories.6 According to this conception, a model is a limited reproduction of
reality, characterized by at least three features:

1. Representation. Models are always ‘‘models of something,’’ that is, images,
representations of natural or artificial originals, which in turn can be models of
something else.

2. Reduction. Models generally do not capture all the attributes of the original, but
only attributes considered to be important by the model’s creators and users.

3. Pragmatism. Models are not copies of their originals. They have a substitution
function for (a) specific individuals who must understand and/or act using the
model, during (b) specific time intervals, and (c) within the limitations of
specific ideal or real operations.

Stachowiak wrote that ‘‘models aren’t just models of something; they are also
models for someone, a human or artificial user. They perform their role in time,
meaning during a time interval. And finally, they are models for a particular
purpose. A completely pragmatic definition of the concept of model doesn’t have
to consider only the thing represented by it, but also for whom, when and for what
the model has been built, in relation to its specific function’’ (ibid., p. 133).
A model should always be understood by answering the four questions that made
up Stachowiak’s ‘‘four-question schema’’ of models (Table 3.2).

Fig. 3.7 The original-model
relation. Präterierte attribute
ignored attributes. Abundante
attribute superflous attributes.
Attributen abbildung
attributes image. Vorbereich
domain. Nachbereich
codomain. (From Stachowiak
1973, p. 157)

Table 3.2 The four-question
schema of models

Model

Of what? For whom?
For what? When?

6 Stachowiak’s neopragmatic epistemology is recognized by Seel (2003) to be an influence on
his model-centered approach to learning and instruction, which will be examined in Chap. 5
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Stachowiak represented the original–model relation by using a relation of
homomorphism (Fig. 3.7), which he characterized very pragmatically, as follows:

1. the relation concerns only a subset of the original’s attributes, that is, the one in
dashed area, and attributes outside of this area are ignored;

2. the model presents superfluous attributes not included in the relation, but
introduced to make the model work;

3. the decision as to which attributes are to be considered depends on a specific
person’s aims in a given time interval.

An important consequence of these ideas is that to understand a model, we must
also know the context in which it was created. Moreover, even the original is
relative, as all things that can be modeled can be used as an original for some
modeling process, not only a ‘‘part of reality,’’ but also another model or a system,
object, or entity that does not yet exist, but can be created in the future.

According to the Austrian philosopher Gelbmann (2002), the Allgemeine
Modelltheorie of Stachowiak also entails a corresponding non-statement view of
the concept of theory. Gelbmann defines a theory as a quintuple:

Th ¼ \O;M; k; t; Z [

where O and M are attribute classes, respectively, of the original and of the model;
k indicates the subject defining the model; t a particular moment or time interval;
and Z stands for the interests, purposes, targets, calibrating values to be accounted
for by the theory. Thus, Z has the role of a pragmatic selection criterion for the
attributes of M, considered crucial to the description of O. Moreover, each model
is, by its own nature, incomplete and temporary; thus, in science, we frequently

Table 3.3 Taxonomy of physical models (adapted from Stachowiak 1973)
Physical models

Graphical models Pictures
Diagrams

Technical models Physico-technical Mechanical Static/dynamic
Electro-mechanical
Electronic Analog/digital
Electro-chemical

Biotechnical
Psycho-technical
Socio-technical

Semantic models
Emotional models Belief
Cognitive models Scientific Formal

Empirical/theoretical Formal/non-formal
Operative/prospective

Metaphysical
Poetic
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witness a progression of models, which in turn lead to change in the theory itself.
In Stachowiak’s conception, models are classified as:

physical (or external) models, which are of a physical nature;
semantic (or internal) models, which are mental models.

Stachowiak’s articulated taxonomy of models (Table 3.3) does not include only
physical models but also visual, linguistic, and electronic models (the latter type
including analog or digital ones).
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Chapter 4
Simulation Modeling

All teems with symbol; the wise man is the man who in any one
thing can read another.

Plotinus, The First Ennead (c. 250)

4.1 From Models to Simulation

A fundamental aspect of simulation is the presence of a model, of a real or
imagined system. But how does a simulation model differ from other kinds of
models; what is its distinctive feature? Firstly, the models we have considered
herein are also, in of and themselves, representations of something else. For
example, in a picture, small scale model, or chemical formula, model and repre-
sentation coincide. A simulation model, conversely, must actually be run if it is to
render the phenomenon under examination visible. Specifically, it must produce a
process that must evolve autonomously, from an initial to a final state, as if it had
its own life. Thus a simulation model is:

1. a structure to produce a behavior.

Moreover, simulation users should be able to interpret this process as the
representation of the behavior of a real or imagined system. As Hartmann states ‘‘a
simulation imitates one process by another process’’ (1996, p. 5). The behavior
showed in the simulation should:

2. reproduce some aspects of the time evolution of a system.

Lastly, this process must not be considered final, but users should be able to
modify it by changing the simulation’s initial conditions or other features. A model
is thereby able to:

3. create a variety of behaviors depending on the users’ decisions.

These three properties allow a model to become an object that can be explored
and manipulated in many different ways; it can also produce behaviors that cannot
be predicted by merely examining its structure. The simulation process unfolds in

F. Landriscina, Simulation and Learning, DOI: 10.1007/978-1-4614-1954-9_4,
! Springer Science+Business Media New York 2013
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a sequence of states of a physical system that is the ‘‘vehicle’’ of the simulation,
and this can be:

• a physical model (physical simulation);
• an analog computer (analog simulation);
• a digital computer (computer-based simulation).

The hypothesis underlying a physical simulation is that the causes acting in the
model are of the same type of those acting in the real system. For instance:

• air running over the scale model of an aircraft wing in a wind tunnel acts on it
just as wind does on a real aircraft wing;

• electrical discharges in the experiments of Miller and Urey on the origin of life
have the same role of lightning in the primordial atmosphere.

In these instances, modeling consists in the construction of an experimental
apparatus that should reproduce the real system in the truest way. A different case
is that of analog computers, i.e., mechanical, hydraulic, or electronic devices, in
which some physical quantities continuously change in a way that mirrors the
changes in the systems’ variables. Examples of analog computers are:

• Kelvin’s tide predictor, a mechanical calculator build by Lord Kelvin in 1876,
which uses a system, of pulleys, wires and dials;

• Phillips Hydraulic Computer (also known as MONIAC, Monetary National
Income Analogue Computer), created in 1949 by the economist William Phillips
to model the United Kingdom’s national economic processes;

• Electronic analog computers built with operational amplifiers and used from the
40s to the 70s in science and industry.

The equivalence between model and system is not physical in this instance, but
mathematical. The model’s creation consists in the configuration of computer
elements, such that its internal processes are analogous to those of the represented
system, even if they occur over a much shorter time span. For example, an
electronic analog computer can simulate a mechanical, biological, or economic
system, because its circuits follow the same dynamics of the studied system,
i.e., they are regulated by the same type of equations (Small 2001). Although
electronic analog computers became obsolete with the advent of the digital
computer, analog computation is still of theoretical and practical interest, as an
alternative to the symbolic computation represented by the Turing machine, and
for building new types of computers (MacLennan 2009). Another interesting
feature of analog computation lies in the frequently proposed hypothesis that the
human brain is also a particular kind of analog computer (Rubel 1985; Shagrir
2010; Siegelmann 1996; van Gelder 1998).
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4.2 Computational Models

The most well-known simulations are digital, which allow for the simulation of
any kind of system, regardless of its physical nature and the phenomenon being
studied. The model underlying these simulations is a computational model, which
may be defined as:

• an algorithm created to reproduce some behavioral features of a system in a
computer program.1

A computational model is not just the translation of a mathematical model into
a computer language, but it involves a series of adjustments and changes, which
depend on the algorithm and on the hardware and software architecture of the
computer that will run the program. It is important, however, to distinguish
between simulation and other scientific uses for computers not requiring the
construction of a model, for example:

• the manipulation of mathematical expressions in a symbolic versus numerical
form;

• the automatic or semi-automatic demonstration of theorems;
• the visualization of scientific data.

The essential elements of a computational model are variables, constants, and
parameters, which are interlinked by relations in the form of equations or rules.
A variable is a symbol representing a relevant aspect of the studied system, the
value of which can change during a simulation run.2 A constant conversely rep-
resents a quantity that does not change. A parameter is a quantity used to define a
relation between variables. For example, in the equation of a line, y = ax ? b, the
a and b parameters define the relation between the variables y and x, and the set of
their values determine a family of lines that differ in terms of slope and intercept.
Parameters are kept constant during a simulation run but they can be varied from
one run to another to explore the model’s behavior. There are three types of
variables:

• state variables, which define the state of the system at a given point in time;
• input variables, which reflect the action of external elements influencing the

behavior of the studied system and which are user-modifiable;
• output variables, which provide information on the model’s behavior.

The ‘‘time’’ variable, generally indicated by the symbol t, is a particular one:
Although many other variables depend on it, it does not depend on any other
variable. The time dependence of a variable x can be indicated by the function x(t),

1 The terms ‘‘computational model’’ and ‘‘simulation model’’ will be used hereafter
interchangeably.
2 Only the variables that are part of the model of the system are considered here and not all the
computer code variables, which do not necessarily pertain to an equation or rule.
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the domain of which is the set of t values for which corresponding x values exist.
This domain generally coincides with the system’s observation interval.

In a computer, information is represented by discrete values and in a ‘‘memory
of finite dimension’’. A continuous variable must therefore be represented by a
finite number of digits. Due to the same limitations, a continuous function can be
digitally represented only by its value at a finite number of points of its domain.
Thus, approximation errors are introduced and can be reduced, but not completely
obviated (Table 4.1). The study of algorithms using numerical approximation for
problems of mathematical analysis is the subject of numerical analysis, a field of
mathematics that also yields the numerical solution methods used in simulation.

The equations used to describe a system’s behavior over time are differential
equations, i.e., equations in which the unknown is a function of one variable
(ordinary differential equations) or of several variables (partial differential equa-
tions), which relates the values of the function itself and its derivatives of various
orders. Most nonlinear ordinary differential equations and partial differential
equations cannot be solved analytically, i.e., through a series of well-known
operations, but only numerically. This implies that they must be transformed into
‘‘finite difference equations’’ and that their solutions must be calculated by way of
numerical analysis methods. The use of these methods requires the choice of an
appropriate algorithm and the determination of its validity for the current equation.

An appropriate numerical algorithm should be:

• stable, i.e., it should not amplify the errors that are necessarily present in data
representation and in computation;

• efficient, a computer should be able to yield the solution in an acceptable
timeframe;

• precise, the calculated solution should not differ too greatly from the exact one.

The efficiency and precision criteria cannot always be satisfied at the same time,
and in more complex simulations, the former is at times preferred over the latter.

One of the most important aspects of a numerical algorithm is the modeling of
time progress. Continuous time must be divided into discrete time-steps. The
smaller the steps, the better the approximation will be. Very small time-steps,
however, can slow down the execution of the algorithm, because they require rel-
atively more calculations per time unit and therefore have a greater computational
cost. Moreover, in the numerical resolution of some differential equations, time-
steps that are too small can cause errors that increase in an uncontrolled manner.

Table 4.1 Types of approximation errors
Type of error Source of error

Round-off errors A real number is represented with a finite number of digits
Discretization

errors
A continuous function is represented by its value at a finite number of points

of its domain
Truncation

errors
An iterative method is terminated and the approximate solution differs from

the exact solution
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The results of a numerical simulation must therefore be carefully studied, to verify
that they correspond to the workings of the system under study and that no undesired
effects due to the chosen algorithm occur.

An important aspect of a computational model is the extent to which it con-
siders uncertainty and variability. We can distinguish two kinds of models in this
sense:

• deterministic, in which a certain input always produces the same output;
• stochastic, which accept random input variables that lead to random outputs.

The main difference between these two kinds of models consists in the fact that
in a deterministic simulation model, the same initial situation always leads to the
same result, whereas the results of a stochastic simulation are in and of themselves
stochastic, and therefore may vary greatly from one simulation run to another. To
study the behavior of a stochastic model, one must execute a certain number of
simulations and use appropriate statistical techniques to analyze the results.

4.3 The Modeling and Simulation Process

Modeling and simulation process can be described in varying detail, depending on
the simulation context and project. Birta and Arbez (2007, p. 41) provided an
overview of the essential steps involved in carrying out a modeling and simulation
study in the context of system engineering (shown here in Fig. 4.13) The following
chapters will be dedicated to explaining how many of these steps must also be
considered when building an instructional simulation.

For the sake of simplicity, only the most salient outputs will be examined
herein: (1) the project description (2) the conceptual model (3) the computational
model, and (4) the simulation program. Figure 4.2 shows the relations among these
outputs (as indicated by the backward arrows, it is often necessary to backtrack
from one step of the modeling process to the previous one).

4.3.1 Project Description

The project description is a document using a relatively informal language to
describe the project goals, the system to be modeled and, if available, real data to
use as a reference in validating the model. Clarity of purpose is essential here, as

3 Balci (1998, p. 337) and Robinson (2004, p. 211) developed their own, similar diagrams of the
life cycle of a simulation study.
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the project description should illustrate not only what the model should represent,
but also for whom, when, and for what purpose, as suggested in Stachowiak’s
‘‘four-question schema’’ (see Sect. 3.6).

Fig. 4.1 The modeling and simulation process (Birta and Arbez 2007, p.41)
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4.3.2 Conceptual Model

The hypotheses underlying the simulation are specified in the conceptual model,
which Robinson defines as ‘‘a non-software specific description of the simulation
model that is to be developed, describing the objectives, input, output, content,
assumptions and simplifications of the model’’ (2004, p. 65). Conceptual model
development depends on our amount of knowledge of the studied system. In some
cases, one can use a pre-existing mathematical model that allows for system
representation through an equation or a system of equations. In other instances, it
is necessary to describe the system’s structure as realistically as possible, and to
use specific equations or rules to model the interrelations among its elements. The
conceptual model can be a collection of partial models each of which captures
some specific aspect of the system and which can materialize in cognitive arte-
facts, such as descriptions, pictures, diagrams, maps, graphs, equations, or rules.
The definition of the conceptual model can also lead to a better specification of the
project’s goals, including the possibility that a research method other than simu-
lation might be more appropriate to achieving these goals.

4.3.3 Computational Model

The hypotheses and indications yielded by the conceptual model, in turn make up
the computational model input. Computational model development can involve a
refinement or a revision of the conceptual model. As emphasized by Robinson:
‘‘because the processes in a simulation study are performed iteratively, there is an
interplay between the computer model, such as it is being coded and the con-
ceptual model, with constant adjustments to both’’ (ibid., p. 65). A great deal of
iteration may be required before the computational model can be considered to
satisfactorily represent the conceptual one.

Fig. 4.2 Main outputs of a modeling and simulation process outputs
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4.3.4 Simulation Program

In and of itself, a computational model cannot provide the interaction mechanisms
that simulation users require to explore the model’s behavior, advance hypotheses,
and analyze the results. These mechanisms are provided by the software’s func-
tional components, which allow the user to visualize the simulated processes,
decision input, data analysis, report creation, and parameter optimization. Toge-
ther, the computational model and these functional components make up the
simulation program: the instrument that allows users to conduct numerical
experiments (Fig. 4.3).

The simulation program also allows for the verification and validation of the
computational model’s accuracy. Verification is the process of ensuring that the
computational model is consistent with the specifications of the conceptual model,
and validation is the process of ensuring that the computational model is consistent
with the project’s goals. As suggested by Balci (1994, 1998), verification and
validation processes answer the following questions, respectively:

• Did we build the model right?
• Did we build the right model?

Typical verification activities are checking for programming errors and veri-
fying that the numerical algorithm does not produce a greater degree of error than
expected. Typical activities of the validation process are submitting the simulation
results to the judgment of domain experts and comparing the simulated behavior to
that of the real system. One of the most common techniques used to validate a
model is that of parameter optimization. Specifically, the parameters are varied
continuously to explore the corresponding model behaviors as broadly as possible
(a process called ‘‘exploring the parameter space’’), to bring them as close as
possible to the observed or desired ones. The final goal of verification and vali-
dation is to ensure the credibility of the simulation program in terms of the pro-
ject’s goals.

As examined in the next chapter, the outputs described in this section are those
that students must produce when constructing a simulation as part of a model-
based learning activity.

Fig. 4.3 The components of
a simulation program
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4.4 Modeling and Simulation Paradigms

Over the years, many simulation methods have been developed, each with its
particular modeling strategy and with its corresponding modeling and simulation
software environments. Some of these methods can be considered paradigms in
and of themselves, because they differ from not only a technical perspective, but
also in terms of their underlying assumptions about the object to be modeled, how
it should be modeled, and how to interpret the simulation results. A modeling and
simulation paradigm is characterized by the type of elements and relations that are
used in the simulation’s conceptual model (Table 4.2).

The equation-based paradigm was the first to be used, and is to date the most
frequently employed. It has therefore led to the development of other methods, which
in turn differ in terms of the type of elements and relations they use (Table 4.3).

Many simulations in science and industry are based on the approximate solution
of partial differential equations or of integral equations. Thus, numerical methods,
which essentially evolved into domains of highly specialized theoretical and
practical research (Table 4.4), have been developed to this end; these are linked to:

• computer science, for the use of parallel algorithms and high-speed supercom-
puters; and

• scientific visualization, for the large amount of data that must be visualized as
outputs.

How does one choose one simulation paradigm or method over another?
Ideally, every modeling and simulation project should include a phase dedicating
to choosing the approach (or combination of approaches) in function of the pro-
ject’s goals. Robinson (2010) emphasized the need to maintain the simulation’s
conceptual model distinct both from the chosen computational model and from a
specific modeling software. In concrete terms, however, the modeling software is
frequently a project’s starting point, and thus, no consideration is given as to
whether the phenomenon or problem under examination might be better approa-
ched otherwise. The following Sections of this chapter describe each modeling and
simulation paradigm’s main features and are of a very technical nature. Readers
not interested in the paradigms’ details can skip to Sect. 4.13, which illustrates
a framework that is helpful for understanding the paradigms’ conceptual
differences.

Table 4.2 Scientific modeling and simulation paradigms
Paradigm Elements Relations

Equation-based modeling State variables Differential equations
Molecular dynamics Particles Intermolecular forces
Agent-based modeling Agents and their environment Local interaction rules
Systems dynamics Stock and flows Feedback loops
Cellular modeling and

simulation
Cellular components and

modules
Structure/function

relations
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4.5 Dynamical Systems Modeling

As mentioned in the previous section, the most well-known simulation paradigm is
the equation-based paradigm. Given that the purpose of a simulation is to repro-
duce some form of time-related change, the equation’s independent variable is
generally time. In the simplest case, an equation is a known functional relation of
the form y = f(t), in which the value of y can be directly calculated for any given
value of t, i.e., through a formula. For example, suppose we want to create a
simulation to study the motion of a free falling body. The variable of interest in
this instance is the space traveled by the body after a certain time, to be calculated
as follows:

sðtÞ ¼ $ 1
2

gt2 $ v0t þ h

where g is the standard gravitational acceleration, h is the height from which the
body falls, and v0 is its initial velocity. Knowing the values of the constant g and of
the parameters v0 and h, we only need to substitute any value of t in the formula to
obtain the corresponding value of s.

The change of a system over time is the subject of an area of mathematics
known as dynamical systems theory. A dynamical system is a system in which an
evolution rule describes a system change over time and predicts the system’s
future state based on its current state. The system’s evolution is represented by an
orbit in an n-dimensional space, called phase space, where n is the number of the
system’s degrees of freedom.

A well-known model of elementary physics, the simple pendulum, can serve as
an example of a dynamical system. This model presents the same type of ideal-
izations and abstractions that typify modeling in general. Specifically, the simple
pendulum is made of a point-like mass m, hanging from a massless string of
constant length l attached to a frictionless pivot and is subject to the standard
gravitational acceleration g (Fig. 4.4).

Table 4.3 Equation-based modeling methods
Modeling method Elements Relations

Dynamical systems modeling State variables Continuous or discrete evolution rules
Continuum physics modeling Volumes and fields Balance equations and constitutive equations
Compartmental models Compartments Coupled ordinary differential equations

Table 4.4 Methods of partial differential equations approximation
Method Application field

Finite difference method Thermal engineering, acoustics, fluid dynamics, financial engineering
Finite volume method Fluid dynamics, physical oceanography, global climate models
Finite element method Structural mechanics, prototype design weather prediction
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If the mass m is pushed only slightly away from its resting position, it oscillates
around this position with a constant amplitude and with an oscillation period given
by the formula proposed by Huygens in 1658:

T ¼ 2p

ffiffiffi
1
g

s

Now, suppose we want to find the mass m position at a certain time t. The
quantity we are looking would be the angular displacement h(t) between the string
and the vertical direction. To find this, we can start from Newton’s second law,
which is expressed by the equation F = ma. Humphreys (2004) emphasized that
this equation is a theoretical template, i.e., a schema describing a general con-
straint between some quantities (in this instance, force, mass, and acceleration) but
which does not allow for the calculation of specific quantities. To achieve an
actually computable equation, i.e., a computational template, we need to specify a
particular function for the force F. To do this, we must consider a specific model,
such as the free falling body, the inclined plane, or the simple pendulum. In the
case of pendulum, it means we should consider only the tangential component of
the force, because this is the component that forces the body on its circular path.
Thus, the specific function we are seeking is yielded by the formula:

F ¼ $mg sin h

Moreover, if we use it as the right hand member of Newton’s equation, we obtain:

F ¼ ma ¼ ml
d2h
dt2 ¼ $mg sin h

in which d2h/dt2 is the angular acceleration. If we then simplify the mass m that is
present in both parts, we obtain the following equation of motion:

Fig. 4.4 The simple
pendulum

4.5 Dynamical Systems Modeling 57



l
d2h
dt2 ¼ $g sin h

This equation is a computational template, as it can be solved and allows for
calculation of the angular displacement h(t). The presence of the term ‘‘sin’’,
however, renders the equation nonlinear, and it is therefore difficult to solve. We
can therefore introduce another abstraction (consider only small oscillation angles,
for which h\\1) into the model; approximate the function sin h with the linear
term of its development in the Taylor series, sin h ffi h; and can therefore write:

l
d2h
dt2 ¼ $gh

which is the ‘‘linear’’ version of the previous equation. The solution of this
equation is the formula we were seeking:

hðtÞ ¼ h0 sinðxt þ /0Þ

which is the well-known harmonic oscillator’s formula, describing a periodic motion
with angular magnitude h0, angular frequency x = 2p/T and initial phase /0:

The previous formula can be easily implemented as a program simulating the
simple pendulum model. This type of simulation allows a student to use ‘‘virtual
experiments’’ to explore some properties of the model—e.g., verifying the oscil-
lation period independence from the mass, or what happens when changing the
gravity acceleration value, as if the pendulum were on another planet (Fig. 4.5).
We must also remember, however, that the simulation does not show a real
pendulum, which physicists call a ‘‘material pendulum’’, but a mathematical model
characterized by idealizations and abstractions, such as the hypothesis of small
oscillations. Even in Huyghens’ time it was understood that if the oscillations
become larger, their duration is no longer independent from amplitude, but that
larger amplitudes correspond to longer durations—a phenomenon that the simple
pendulum simulation cannot reproduce.

How could we calculate the period of a pendulum for any amplitude of oscil-
lation? To do so, we should solve our initial equation of motion, but by aban-
doning the idea of approximating the function sin h with h: The equation remains
nonlinear thereby, and its solution calls for the evaluation of an elliptic integral of
the first kind, which can be calculated only by using approximation methods, i.e.,
an infinite power series:

T ¼ 2p

ffiffiffi
L
g

s

1þ 1
16

h2 þ 11
3072

h4 þ 173
737280

h6 þ . . .

" #

To complicate matters further, to continue ‘‘de-idealizing’’ the model, we can
also consider the effect of friction and obtain the model known as a nonlinear
damped pendulum. When friction is proportional to angular velocity, the equation
of motion becomes:
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l
d2h
dt2 ¼ $g sin h$ c

dh
dt

" #

where c is the friction coefficient. Depending on the value of a parameter f, called
damping ratio, the pendulum returns to its resting position by oscillating with an
amplitude gradually decreasing to zero (f\ 1, underdamping), or by reducing
velocity or stopping without any oscillation (f[ 1, overdamping). In this instance,
creating a simulation program is a more complex activity, but also a useful one to
explore variety in the model’s behavior.

In addition to the standard graphs showing the behavior of the variables over
time, the phase space diagram is a further instrument for studying the pendulum.
The system has 2 degrees of freedom—the angular displacement h and the angular
velocity dh/dt—and thus, the phase space in this case is a plane. At any time, the
pendulum’s condition is represented by a point, and its evolution by an orbit.
Whereas the simple pendulum’s orbit is an ellipse, the damped pendulum’s orbit
has a spiral shape (Fig. 4.6). The point representing the system’s state moves
toward the center of the spiral, as if attracted by it; the center is therefore called an
attractor. The shape of an orbit can also be interpreted in terms of energy: if the
orbit is closed, the system maintains its energy, if it is open, the energy gradually
dissipates due to the effect of friction.

Fig. 4.5 An educational simulation of the simple pendulum. Image courtesy of ExploreLearning
GizmosTM. Web site: http://www.ExploreLearning.com
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Many practical applications call for the construction of an artificial system
oscillating with a desired frequency even in the presence of friction—e.g., robot
leg movement. The only way to maintain a damped pendulum in movement is to
apply an external force to it, to balance the energy loss due to damping. In the
hypothesis of a periodical external force, the equation of motion becomes:

l
d2h
dt2 ¼ $g sin h$ c

dh
dt

" #
þ F sin Xt

This differential equation cannot be solved analytically, but only numerically.
The system’s behavior becomes more and more complex, and simulation is the
only way to explore it. If the force is small, the pendulum reaches an equilibrium
state, in which the external energy perfectly balances the dissipated energy.
Whatever the initial conditions, the orbit in the phase plane is a closed curve, albeit
not necessarily an elliptical one, which is called limit cycle and also behaves as an
attractor.4 If the external force’s amplitude continues increasing, the trajectories
become more complex: The point representing the state of the system begins to
trace loops, which repeat themselves infinitely, but never identically (Fig. 4.7,
left). With a further increase in the amplitude of the external force, we witness a
phenomenon called period doubling or bifurcation, in which the number of loops
gradually doubles, such that for particular parameter values, the system becomes
chaotic (Fig. 4.7, right).

Chaotic systems are deterministic systems that are very sensitive to initial con-
ditions, in which small changes in the initial state lead to significantly different final

Fig. 4.6 Phase plane diagram a Frictionless pendulum. b Damped pendulum. Image courtesy of
My Physics Lab. Web site: http://www.myphysicslab.com

4 For a value of X called ‘‘resonance frequency’’, the transfer of energy from the external force to
the pendulum reaches its maximum, and the amplitude of the oscillations reaches its maximum
value too.
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states (Strogatz 1994). In mathematical terms, uncertainty about the system state
increases exponentially with time. The investigation of these systems is the subject of
chaos theory. Now, reconsidering our nonlinear pendulum, its behavior is repre-
sented by a figure called strange attractor, made up of countless trajectories that
remain enclosed within a finite space. This figure is also a fractal, i.e., an irregular
geometric curve that has a fine detailed structure, even if observed at arbitrarily small
scales, and which is self-similar, i.e., containing copies of itself at different scales.
The first strange attractor was discovered in 1963 by the meteorologist Edward
Lorenz, who used a digital computer to simulate the behavior of a simple weather
variations model made up of a system of three ordinary differential equations.

It should also be noted that many applications do not require the exact or
approximate solution of a dynamical system’s equation, but only knowledge of
some of its qualitative aspects, such as the stability of its equilibrium points.
Scientists therefore use the qualitative theory of differential equations, a branch of
mathematics using geometric techniques developed towards the end of nineteenth
century by Henri Poincaré to analyze the stability of the solar system.

4.6 From Mechanics to Everything Else

Although drawn from Newton’s mechanics, dynamical systems theory is a
mathematical approach that is applicable to any type of system that can be
described through a set of time-related variables and an associated evolution rule,
and thus by a trajectory in phase space. As stated by Mainzer (2005): ‘‘The states
(of a dynamical system) can also refer to moving molecules in a gas, excitation of
neurons in a neural network, nutrition of organisms in an ecological system, supply
and demand of economic markets, or behavior of social groups in human

Fig. 4.7 Phase plane diagram. Period doubling (left). Chaotic behavior (right). Image courtesy
of My Physics Lab. Web site: http://www.myphysicslab.com
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societies’’ (p. 240). For instance, the system can be an ecosystem, in which two
species interact, one of prey and the other of predators (e.g., foxes and rabbits).
Alfred Lotka and Vito Volterra studied this type of system in the 1920s as a
population biology model. The system can be described by two variables, x(t) and
y(t), which respectively represent the prey and predator populations. The evolution
rule can take on the form of a system of two ordinary differential equations:

dx
dt
¼ ax$ bxy

dy
dt
¼ $cyþ dxy

where a is a parameter representing the difference between the prey’s natural birth
and death rates, b and d are two constants linked to chance encounters between
prey and predators, and c is the natural decay rate of predators when prey are
absent. Unlike other nonlinear dynamical systems, Lotka-Volterra equations can
be solved analytically. The solutions correspond to periodic oscillations of both
populations, in which the prey’s growth is followed by the predators’ growth, in
turn causing a decrease in prey, and so on (Fig. 4.8). The system behavior is
represented in the phase plane diagram by a limit cycle. Introducing biologically
more realistic features into the model, such as the presence of other species or time
delays, can result in complex dynamics, including chaotic phenomena similar to
those described in the nonlinear pendulum example. The last part of this chapter
will describe how some real ecosystem features cannot be easily modeled via
Lotka-Volterra equations, such as spatial effects depending on the position of
individual animals in their environment and stochastic effects due to random
fluctuations in the prey and predator populations.

In a dynamical system, time can be either continuous, as in the heretofore-
described examples, or discrete. In a discrete-time dynamical system, the states of
the system are evaluated only after certain discrete intervals and the system’s orbit
in the phase space is a sequence of points, x0, x1, x2,…, xn.

5 The evolution rule of a
discrete-time dynamical system is called an iterative map, i.e., a function
describing the system state in a future time tn+1 depending on its state in the
present time tn (in which n is an integer). An example is the logistic map, a
quadratic map of the form:

xnþ1 ¼ rxnð1$ xnÞ

The logistic map is used in biology as a model of population growth, and in this
case xn is a number between zero and one, which represents the ratio of existing

5 The concept of discrete time in a dynamical system should not be confused with that of time
discretization in a computational model. In the latter case, time is made discrete for
computational reasons only, but in the former time is considered a discrete variable already at
the mathematical model level.
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population to the maximum possible population at year n; r is a positive number,
which represents a combined rate for reproduction and starvation, and expresses a
population’s general ability to survive under given physical conditions thereby.
The temporal evolution of the discrete variable xn can be represented through the
graphical procedure known as web diagram, a procedure that can be executed even
with paper and pencil (Fig. 4.9).

The procedure consists in a sort of feedback process, by means of which the
function’s output at time tn becomes the same function’s input in the following iter-
ation, at time tn+1. Depending on the value of parameter r, this simple map can show
complex behaviors such as limit-cycles, bifurcations and strange attractors, similarly
to as occurs in continuous systems (Hofstadter 1981).6 The logistic map application to
populationbiologycomesasnosurprise,giventhat themapis thediscreteversionofan
ordinary differential equation—formulated in 1838 by Verhulst:

dN
dt
¼ aNð1$ N=KÞ

Fig. 4.8 Behavior over time in the Lotka-Volterra predator–prey model

Fig. 4.9 The logistic map

6 The best-known fractal—the Mandelbrot set—can be similarly obtained, i.e., by iterating the
quadratic polynomial map zn+1 = zn

2 ? c in the plane z of complex numbers.
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which in turn is a mathematical version of the ‘‘population principle’’, stated in
1798 by Malthus, according to which, when unchecked a population increases by
geometrical ratio, while resources increase by arithmetical ratio only. The constant
K is the carrying capacity, which corresponds to the maximum sustainable pop-
ulation. The equation is analytically solvable, and its general solution is a ‘‘logistic
function’’—specifically, an S-shaped curve also known as ‘‘sigmoid function’’, the
equation of which is:

PðtÞ ¼ 1
1þ e$t

where e is Euler’s number (Fig. 4.10). The curve shows that the initial stage of
growth is approximately exponential, then, as saturation begins, the growth slows,
and at maturity, growth stops. As we will see further on, the logistic curve has the
property of describing a wide range of natural and social phenomena.

It is worth noting that, instead of developing their ecosystem model by
extending the logistic model to two species, Lotka and Volterra developed it
according to the chemical ‘‘Law of mass action’’, which states that the reaction rate
between two chemical species is proportional to the product of their concentrations
(Berryman 1992). Based on this law, they assumed that the interaction between
two biological species is proportional to the product of their populations, versus to
their ratio, as in the logistic equation.

Other features of dynamical systems will be discussed in the next sections, but
the important point here is that even a simple system, when considered in a less
idealized manner, such as the pendulum, produces unexpected and complex
behaviors due only to the nonlinear nature of its equation of motion. Thus, simple
systems can produce complex behaviors, and the only way to study them is to
simulate them on a computer.

Fig. 4.10 The Logistic curve
(sigmoid function)

64 4 Simulation Modeling



4.7 Continuum Physics Modeling

In the modeling strategy of classical mechanics, a physical system is considered to
be made up of point particles with a fixed mass, and the system’s behavior is
described by its equations of motion. This is the case of the ‘‘point-like masses’’
described in elementary physics textbooks, such as the oscillating mass of the
pendulum and of ‘‘rigid bodies’’—i.e., ideal solid bodies considered to be a col-
lection of particles maintaining the same distance relative to each other. This
modeling strategy has historically shown great efficacy in many theoretical and
practical applications, to the extent of being considered the very foundation of
scientific thought. The same strategy, however, presents some important limita-
tions when the need is to build less idealized models that more closely represent
the phenomena in our empirical world. For example, real solid bodies can be
deformed, as in the instance of elasticity and plasticity, not to mention other
qualitative states of matter, such as the liquid or gaseous state, and phenomena
such as mass or energy transport. A modeling strategy alternative to that of
classical mechanics is to consider a body as consisting of a substance continuously
filling the space it occupies, which can be deformed. This is the strategy under-
lying continuum physics, a branch of physics originating in the nineteenth century
from the studies of Augustin-Louis Chaucy, who studied internal forces acting
within a deformable body. He imagined these internal forces as being distributed
continuously within the material volume and therefore from an opposite per-
spective to that of classical mechanics, which considers only the external forces
acting on a body. More recently, Clifford Truesdell and Walter Noll used rigorous
mathematical methods to contribute to further developments in continuum
mechanics (Truesdell 1977; Truesdell and Noll 1965). This field investigates not
only the physical properties of solids, but also those of fluids, e.g., liquids and
gases. It aims to describe physical processes in terms of spatial variations in
macroscopic quantities, such as density, pressure, and temperature and does not
consider the atomic and molecular structure of matter. Lautrup (2011) described
the premise of this approach as follows: ‘‘Whether a given number of molecules is
large enough to warrant the use of a smooth continuum description of matter
depends on the desired precision. Since matter is never continuous at sufficiently
high precision, continuum physics is always an approximation. But as long as the
fluctuations in physical quantities caused by the discreteness of matter are smaller
than the desired precision, matter may be taken to be continuous’’ (p. 6).

Nowadays, continuum physics is applied to studies of mechanics, thermody-
namics, materials science, fluid dynamics, acoustics, and geodynamics (Hutter and
Jöhnk 2004). The most important equations in these studies are balance equations
and constitutive equations. Balance equations express the relations between the
macroscopic properties of a system in terms of the flow of a quantity (e.g., mass,
energy, momentum, heat, entropy) incoming and outgoing from a given system’s
volume in a specific time interval. Balance equations are of a general nature and
contain no information about a specific material. Constitutive equations,
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conversely, are specific to an ideal material and approximate the material’s
response to external forces. The simplest example of a constitutive equation is
Hooke’s Law of elasticity, which states that the extension of an ideal spring is in
direct proportion with the load applied to it.7

One of the main application areas of continuum physics is fluid dynamics
(Acheson 1990). The description of a fluid as a continuous substance is the con-
ceptual model underlying the Navier–Stokes equations, i.e., a system of partial
differential equations describing the behavior of a fluid from a macroscopic per-
spective. Navier–Stokes equations have a series of interesting practical applica-
tions ranging over many fields, from the study of the atmosphere and of ocean
currents, to aerospace engineering. Their usefulness is due to the fact that they
describe any type of fluid motion, not only the ordered flux of low velocity motion,
but also the chaotic flux of turbulent motion, such as that of the air in the vortices
flowing around an aircraft wings or that of the gases in an internal combustion
engine. A solution for Navier–Stokes equations is not a trajectory, but a ‘‘velocity
field’’ or ‘‘flow field’’, and is a description of the velocity of the fluid at a given
point in space and time. In most applications, Navier–Stokes equations are non-
linear and therefore their solutions must be obtained through numerical simulation
methods. These numerical simulations, however, present a degree of complexity so
great as to require a particular branch of fluid mechanics called computational fluid
dynamics, to be properly investigated. (See Fig. 4.11 for a dynamic simulation
based on a computational fluid dynamics engine). The calculation method used is
that of finite volumes, in which the equations are integrated in a volume, upon
which some boundary conditions are imposed, and the inside of which is divided
into many elementary volumes of a finite dimension. The shift from the
Navier–Stokes equations to the simulation model entails a range of intermediate
mathematical and computational models, which are characterized by specific
construction assumptions and corrections. These simulations only approximately
describe the motion of a fluid, but are precise enough to solve many practical
problems in various fields of applied science and engineering.

Fuchs (2010) recently presented a continuum physics-based approach to
physical processes in the context of his dynamic theory of heat. Specifically, he
proposed a unification of the physics of mechanical, hydraulic, electrical, and
thermal processes based on uniform dynamical models of these processes, i.e.,
models with properties that vary continuously over time. In Fuchs’s approach,
rotational, electrical, and hydraulic phenomena are respectively conceived as the
results of the storage and flux of angular momentum, electric charge, and liquids.
These physical quantities behave equivalently to fluid-like substances flowing
from a higher to a lower level of the potential: ‘‘In continuum physics an intuitive
and unified view of physical processes has evolved: that it is the flow and the
balance of certain physical quantities such as mass, momentum, and entropy which

7 The law sufficiently approximates the behaviour of real materials called linear-elastic
materials.
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govern all interactions. The fundamental laws of balance must be accompanied by
proper constitutive relations for the fluxes and other variables. Together, these
laws make it possible to describe continuous processes occurring in space and
time’’ (Fuchs 2010, p. 7). By broadening these analogies to thermal phenomena,
entropy can be considered as a fluid-like flowing quantity, whose flow depends on
the difference of temperature between two systems or between different parts of a
system (Table 4.5). Fuchs highlighted how entropy plays a role similar to that of
heat in Carnot’s ‘‘caloric theory’’ thereby, with the further assumption that entropy
can be produced. Thus, the theory views entropy in terms of the everyday intuitive
concept of heat.

Fig. 4.11 Forced thermal convection at different wind speeds. The fluid motion is laminar under
low wind speeds and becomes turbulent under high wind speeds. Image from a simulation
conducted with the Energy2D simulation program, courtesy of the Concord Consortium. Web
site: http://energy.concord.org/energy2d
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4.8 Molecular Dynamics

In the late 1950s Berni Alder and Thomas Wainwright invented the Molecular
Dynamics simulation paradigm for studying the physics of liquids and particularly,
the transitions of matter among solid, liquid, and vapor states (Frenkel and Smit
2002; Rapaport 2004). Their modeling strategy consisted in considering a liquid as
made up of discrete particles corresponding to atoms and molecules. At the time,
Alder and Wainwright were using the computers at Lawrence Radiation Labora-
tory in Livermore to simulate a system made up of a few dozen ‘‘hard spheres’’ in
different conditions of density and temperature. Nowadays, however, thanks to
advances in numerical algorithms and computing architecture, molecular
dynamics allows for the simulation of systems consisting of hundreds to millions
of particles interacting in complex ways, for applications that range from materials
science to biochemistry and astrophysics. (See Fig. 4.12 for an example of a
molecular dynamics simulation).

The idea underlying the method is to solve the equations of motion for each
particle at a certain time tn to determine the velocity and position of each at the
subsequent time tn+1 and to iterate this computation to follow the particles’
movements until the system reaches an equilibrium state. The following steps can
be used to obtain the system’s temporal evolution:

1. define the system’s initial state, which is given by the position and the
momentum of each particle, and the boundary conditions;

2. calculate the forces acting on each particle;
3. numerically integrate the equations of motion to determine the new positions

and velocities of the particles;
4. repeat steps 2 and 3 until the system state does not change significantly over

time;
5. use statistical mechanics methods to measure a macroscopic property of the

system (usually temperature, measured as the system’s average kinetic energy).

Table 4.5 Comparison of different physical processes (adapted from Fuchs 2010, p. 59)
Process Flowing

quantity
Current Potential Potential

difference
Power

Gravity Gravitational
mass (m)

Current of gravitational
mass (Im)

Gravitational
potential (G)

DuG DuGIm

Hydraulics Volume of fluid
(V)

Current of volume (IV) Pressure (P) DP -DPIV

Electricity Electric charge
(Q)

Current of electric
charge (IQ)

Electric potential
(U)

Duel = -U -DuelIQ = U
IQ

Heat Entropy (S) Current of entropy (IS) Thermal potential
(T)

DT -DTIS
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The second step—the computation of the resultant force acting on each particle—
is the most laborious part of the computation and requires a model of the interaction
between molecules. In the classical hard-sphere model, the particles are considered
as impenetrable spheres interacting only by repulsion when at a very close distance.
More realistic models express the interaction energy between molecules, called
intermolecular potential, by using a function that depends on the distance between
the molecules’ centers of mass. The most used function is the ‘‘Lennard-Jones
potential’’, in which attractive interaction prevails for great distances and repulsion
predominates for short distances. Molecular dynamics simulations are considered to
be a type of ‘‘computer experiment’’. According to Rapaport (2004), ‘‘what dis-
tinguishes computer simulation in general from other forms of computation, if such a
distinction can be made, is the manner in which the computer is used: instead of
merely performing a calculation, the computer becomes the virtual laboratory in
which the system is studied—a numerical experiment’’ (p. 3).

The advantage of these numerical experiments over real ones is that they allow
for examination of a material’s behavior in situations that are difficult or impos-
sible to be reproduced in reality, e.g., under conditions of high density or tem-
perature. As noticed by Fox Keller (2003), the Molecular dynamics simulations of
the 1950s constituted an epistemological novelty compared to the numerical
simulations initiated in Los Alamos for the purpose of computation only. Whereas
the goal of the latter simulations was to solve equations derived from well-known
theories, in molecular dynamics, a real physical system was replaced for the first
time by a simulated artificial system. The aim, moreover, was to test approximate
theories when they existed, and to provide guidelines for constructing them, when
they do not.

Fig. 4.12 Phase transition between solid and liquid state in a molecular dynamics model of heat
propagation. Image from a simulation conducted with the Molecular Workbench software,
courtesy of the Concord Consortium. Web site: http://mw2.concord.org
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4.9 Compartmental Models

The compartmental models method is an approach to the modeling of ‘‘diffusion
phenomena’’ in biological, social, and economic systems. The diffusion can be that
of a molecular component in a cell, a pathogen in an epidemic disease, a product in
a market, or innovation in a social system. The system to be modeled is con-
ceptually subdivided into ‘‘compartments’’. Data or matter exchanges between
compartments are represented by flows, which are modeled by a system of
ordinary differential equations, with time as the independent variable. The
numerical solution of the equation system yields the behavior of the variables of
interest over time. What distinguishes the method from other equation-based
approaches is that the modeling process is based on a flow diagram to visually
represent the compartments and their mutual relations—a particularly useful tool
when the model consists of many compartments.

One field employing compartmental models on a broad scale is that of math-
ematical epidemiology (Anderson and May 1991). In fact, epidemiological
experiments are usually impossible or unethical, and mathematical models are
therefore important tools for gaining a better understanding of the transmission of
infectious diseases and evaluating various management strategies (Brauer et al.
2008). Compartmental simulations in epidemiology are generally based on
mathematical models of increasing complexity, such as the SIR model and its
variations. The SIR model considers each individual in a population as being in
one of three states: Susceptible, Infectious, and Recovered, represented respec-
tively by the letters S–I–R. These states could be conceived as compartments and
the interactions among them as the transition of a person moving from one
compartment to the next (Fig. 4.13).

The model’s underlying hypotheses are that the people within each compart-
ment are assumed to be homogeneous and ‘‘perfectly mixed’’, i.e., any inter-
individual differences and spatial positions are thought to be irrelevant.8 Moreover,
the system is considered to be deterministic, and the transitions among states are
modeled as their expected value. A system of three coupled ordinary differential
equations is used to model the assumptions about the nature and time rate of
transfer from one compartment to another:

dS
dt
¼ lN $ lS$ b

1
N

S

dI
dt
¼ b

I
N

S$ ðlþ vÞI

dR
dt
¼ vI $ lR

8 The term ‘‘perfect mixing’’ is used in chemical engineering to indicate the substances that are
mixed in a stirred tank reactor.
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where N is the population size, b is the contact rate, m is the recovery rate, and l is
the death rate (equal to the birth rate). It can be easily verified that the sum of all
these variations is zero, and therefore:

Sþ I þ R ¼ N

which expresses the constancy of population size, based on the hypothesis that the
death rate is the same as the birth rate. One of the most important aspects to
consider when using the model is that of optimizing the parameters present in the
equations on the basis of experimental data. As shown in Fig. 4.14, the population
of infected people very quickly reaches a peak value, after which it slowly
decreases, whereas the population of susceptible people soon begins to decrease,
asymptotically tending to zero. The population of recovered people gradually
increases up to a saturation point, following the typical ‘‘S-shape’’ of a logistic
curve.

The model can be rendered more realistic in many ways, for example by
considering the possibility that recovery from infection is not definitive and that a
person can be susceptible to infection again in the future. One need simply add a
feedback loop from the last compartment the first one (Fig. 4.15). In mathematical
terms, this corresponds to the introduction in the first equation of a new positive
term:

dS
dt
¼ lN $ lS$ b

I
N

Sþ aR

where a is the immunity loss rate.

Fig. 4.14 Time-related
behavior of the SIR model

Fig. 4.13 Visual
representation of the SIR
Model
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Compartmental models are also used in marketing and the social sciences. The
Bass model is a product-forecasting mathematical model that describes a product
diffusion process (Bass 1969). In the compartmental models approach to the Bass
model, the diffusion of a given product can be modeled as occurring between two
compartments respectively corresponding to potential customers and to customers
who have already bought the product. Potential customers are influenced to buy
the product by advertising and by word of mouth from existing customers, whom
are contacted through social interaction. A fraction of these contacts results in the
purchase of the new product, similarly to a contagion phenomenon, and the
advertising causes a constant fraction of the population of potential customers to
buy in each time period. One of the reasons for the success of the Bass model is
that it fits the data for nearly all product introductions, notwithstanding a wide
range of decision variables, such as product pricing and advertising expenses. The
Bass model has been extended to the diffusion of technological innovations
(Mahajan et al. 2000), by aggregating the population into the two categories of
innovators (the first to adopt a new technology) and adopters. Both the number of
customers of a new product and the number of adopters of a new technology
follow a logistic curve, as in the infection diffusion model.

4.10 Agent-Based Modeling

Agent-based modeling is a simulation paradigm allowing for the study of the
behavior of physical, biological, computational, and social systems. These systems
are conceived as if formed by a large number of elements, called ‘‘agents’’, which
interact with each other and with their environment. The nature of these elements
and of their interactions depends on the type of model; this can range from highly
idealized models for systems of theoretical interest to models that aim to represent a
real system for supporting policies and decision-making in detail. Agent-based
modeling is the result of studies conducted during the 1980s and 1990s on cellular
automata (Wolfram 1984), adaptive complex systems (Epstein and Axtell 1996;
Holland 1995; Kauffman 1995) and artificial life (Langton 1989). In turn, these
made up part of a research strand that had begun as far back as the 1940s with John
von Neumann’s studies on the construction of self-replicating machines. Von
Neumann, the inventor of computer logical architecture, began to investigate the

Fig. 4.15 SIR model with
the additional hypothesis of
people losing their immunity
after a certain time
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possibility of building a machine that would be able to self-replicate, i.e., a computer
containing instructions both for its operations and for creating a copy of itself. The
goal was to imitate the mechanisms of biological reproduction in a machine. Thus,
following a suggestion by Stanislaw Ulam, von Neumann employed the mathe-
matical construct of cellular automata—a computational architecture consisting in a
grid of cells, each containing its own data and instructions for changing its state
based on input received from neighboring cells. Over the following years, the
construction of artificial self-organizing systems was also a goal of Cybernetics. In
particular, Ashby’s Homeostat (1949, 1952) was a device made up offour units, each
able to exchange information with the other three about its condition (Fig. 4.16). The
variables examined were the units’ deviations from their equilibrium state repre-
sented by the position of a needle in a dial.

If deviation from stability exceeded a certain threshold, a system component
able to randomly modify the matrix went into action, and the system sought
equilibrium in this new condition. Ashby considered the Homeostat to be a bio-
logical systems model: ‘‘It’s process is clearly similar to that occurring in evolution.
There the rules are: test the organism against the environment; if the organism is
unfit, remove it; replace it by a new organism that differs from it in some random
way. In the homeostat the rules are: test the matrix for stability in the imposed
conditions; if it is unstable remove it; replace it by a new matrix with random
elements’’. (1952b, p. 292). Pickering (2010) noted that Stuart Kauffman’s studies
on random Boolean networks (Kauffman 1969) represented the ideal intermediary
between cybernetics’ analog simulations and the agent-based simulations of the
1980s. Kauffman introduced these networks as a model of genetic regulatory

Fig. 4.16 The Homeostat
(Ashby 1949, p. 78)
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networks, i.e., of the interactions between DNA segments in a cell.9 In the model, a
gene is represented by a binary device, with on and off states respectively sym-
bolizing the de-repression and repression of a gene, i.e., the transcription of its
DNA in mRNA and in proteins. The functional links between these ‘‘genes’’ are
represented by a network, in which the state of each gene at a certain discrete time
t ? 1 depends on the states of the other genes at the previous time t, and the
relations of any gene with the others is given by a Boolean function. Figure 4.17
shows a simple network made up of 4 elements, the state of gene Z at a certain
discrete time depends on the states of the other three genes. (The reader might also
note the structural similarity between this network, and Ashby’s Homeostat!).

It is, of course, impossible to study the evolution of these networks without a
computer, and that is why Kauffman’s research was based on simulation, which
actually yielded unexpected results. Networks in which every gene was randomly
connected to two or three other genes behaved in an ordered and stable manner. As
stated by Kauffman, ‘‘the genome is a complex net of interacting components
commonly thought to control homeostasis and differentiation through precisely
constructed control circuits among the genes. But I have found what seems to be a
new class of dynamically stable systems, which suggests that even haphazardly
constructed control nets of high molecular specificity undergo homeostasis and
differentiation’’ (1969, p. 177).

Research on random Boolean networks would have remained confined to the-
oretical biology, had not another, more complex, self-organizing artificial system
appeared on the pages of the mathematical games section in the journal Scientific
American (Gardner 1970). The system examined was a solitaire game conceived
by the mathematician John Horton Conway and named ‘‘Life’’. As described by
Gardner: ‘‘because of its analogies with the rise, fall, and alternations of a society

Fig. 4.17 A random Boolean
network. The larger arrows
show the connections from
genes W, X, Y to gene Z.
A possible Boolean function
of three variables is
represented on the right; this
defines the state of Z as a
function of the states of the
other genes

9 These interactions occur indirectly through protein synthesis, the transcription factors in turn
determining the synthesis, or the synthesis inhibition, of other proteins and therefore, of genetic
expression.
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of living organisms, it belongs to a growing class of what are called ‘simulation
games’—games that resemble real-life processes’’ (ibid., p. 120). The game
develops in an infinite two-dimensional grid of square cells, each existing in only
one of two possible states: alive or dead. Every cell interacts with its adjacent cells
diagonally, horizontally, or vertically, for a total of 8 cells, and all cells change
their state simultaneously, according to the following rules:

1. Every cell alive with less than two neighboring cells alive dies (under-
population).

2. Every cell alive with more than three neighboring cells alive dies (over-
population).

3. Every cell alive with two or three neighboring cells alive stays alive (survival).
4. Every dead cell with exactly three neighboring living cells becomes alive

(birth).

Fig. 4.18 Conways’ Game of Life, starting from an initial random condition. a t = 0. b t = 50.
c t = 900. d t = 1350 (Hanson 2009, p. 775)
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The game consists in choosing an initial configuration (‘‘seed’’) and in letting
the system evolve through a series of ‘‘generations’’, corresponding to discrete
time-steps (Fig. 4.18). The only way to foresee what will happen to a certain seed
is to observe what happens in the simulation. The name ‘‘Life’’ is somewhat
justified, due to the range of cell patterns that can emerge:

• Static patterns.
• Oscillating patterns.
• Patterns moving through the cells.

Some initial configurations may grow indefinitely, and others may create copies
of themselves, such as in von Neumann’s self-replicating machines. The Life game
is one of the most convincing demonstrations of ‘‘emergent phenomena’’ in sys-
tems ruled by simple evolution rules.

In the early 1980s, these self-organization- and emergent phenomena concepts
were not yet based on a theoretical framework and had not found their place in
academia. These ideas transmuted into an accepted field of scientific research only
after Stephen Wolfram published his studies on cellular automata (Wolfram 1984).
Wolfram realized that models such as von Neumann’s or Conway’s were too
complex to be analyzed in detail and that universal rules were unlikely to be
derived from them. Wolfram therefore focused on one-dimensional cellular
automata. The term refers to automata formed by a single row of cells, each with
two only two possible states and characterized by the elementary rules whereby
each cell changes state in function of the states of its two neighboring cells. It is
possible to code all the possible rules and to use computer simulations to explore
the consequences of each one. On the computer screen, the evolution of a cellular
automaton is represented by a sequence of horizontal lines, each corresponding to

Fig. 4.19 Wolfram classes of cellular automata (Sutner 2009, p. 757)
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a generation. A moving image is formed thereby, which reveals many types of
patterns, from the simplest to the most complex, which evoke the geometrical
design in an oriental carpet (Fig. 4.19). In his landmark paper ‘‘Universality and
complexity in cellular automata’’, Wolfram (1984) categorized the patterns pro-
duced by one-dimensional cellular automata into four distinct classes:

• Class I: homogeneous state;
• Class II: simple stable or periodic structure;
• Class III: chaotic (non-repeating) pattern;
• Class IV: complex patterns of localized structures.

In terms of dynamical systems, the first three of Wolfram’s classes respectively
correspond to fixed-point attractors, periodic attractors, and strange attractors
These correspondences are not casual, as a cellular automaton can be considered a
particular type of discrete dynamical system, i.e., ‘‘a spatially-extended dynamical
system in which spatially-discrete cells take on discrete values, and evolve
according to a spatially-localized discrete-time update rule’’ (Hanson 2008,
p. 768). In two-dimensional cellular automata, each element in a cell can interact
only with the cells of its ‘‘neighborhood’’, which can have either five cells (a von
Neumann neighborhood) or nine (a Moore neighborhood), as shown in Fig. 4.20.

Some evolution rules are computationally irreducible, which means that any
attempt to predict the system’s future states will involve more computational effort
than simply having the system generating its own behavior. In Wolfram’s words:
‘‘whenever computational irreducibility exists in a system it means that in effect
there can be no way to predict how the system will behave except by going
through almost as many steps of computation as the evolution of the system
itself.’’ (Wolfram 2005, p. 739). In particular, this means that no mathematical
formula exists for describing the overall system’s behavior. Computational irre-
duciblity is one reason why Wolfram (ibid.) calls the study of cellular automata a
‘‘new kind of science’’. This new kind of science has its fullest expression in

Fig. 4.20 Two types of cellular automata neighborhood: Moore neighborhood (left) and von
Neumann neighborhood (right)
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digital physics, a research program derived from cellular automata research, in
which the universe itself is considered to be a giant computer, which continuously
calculates its future state (Fredkin 1990).

As models of physical systems, cellular automata are an alternative to both
classical mathematical models, which are idealized and can be solved analytically,
and to numerical models, which are more realistic, but can only approximately
solved. Their originality of this new approach is that it is a sort of non-numerical
digital simulation: ‘‘To appreciate the originality of this type of modeling, one
should keep in mind that there is no attempt here to solve any given equation, in
fact cellular automata do not engage in any numerical processing, they merely
perform simple space-dependent logical decisions’’ (Vichniac 1984, p. 97).

Wolfram cellular automata are the deterministic limit case of a more general
class of stochastic cellular automata, which conversely employ a probabilistic
evolution rule. Stochastic cellular automata are equivalent to the Ising model, a
statistical physics model of ferromagnetic materials. Under the action of an
external magnetic field, these materials become spontaneously magnetized and
retain their magnetization for a long time after the magnetic field has been
removed. This magnetization is maintained, however, only below a certain critical
temperature called Curie Temperature. If heated above this temperature, the
material becomes paramagnetic. The phenomenon is caused by the alignment of

Fig. 4.21 Cellular automata simulation of the Ising model. Image courtesy of Peter Young and
Bernd Nottelmann. Web site: http://physics.ucsc.edu/*peter/ising/ising.html
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electron spins in the material magnetic domains. In the Ising model, spins may be
oriented in only two ways, respectively represented by a binary variable with the
values of 1 and -1, usually denoted by the ideograms : (spin-up) and ; (spin-
down). A spin ‘‘flip’’ (change in orientation) is a random event, the probability of
which depends on interaction with neighboring spins; thus the system’s behavior
depends on simple local rules of a probabilistic nature. As the temperature
increases, the Ising model simulation reproduces the phase transition between the
material’s two different macroscopic states (from ferromagnetic to paramagnetic)
(Fig. 4.21).

Another class of models that are equivalent to cellular automata with proba-
bilistic rules pertains to percolation theory, a branch of physics examining the
properties of disordered media, such as porous rocks, gels, polymers, ionic con-
ductors, and proteins (Stauffer and Aharony 1992). These media are modeled as
sites lattices, which can represent properties of the material or connections among
molecules (Fig. 4.22). Each site is empty with probability p and occupied with
probability 1-p. The process typically observed is that for a certain critical value of
p, a phase transition occurs between two macroscopic states of matter, such as
isolating or conductor, magnetic or paramagnetic, viscous or gel. An example from
everyday life is that of a boiled egg in which heat activates many connections
among the egg’s protein molecules, leading to a sol–gel transition phase.

Due to their capacity to create order from disorder and to originate self-
replicating structures, cellular automata were soon considered a potential

Fig. 4.22 Simulation of a model of percolation on a network. Image made with the PercoVIS
software, courtesy of Daniel Larremore. Web site: http://amath.colorado.edu/student/larremore/
PercoVIS.html
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conceptual model for life evolution. During a workshop held in Los Alamos in
1987, a new research field using cellular automa was created to investigate the
emergence of order in nature—i.e., Artificial Life (Langton 1989). The Artificial
Life method is that of creating virtual worlds where digital creatures evolve. The
first examples of these worlds were Tierra (Ray 1991) and Avida (Adami and
Brown 1994). Artificial Life simulated worlds are more complex than cellular
automata and their elements must be more autonomous, to interact with a greater
variety of behaviors, and to adapt to environmental changes.

These simulation needs led to the development of the agent-based modeling
paradigm during the 1990s (Macal 2009). According to Macal and North (2010), a
typical agent-based model’s elements are:

1. A set of agents, their attributes and behaviors.
2. A set of agent relationships and methods of interaction: An underlying topol-

ogy of connectedness defines how and with whom the agents interact.
3. The agents’ environment: Agents interact with their environment in addition to

other agents.

An agent-based model allows for the simulation of any kind of system, the
overall behavior of which emerges from the behavior of its individual elements.
Due to this feature, agent-based simulation is used to model many kinds of natural
or artificial systems, including:

• ecosystems, the agents are animals and plants;
• societies, the agents are families, citizens, or voters;
• markets, the agents are customers;
• competition and supply chains, the agents are companies;
• epidemics, the agents are people;
• urban traffic, the agents are vehicles;
• transportation systems, the agents are passengers.

The common feature of these systems is that they cannot be easily described
globally via equations. Simulation is the only alternative to observation of the real
system. Agent-based simulations are sometimes visually similar to those of cel-
lular automata. Agents are represented with small colored squares that change
color or move on the screen creating stable or continuously changing patterns
throughout the simulation. An example frequently cited as forerunner of agent-
based simulation is the ‘‘Segregation model’’, invented by the economist Thomas
Schelling (1971) to describe the behavior of two social groups differing by race,
language, or socio-economic class and living in the same urban area. In the model,
the agents are the members of both groups and the environment is represented by a
rectangular lattice of cells corresponding to houses. A cell can be occupied by an
agent of any of two groups or it can be empty. Each agent’s state is characterized
by a certain ‘‘level of happiness’’, which depends on its preference for having
neighbors of its own social group. Each agent interacts with the agents occupying
the 8 cells around its own, and at every discrete time-step, it must decide whether
to move to another area or not. The rule is that if the number of neighbors of the
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other group exceeds a certain level, the agent moves to a free cell chosen randomly
in a nearby area, where it can be ‘‘happy’’; it otherwise remains in its cell.

A typical simulation begins with a random initial distribution of agents, and
each time-step corresponds to a decision and the consequent parallel update of all
cells (Fig. 4.23). The threshold by which an agent decides to move to another area
is expressed by a parameter p. An analysis of the model’s behavior for many
different p values throughout the simulation shows that even a small preference for
having neighbors of the same social group can lead to a high level of segregation
(shown by the formation of same-colored cell clusters). Schelling’s model was the
first example of an agent-based approach to social phenomena simulation. In the
1990s, this approach was the main research approach used to study complex
adaptive systems conducted at the Santa Fe Institute (Axelrod 1997; Epstein 1999,
2006; Epstein and Axtell 1996). The application of agent-based simulation to the
study of social phenomena constitutes what Epstein (1999) defined ‘‘generative
social science’’ and therefore a science that aims to answer ‘‘The Generativist’s
Question’’:

• How could the decentralized local interactions of heterogeneous autonomous
agents generate the given regularity? (ibid., p. 41).

Epstein holds that agent-based modeling is a new scientific instrument that
makes it possible to conduct the ‘‘The Generativist’s Experiment’’:

• Situate an initial population of autonomous heterogeneous agents in a relevant
spatial environment; allow them to interact according to simple local rules, and
thereby generate—or ‘‘grow’’—the macroscopic regularity from the bottom up
(ibid., p. 42).

Fig. 4.23 Simulation of the Schelling segregation model. Image courtesy of XJ Technologies.
Web site: http://www.xjtek.com
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One of the early agent-based models of human society was Sugarscape (Epstein
and Axtell 1996). The model’s structure is similar to Schelling’s segregation
model, but in this instance, each cell holds different quantities of ‘‘sugar’’—the
metaphor for the resources available to the inhabitants of an artificial world. The
model allows for the analysis of social phenomena, such as seasonal migrations,
pollution, sexual reproduction, combat, and the transmission of disease. Another
example is Jager et al’s (2001) riot behavior model, in which agents, imagined as
the fans of two opposing football clubs, move in a two-dimensional space and
decide to fight or retreat based on their perceived neighborhood agents’ behavior.

A highly researched topic in this field is the relation between individualism and
cooperation (Axelrod 1984, 1997). The reference theory for these studies is Game
Theory, which was introduced in the 1940s by John von Neumann and Oskar
Morgenstern. The situation typically described in this theory is that of two players
who interact, each having to select a strategy that could potentially maximize gain.
The players are presumed to be rational, i.e., they know the gains or losses
associated with every possible move, and they base their decisions on a rational
analysis of consequences. One of the most studied games is the ‘‘prisoner’s
dilemma’’, a simple two-player game with only two strategies: collaboration and
defection. In the simplest case, the players meet only once and the game analysis
game reveals defection to be the best strategy. Player strategies, however, become
more complex in the iterative version of the game. Axelrod (1997) examined series
of simulations in which the two players can meet unlimited times and can even
take their adversary’s past actions into account. In this instance, however, it turns
out that defection is not necessarily the most effective strategy.

Spatial variants of the prisoner’s dilemma are cellular automata in which agents
are at the vertices of a network, generally a two-dimensional square lattice, and in
which every agent chooses the next move in function of the neighboring agents’
strategies (Nowak and May 1992). Simulations show that patterns form sponta-
neously with collaborator areas alternating with defector areas and that these
patterns can be stable, periodic, or chaotic. Evolutionary games based on spatial
variants of the prisoner’s dilemma are used in biology to understand the ways in
which altruistic behaviors typical of cooperation can emerge from adaptive
mechanisms based on natural selection (Nowak 2006).

Many continuous or discrete-time dynamical systems have a correspondent
agent-based representation, which is not however based on equations but on the
direct simulation of the system’s individual elements’ attributes and behaviors, and
on their interactions with each other and with the environment. For example,
Castiglione (2010) compared the behavior of the Lotka-Volterra equations with an
agent-based version of the same predator–prey model, in which prey (e.g. rabbits)
and predators (e.g. foxes) occupy the points of a square lattice, and the system’s
evolution is given by the following probabilistic rules:

1. if a rabbit is close to a fox, then with a certain probability pb the rabbit
disappears and a new fox occupies the point previously occupied by the rabbit;
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2. if a lattice point is empty, then with a certain probability pa, a rabbit is born at
this point;

3. if a lattice point is occupied by a fox then with a rate d the fox dies and the
lattice point becomes empty.

The conclusion was that the agent-based rules reproduce the same oscillatory
behavior as the ordinary differential equations system, the only difference being the
presence of spikes in the curves, which are due to the model’s stochastic nature
(see Fig. 4.24). The agent-based model works more accurately, however, when
representing situations in which small fluctuations can drive the system to a
completely different state. For example, in the equation-based Lotka-Volterra model,
the predator population may diminish to extremely low numbers but then grow
again, whereas with chance fluctuations the population may actually become extinct.

Fig. 4.24 Comparison between an agent-based predator–prey model (b) and the numerical
solutions of the Lotka-Volterra Equations (c). Image courtesy of Filippo Castiglione (2010) and
Scholarpedia. Web site: http://www.scholarpedia.org
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Agent-based models are therefore able to represent systems in which the ran-
dom behavior of even a single element can have macroscopic consequences, as
occurs in biological evolution, in which even the random mutation of a gene can
cause overall organism changes. Barnes and Chu (2010) called this property
irreducible stochasticity, and distinguished it from reducible stochasticity. They
specified that the latter allows for the use of statistical methods to extract deter-
ministic features from random events, as in the kinetic theory of gases, or in the
study of the Brownian motion of particles suspended in a liquid. A consequence of
irreducible stochasticity is that random events cannot be represented by their
average values.

An important feature of agent-based models, and one that distinguishes them
from equation-based models, is their capacity for reproducing effects that depend
on the spatial positions of the system’s element or on the topology of their con-
nections. For instance, as shown by de Roos et al. (1991), an agent-based version
of the Lotka-Volterra model also allows for the simulation of the effects of indi-
vidual prey and predators’ positions and mobility. Phenomena such as the for-
mation of continuously changing patterns in the spatial distribution of the two
populations and regions oscillating differently at different spatial scales are
highlighted thereby.

Rahmandad and Sterman (2010) used a compartmental model to compare the
results of the SIR model epidemic diffusion simulation with those of an agent-
based model presenting the same parameters. In the agent-based model, they

Fig. 4.25 Agent-based simulation model of the SIR dynamics of contagion model. On the left
are the options which allow for selection of different network structures. Image courtesy of XJ
Technologies. Web site: http://www.xjtek.com
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explored five different network topologies: fully connected, random, small world,
scale-free, and lattice (Fig. 4.25). They concluded that network topologies and
individual heterogeneity affect the contagion dynamics, and that the agent-based
model allows analysts to examine questions that are not easily modeled in the
differential equations approach.

In general, due to their capacity to directly represent the individual elements in
a system, agent-based models can describe situations such as the movement of
animals in a geographic area, the urban development of a city, the visitor stream in
a museum or passenger flow in a subway with a very high degree of spatial
realism. In brief, agent-based models gradually freed themselves from some of
constraints of cellular automata, and particularly improved the following features:

• Time; the agents’ interactions with each other and the environment can be
asynchronous, i.e., they do not necessarily need to occur all at once or in
constant time-steps, but can even depend on events.

• Rules; the rules determining the agents’ behaviors range from simple local rules
to complex decisional algorithms, which can require the use of equations.

• Autonomy; agents can have more autonomy, for example they can act proac-
tively or based on the memory of what happened previously.

• Space; agent interaction topologies may include networks, continuous space,
and geographical maps.

In concluding this section, we shall examine the significant difference between
first- and second-order emergent properties, which originated in the field of
Agent-Based Computational Sociology (Squazzoni 2012). A first-order emergent
property is generated by localized interaction among agents: it does not pertain to
some agent, but only to the system as a whole. It therefore only refers to concepts
that were not previously introduced into the model. A second-order emergent
property, conversely, is recognized by the agents involved and is consequently
supported, modified, or contrasted by them. For this to be possible, the agents must
have the cognitive capacity to recognize the characteristics of the system in which
they find themselves operating and the consequences of their actions. This second
type of property involves direct feedback from the macro- to the micro-level of
system’s description.

4.11 System Dynamics

Formulating a mathematical model to represent a part of reality in a non-idealized
way is not always an easy or even possible task. This book has already dealt with
problems inherent to the modeling of even relatively simple systems when
attempting to account for interactions and nonlinearities, which in the real world
are the norm rather than the exception. Just imagine then the challenge involved
when using equations to represent the management of an organization, the urban
planning of a city, the economic policy of a nation, the consequences of energy
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and environmental decisions on the climate changes, or the motivation level of a
company’s employees! Which underlying theories should be chosen for the
model? How should people’s decisions and behaviors be modeled? How should
the interactions among the system’s different parts be represented?

System dynamics—a modeling and simulation paradigm that originated in the
late 1950s—can provide some valid answers to these questions, as it is charac-
terized by a particular conceptual and methodological approach to the study of
complex systems (Forrester 1961, 1968; Sterman 2000). According to Richard-
son’s (2009) definition: ‘‘System dynamics is a computer-aided approach to the-
ory-building, policy analysis and strategic decision support emerging from an
endogenous point of view. It applies to dynamic problems arising in complex
social, managerial, economic, or ecological systems—literally any dynamic sys-
tems characterized by interdependence, mutual interaction, information feedback,
and circular causality’’ (p. 8967).

In comparison with the approaches described in the preceding sections, system
dynamics is a particular and somewhat surprising case. Although it has been
applied for many decades to problems in a wide range of fields, and despite the
availability of a worldwide community of experts and practitioners, system
dynamics is not actually a well-known and used discipline. (It has even encoun-
tered direct hostility in some academic institutions!) A brief chronicle of the
history of this discipline and its main concepts can help explain at least some of the
reasons for this paradoxical situation: The first distinguishing feature of system
dynamics is that it is in large measure the creation of only one man—Jay Wright
Forrester. Forrester was an electrical engineer who began his academic researcher
career at the Massachusetts Institute of Technology in 1939. During World War II,
Forrester worked successfully on applying the theory of feedback control systems
to the development of servomechanisms to control radar antennas and other mil-
itary equipment. The servomechanism theory, with its emphasis on the ‘‘closed-
loop’’ concept, was also one of the main influences on the then-budding field of
cybernetics, although Forrester‘s work developed autonomously from cybernetics.
During the period ranging from the end of WWII to the mid 1950s, Forrester
contributed to the development of the first digital computers for military purposes,
which reached its peak with the creation of the SAGE national air defense system.
In particular, Forrester invented random-access magnetic memory as a part of
these projects, i.e., what eventually became the industrial standard for computer
memory. In the mid 50s, however, his interests changed course, and he turned to
the application of engineering concepts to organizational policy study. In 1956,
Forrester became professor at MIT Sloan School of Management, and he began to
formulate models of economic and social systems by using computer simulations
to analyze the implications of those models. The first result of these studies was the
publication of his 1961 seminal book called ‘‘Industrial Dynamics’’, which
employed new models based on the feedback concept to analyze a series of
business and industrial problems: ‘‘Industrial dynamics is the study of the infor-
mation-feedback characteristics of industrial activity to show how organizational
structure, amplification (in policies), and time delays (in decisions and actions)
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interact to influence the success of the enterprise’’ (1961, p. 13). In the following
years, Forrester extended his models to other application fields, including the
dynamics of urban development (1969) and of world growth (1971). His world
growth models achieved international fame, when they were popularized in the
book ‘‘The Limits to Growth’’ (Meadows et al. 1972), which enjoyed widespread
dissemination and became a reference book for the environmental movement. Yet,
the book gave rise to (even quite heated) debate, and its models were harshly
criticized by professional economists. Perhaps due to this criticism, developments
in the field of system dynamics slowed down and for many years, this line of
research lay at the fringes of the academic world. During the 1990s, two scientific
and cultural advances kindled new interest in system dynamics: (1) the increasing
availability of software environments to create this type of simulation on personal
computers, and (2) the publication of Peter Senge’s book ‘‘The Fifth Discipline’’
(1990), which placed system dynamics in the wider context of systems thinking.
Moreover, the many entries dedicated to this discipline, which appear in the
Encyclopedia of Complexity and Systems Science (recently edited by Meyers
2009), bear witness to the currently healthy status of the approach. These entries
pertain to a broad range of topics, such as public policy applications (Andersen
et al. 2009); environment, energy, and climate change models (Ford 2009);
organizational learning (Maani 2009); and economics (Radzicki 2009).

The conceptual premise of system dynamics is that the behavior of a system
depends on the structure of the cause-and-effects relations among its parts. System
dynamics’ models are usually created to examine specific social, managerial,
economic, or ecological/environmental problems. Thus, the problem guides the
modeler in defining which key variables must be included to describe the system.
System dynamics takes on an endogenous point of view: the system is considered
to be causally closed, and the modeler must create a structure that should be able
to reproduce some aspects of the problem on its own, with no need for external
explanations. In other words, external elements are seen as triggers of the system’s
behavior, but the causes of this behavior are considered to be internal to the
system. This point of view stems from the observation that organizational or social
improvement initiatives frequently fail, not because of external causes but due to
internal tendencies, such as tendency toward equilibrium.

The modeling method consists in (1) building the system’s causal structure by
using basic building blocks to be visually combined in a map, and (2) using
equations and rules to describe the functional relations that exist among these
elements. The basic elements of a system dynamics model are as follows:

• Stocks (or ‘‘levels’’) are the variables representing the system state at a given
time and can be imagined as containers storing data or materials. Stocks are
visually represented as rectangles with one or more inflow-outflow components,
represented by large arrows;

• Flows (or ‘‘rates’’) are the materials or data flows incoming or outgoing from a
stock. Flows are visually represented as valves on the arrows regulating the flow
of input or output and representing the stocks’ rate-of-change factors thereby.
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Flows can enter a stock either by coming from another stock or from an external
source, and the outgoing flows can end up in another stock or in an external
‘‘sink’’ (both sources and sinks are represented by a picture of a cloud);

• Feedback loops are closed paths connecting a stock with its flows, i.e., an effect
with its causes. The feedback consists in the transmission of information about
the state of a stock to other parts of the system, and it can be direct or indirect,
through the action of other variables;

• Limiting factors are constants that limit the data or material quantity to be stored
in the stocks.

Examples of the above elements are illustrated in Fig. 4.26, which is a system
dynamics version of the Lotka-Volterra predator–prey model.

From a mathematical perspective, the variation of a stock S can be expressed
through the differential equation:

dS
dt
¼ IðtÞ $ OðtÞ

where I(t) and O(t) are respectively the incoming and the outgoing flows; the level
S(t) at any given time can be calculated by integrating the previous equation:

SðtÞ ¼ SðtoÞ þ
Z
½IðtÞ $ OðtÞ(dt

Thus, from a purely mathematical standpoint, a system dynamics model is
comparable to a dynamical system the evolution of which is represented by a
system of coupled, nonlinear, first-order differential equations, to be solved
through numerical methods. It differs, however, from other equation-based

Fig. 4.26 A system dynamics predator–prey model. Image courtesy of Tom Fiddaman. Web
site: http://www.metasd.com
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simulation methods because one does not start modeling the system by writing the
equations, but by visually representing the system’s causal structure. Once this
structure has been created, the relations among variables may be described by way
of algebraic equations and logical rules, and the modeling software automatically
creates the difference equations to be numerically solved. The modeler must
choose a numerical algorithm and an appropriate time-step. The simulation output
is usually given by graphs showing the behavior of one or more variables over
time. For instance, Fig. 4.27 shows a screenshot of a simulation of Forrester’s
urban dynamics model. On the left are sliders for modifying input variables related
to housing, job training, and business development; the graph shows the behavior
over time of the output variables total population, unemployment rate, underem-
ployment, new enterprise, and mature business.

System dynamics modeling environments also allow for the creation of
‘‘microworlds’’ that are simulations of real systems such as a firm, a market, a
production system or an ecosystem, endowed with user-friendly interfaces and
sometimes, gaming elements. Microworlds provide managers or students with
‘‘virtual labs’’ for testing their strategies and ideas. These are also ‘‘microcosms of
real business settings where teams of managers together learn by conducting
experiments that are difficult or impossible to conduct in real business’’ (Senge
1990, p. 274).

Fig. 4.27 Urban Dynamics model. Image courtesy of XJ Technologies. Web site:
http://www.xjtek.com
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Another way to represent a system’s structure is that of ‘‘causal maps’’, i.e.,
qualitative representations that are much simpler than a stocks-and-flows diagram
representing the inter-variable relations by arrows. Specifically, a causal map
describes two kinds of possible relations between two variables A and B:

• same sign relations, in which B also increases (or decreases) as A increases (or
decreases);

• opposite sign relations, in which B respectively decreases (or increases) as
A increases (or decreases).

Same sign and opposite sign relations are respectively indicated by the letter
s (or the plus sign) and by the letter o (or the minus sign). Casual maps are
commonly used in the first steps of model creation to elicit experts’ knowledge, or
later on, to explain the model’s structure to users and stakeholders.

To understand the ways in which structure creates behavior in the system
dynamics approach to modeling, one can start by analyzing the feedback loop
dynamics, which can be of two types:

• reinforcing (or positive) loops;
• balancing (or negative) loops.

Whereas reinforcing loops determine the system’s growth or decay, balancing
ones lead it to stability. Reinforcing processes are forces that drive the growth (or
decline) of a system and respectively correspond to what are commonly called
virtuous circles or vicious circles. Growth of funds deposited in a bank account due
to interest payments, or debt accumulated on a credit card are examples of these
reinforcing loops. Moreover, in a product diffusion process, an increase in the
number of customers leads to further word of mouth communication between
current and potential customers (see Fig. 4.28). A positive word of mouth effect
results in a sales increase, which, in turn, causes an increase in the number of
customers. This feedback circuit determines an exponential growth of the number
of customers over time. At the same time, however, empirical reality teaches us
that no process can grow indefinitely; thus sooner or later, a reinforcing loop will
encounter the limiting effect of a balancing loop.

Fig. 4.28 Example of a reinforcing feedback loop
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In a balancing loop, the variables influence each other, such that they stabilize
the system. Given that the relation between some variables is of opposite sign, it
limits the effect of actions aimed at modifying the system. Examples of these
feedback loops are the functioning of a thermostat or a product’s potential market
saturation. In the example of product diffusion (see Fig. 4.29), an increase in the
number of customers causes an increase in market saturation (due to the market
size limiting factor); this situation leads to a decrease in sales, which in turn causes
the number of customers to decrease. The net effect is that the number of cus-
tomers starts below a certain equilibrium level and over time moves toward that
level. In general, a balancing loop generates goal-seeking behavior by detecting a
gap between the current and desired levels in a stock, and initiating corrective
action.

In a system, feedback loops do not operate separately, but are interconnected,
and it is their interaction that produces the system’s global behavior. When a
positive and a negative loop interact with each other, as is shown in Fig. 4.30, they
produce a dynamic known as shift of loop dominance. In the first time interval, the
dynamic is dominated by the reinforcing loop (R), and the curve slope therefore
increases. In the second time interval, however, it is dominated by the balancing
loop (B), which leads to a curve slope decrease. The system eventually reaches
stability and thereby yields the same logistic curve appearing in other types of
models (see Sects. 4.3 and 4.6). Only nonlinear systems are able to dynamically

Fig. 4.29 Example of a balancing feedback loop

Fig. 4.30 The shift of loop dominance phenomenon
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change their behavior due to the effect of an internal mechanism such as the shift
of loop dominance.

The concept of delays is another important system dynamics model feature;
these are represented by a double line interrupting the arrow connecting two
variables. Actions do not always result in an immediate consequence. A long
period of time may pass before change in a variable affects the other variables
linked to it. This delay can explain how problems arising in a system are not
necessarily the consequences of recent decisions, but can date from a long time
previously, even if the consequences become evident only in the present. A linear
view of a problem conversely does not take this aspect into account. The presence
of delays, moreover, renders the task of solving the problem more complicated.
The solution needs time develop, but the problem can worsen, even significantly,
during this period, because another feedback loop remains dominant. Furthermore,
the presence of delay in inter-variable relations usually causes some oscillations
around the target value, which proportionally increase in amplitude with delay
duration.

One of the strengths of the system dynamics approach, as compared to other
organizational, economic, and social systems research methods, is its potential for
including both ‘‘hard’’ and ‘‘soft’’ variables in the model. The former are quan-
titative and the latter more qualitative (or only semi-quantitative) and are linked to
human factors such as motivation, satisfaction, or stress. In many application
contexts, the knowledge in the models is provided by experts and therefore, by
people having gained some knowledge of the system through study or experience,
which is useful to describing the model’s boundaries, structure, and expected
behaviors. Hence, the field of system dynamics provides a series of methods for
eliciting, articulating, and describing the knowledge contained in these experts’
mental models as well as for constructing simulations on the basis of these models
(Ford and Sterman 1998).

4.12 Cellular Modeling and Simulation

Progress in the fields of biochemistry, molecular biology, and cell physiology,
coupled with emerging laboratory techniques, have led to an unprecedented
amount of data and information on biological processes, resulting in the creation of
bioinformatics databases. Some important examples are the Reactome10 database
of biological pathways, and the Human Connectome Project,11 the goal of which is
to map anatomical and functional networks within the human brain. In fact, the
next step on the scientific frontier is to understand the mechanisms that regulate
the functioning of biological systems. In the endeavor to achieve this goal, sci-
entists are now focusing on simulation as an instrument to be used alongside

10 Web site: http://www.reactome.org.
11 Web site: http://www.humanconnectomeproject.org.
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laboratory research. Thus, in addition to in vivo and in vitro testing, biologists
today have at their disposal in silico testing, i.e., a new type of testing performed
via computer simulation.

One constantly growing field that shows great synergy among theory, experi-
mentation, and simulation is that of cellular modeling and simulation (Bolouri
2008; Palsson 2011; Szallasi et al. 2010)—a new paradigm examining the func-
tioning of living cells. A cell is a complex system, but unlike the other complex
systems examined herein, one cannot account for its functioning by using equa-
tions derived from a few general laws, e.g., as occurs in physics or chemistry, nor
by referring to the interaction of many individual elements, as in the instance of
emergent phenomena, which characterize agent-based models. Indeed, a cell is a
structure made up of functionally specialized components, which are organized in
a hierarchy of molecular components, modules, and systems. Thus, a cell is similar
to a surprisingly complex machine, and it is no surprise that scientists have
compared the reconstruction of cellular pathways to a task of ‘‘reverse engineer-
ing’’ (i.e., discovering a cell’s biological mechanisms by analyzing its structure
and function). Moreover, the feedback mechanisms in cellular simulation models
are thought to be similar to those of control theory (Rice and Stolovitzky 2004). In
this engineering-based approach, a theoretical reconstruction of the functioning of
biological systems is currently underway. The aim of this endeavour is to pave the
way for synthetic biology (Fu and Panke 2009; Schmidt et al. 2009), which will
lead to the actual construction of biological systems not found in nature.

Fig. 4.31 Schematic diagram for the Saucerman-McCulloch (2004) cardiac myocyte model.
Image courtesy of The CellML Project. Web site: http://www.cellml.org
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Simulating cellular pathways (e.g., signaling, metabolic, or gene regulatory
pathways) can be done in many ways. In general, two stages in the modeling and
simulation process can be identified:

1. the creation of a map that visually represents the entities constituting the system
(e.g. proteins, metabolites, or genes) and their functional connections;

2. the description of these connections through a system of nonlinear ordinary
differential equations.

In most of these applications, the map can include tens of elements and may
resemble a technical diagram or an electronic circuit (Fig. 4.31). Cellular simu-
lation modeling environments include tools to allow scientists to visually create
this type of map by using pre-existing graphical objects to represent functional
elements. Similarly to as occurs in the analysis and design of control and electronic
circuits, biologists seek basic functional modules that can be conserved and reused
as building blocks, or even as ‘‘standard biological parts’’ (Cooling et al. 2010).
One of the most frequently used techniques to translate the map into a system of
equations is mass-action kinetics, a model of enzyme kinetics used in biochemistry
to describe the behavior of reactants and products in a chemical reaction. The
initial conditions are the concentrations, diffusion coefficients, and locations of the
molecular species that made up the model. The simulation software then executes

Fig. 4.32 Comparison of two plots representing the simulation of cellular oscillations in the
OpenCell modeling environment. Image courtesy of The CellML Project. Web site: http://www.
cellml.org
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the calculations required for the numerical resolution of the equations and visu-
alizes the results as graphs, expressing the time-related changes in molecular
component concentrations (Fig. 4.32).

As a modeling method, ordinary differential equations may be accompanied by
other methods such as partial differential equations and stochastic methods,
respectively, to model spatial diffusion processes, and to account for the noise
present in biological systems. Simulation results are compared with real bioin-
formatic database data or with those of new experiments. For example, the sim-
ulation model predictions for metabolic and cardiac cell models were later
experimentally validated. Thus, in a virtuous circle, simulation results may be used
to redefine experimental protocols, which in turn can generate new data to improve
simulation results.

4.13 Comparing Paradigms

In many situations, the nature of a studied system may naturally lead to the
selection of a specific modeling strategy. The choice may be based on an existing
theory of reference or on some specific feature of the system. For instance,
whereas the study of the motion of a body is commonly described by using
Newton’s mechanics methods, studying the turbulent motion of a fluid calls for
Navier–Stokes equations. The question of simulation paradigm selection can
become more complex, however, in situations allowing for a system to be modeled
in different ways. For example, as described in the present chapter, matter can be
modeled as if made up of atoms and molecules or as a continuous substance.
Furthermore, some biological and social systems can be modeled via compart-
ment, agent-based, or system dynamics models, and the relative effectiveness of
these different approaches is not easily comparable, as it depends on the purpose of
the model (Rahmandad and Sterman 2008; Schieritz and Milling 2003). In edu-
cational contexts, the instructional and epistemological implications of different
options must also be considered.

Thus, the use of a paradigm should start from comprehension of its conceptual
foundations, limitations, and relations with other paradigms. In spite of their dif-
ferences in perspective, simulation paradigms are best considered as being com-
plementary, because they are different ways of representing a given facet of
reality—whether one is examining a liquid, an ecosystem, the spreading of a
disease among a population, or a genetic regulatory network. Indeed, only by
comparing and integrating different simulation paradigms can we achieve a better
understanding of reality and our relation with it.

A taxonomy of potential modeling strategies for representing a system is
proposed here below, as a framework for understanding the conceptual differences
among the various modeling and simulation paradigms. From a general standpoint,
the aim of these strategies is to help the modeler answer two key questions:
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1. What is the system made of?
2. How does the system work?

The answers respectively consist in the description of (a) the system’s com-
position and structure and (b) the way it changes. The most recurring strategies can
be classified into only a few categories. In terms of its composition and structure, a
system can be represented by:

1. a collection of homogeneous elements;
2. a continuous substance (i.e., a substance that completely fills the space it

occupies and that is deformable);
3. a collection of heterogeneous elements; or
4. an entity made up of components that perform different functions.

These descriptions do not necessarily represent properties of the ‘‘real’’ system,
but are merely ways in which the system is conceived for modeling purposes. They
correspond to conceptual models, but more generally to models of a more
fundamental type than those involved in the modeling of a specific system, as they
are ontological in nature. These descriptions are actually cognitive schemas, which
are similar to the conceptual metaphors and image-schemas studied in cognitive
linguistics.

Once we have decided ‘‘what’’ the system consists of, we should find a way to
represent and explain how it changes over time. As shown by some of the
examples reported in this chapter, most of the equation-based modeling approa-
ches are based on the assumption that studying the behavior of a limited number of
global variables is equivalent to studying the behavior of each element. This
assumption is called the aggregation hypothesis (or aggregation principle). This
view is in turn justified by the hypothesis of system homogeneity and by the Law
of large numbers, which states that for a sufficiently large system, the mean value
of a random variable is stable over long periods of time or large number of
samples, and that stochastic variables can therefore be represented with average
values. An additional hypothesis underlying the use of aggregated variables is that
of perfect mixing, i.e., that the effects due to the elements’ positions are negligible.
For instance, the Lotka-Volterra model is based on the assumptions that, to predict
the time-related behavior of the prey and predators’ populations, one need not
know the individual features of each animal, such as age, gender, state of health
(aggregation hypothesis), or their position in the environment (perfect mixing
hypothesis). These assumptions make it possible to aggregate all information about
the prey into the single variable of number and to do likewise with the predators. It
is therefore possible to represent the state of the system with two variables only
and to use the previously described differential equations (see Sect. 4.3) to model
the interactions between them. In cases not allowing for application of the
aggregation and perfect mixing hypotheses, the strategies of direct representation,
i.e., modeling the behavior of each element of the system, or mechanistic
explanations, i.e., modeling the behavior of the system in terms of the functions
performed by its components, can be employed.
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In brief, the main modeling strategies for answering the second of the above-
mentioned questions, i.e., how does a system work, are:

1. aggregation;
2. direct representation; and
3. mechanistic explanation.

Table 4.6 summarizes the strategies to model the evolution of a system
described in this section.

The ways in which this schema can be applied to the heretofore described
simulation paradigms are listed here below.

• Dynamical Systems Modeling. In this modeling method, the system is repre-
sented as a collection of homogeneous elements—e.g., in classical mechanics a
body is represented by a point mass or a set of point masses. In the study of
dynamical systems, the approach of classical mechanics has been extended to
any time-related variable on the basis of the aggregation principle. This
approach makes it possible to represent a system by a point in phase space and
its evolution, by an orbit in the same space;

• Continuum Physics Modeling. The system is represented as a continuous sub-
stance. System change is studied from an aggregated perspective, with macro-
scopic variables conceptually deriving from the effects of microscopic elements
and equations connecting these variables;

Table 4.6 Strategies to model the evolution of a system
Modeling strategies

What A collection of homogeneous elements
A continuous substance
A collection of heterogeneous elements
An entity made up of components, which performs different functions

How Aggregation, i.e., incorporating different elements of the system in one or more global
variables

Direct representation, i.e., modeling the behavior of each element of the system
Mechanistic explanation, i.e., modeling the behavior of the system in terms of the

functions performed by its components

Table 4.7 The what and how of simulation paradigms
Simulation paradigms What How

Equation-based
modeling

A collection of homogeneous elements Aggregation
A continuous substance

Molecular dynamics A collection of homogeneous elements Direct
representationAgent-based modeling A collection of heterogeneous elements

System dynamics An entity made up by components which perform
different functions

Aggregation
Cell modeling and

simulation
Mechanistic

explanation
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• Compartmental Models. The elements (e.g., molecular species, people) in a
given compartment are represented as being homogeneous (e.g., in the same
state) and perfectly mixed; their collective behavior can therefore be represented
by aggregated variables. The system’s evolution is described by a system of
ordinary differential equations, with time as the independent variable. Stochastic
effects are modeled as average values;

• Molecular Dynamics. The system is represented as a collection of a great
number of homogeneous elements (e.g., particles), which all follow the same
rules. The system’s evolution is represented by directly simulating each ele-
ment’s movement and by measuring the values of macroscopic variables
through statistical mechanics techniques;

• Agent-Based Modeling. The distinctive feature of the agent-based modeling
paradigm is its capacity to directly represent a system as being made up of many
heterogeneous individual elements, i.e., elements that do not necessarily obey
the same rules or laws; these are therefore systems to which the hypotheses of
homogeneity and perfect mixing do not apply;

• System Dynamics. The system is represented as an entity made up of compo-
nents, i.e., stocks and flows organized in a causal structure. These components
represent aggregate variables with relations represented by feedback loops.
Stochastic effects are represented by average values, and spatial effects gener-
ally are not modeled. This approach presents some interesting analogies with
continuum physics, as the value of a stock is based on the metaphor of the level
of a liquid in a container, and the incoming and outgoing flows are modeled by
equations similar to those used in the study of transport phenomena;

• Cell Modeling and Simulation. The system is represented as an entity made up
of functionally specialized and hierarchically organized components (e.g.,
molecular components, modules, and systems). Representing the system’s
complexity requires diagrams that are similar to those of electronic or control
circuits. The structure/behavior relation is described by ordinary differential
equations or other mathematical methods Table 4.7.
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Chapter 5
Simulation-Based Learning

Time is the father of truth, its mother is our mind.
Giordano Bruno, The Ash Wednesday Supper (1584)

5.1 Simulation-Building Versus Simulation-Using

Learning is intrinsic to simulation, as it allows, e.g., scientists to learn new aspects
of natural and artificial systems, engineers to design new products and processes,
and organizations to learn how to adapt to a changing environment. It is indeed this
link with learning that differentiates simulation from other information- and
knowledge technologies. Applications such as wikis, blogs, or social networks let
users find information, create content, and share ideas and experiences. They can
also foster learning in various ways and have therefore become taken center stage
with teachers and students. Compared to these highly popular tools, however,
simulation is more intimately linked to the human capacity to reason, make pre-
dictions, imagine alternative actions, and solve problems. Thus, only computer
simulations and dynamics modeling software have been characterized as tools for
thinking (Papert 1980), learning laboratories (Senge 1991), and mindtools
(Jonassen 2000b).

To understand the ways in which simulation can foster learning in so many
different contexts, one must understand that simulation-based learning occurs in
two main ways:

1. by building a simulation; or
2. by using an existing one.

In the first case, students must use either a programming language or the
features of a given modeling and simulation software environment to build a
simulation model on their own. To achieve this aim, they must (a) analyze a
specific system, (b) develop a conceptual model of it, (c) create a computational
model, (d) implement the computational model as a simulation program,
(e) conduct numerical experiments on it to validate the computation model. Lastly,
(f) they can use the simulation program to solve a problem or understand the
causes of the phenomenon under study. Each of these activities requires under-
standing, reasoning, and prediction abilities and the construction of mental models
thereby. The latter moreover, undergo modification as a consequence of these

F. Landriscina, Simulation and Learning, DOI: 10.1007/978-1-4614-1954-9_5,
! Springer Science+Business Media New York 2013

99



activities, such that the entire process can be viewed as a progression of internal
and external models (Fig. 5.1).

Instructional scientists have emphasized the highly instructional value of hav-
ing students build, evaluate, revise, and elaborate their own visual or material
models (Gobert and Buckley 2000). Notably, David Jonassen recurrently stated in
his characterization of system dynamics modeling software as ‘‘mindtools’’
(Jonassen 2000b, 2004) that students can learn more by building their own models
rather than using expert-provided ones. Yet, we also know that simulation model
building is not always feasible in instructional contexts: Some students lack suf-
ficient knowledge of the system to be modeled; do not have the necessary mod-
eling skills; or there simply may not be enough time available to carry out all steps
required. Thus, the need frequently arises to use an already existing simulation,
which might be an instructional resource available on the Web or software pur-
chasable in educational simulation and games market.

In this context, it is important to distinguish between simple simulation pro-
grams allowing students to change only a few variable values and view the con-
sequences of their decisions in a graph, and more structured simulation-based
learning environments. The latter also feature instructional supports and resources
aimed at facilitating and enriching the students’ learning experience (Fig. 5.2), for
example:

• background information;
• questions;
• hints;
• explanations;
• exploration guides;
• exercises;
• graphing tools;
• planning tools.

Fig. 5.1 Learning by simulation-building
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The design of these instructional supports is usually guided by an instructional
model, i.e., a set of explicit and/or implicit assumptions about the simulation’s
learning goals and the instructional strategies considered most likely to positively
impact the students’ learning process.

Other terms which are to be encountered on this context are microworlds and
synthetic learning environments. The term ‘‘microworld’’ comes from Seymour
Papert’s researches on children’s learning, which gave birth to the LOGO pro-
gramming language (Papert 1982), and it is used by educational researchers to
indicate an exploratory learning environment aimed at children and centered
around problem solving and experimentation, not necessarily with the use of a
simulation, or, in the context of system dynamics, to indicate a learning envi-
ronment in which a system is simulated with many details to support systems
thinking (Senge 1990). The notion of a simulation-based learning environment is
also similar to that of a ‘‘synthetic learning environment’’, which has been defined
by Cannon-Bowers and Bowers (2008) as ‘‘a learning environment characterized
in terms of a particular technology, subject matter, learner characteristics, and
pedagogical principles; a synthetic experience, as opposed to a real-world inter-
action with an actual device or process, is created for the learner through a sim-
ulation, game, or other technology’’ (p. 317).

The epistemic activities of students involved in simulation-using are: (a) using
the simulation program as requested by the learning task at hand, (b) constructing
their own mental models of the system or problem at hand, (c) comparing their
own mental models with the target conceptual model and, (d) using the knowledge
they acquire about the conceptual model to gain a better understanding of the
system represented by the model (Fig. 5.3).

It is important to note that simulation-using activities do not require students to
interact directly with the conceptual model (the most important aspect of the
simulation), nor with the computational model. Interaction occurs exclusively
through the mediation of the simulation program’s user interface, and through the
learning activities the instructional model affords. Simulation-based learning
research refers to this phenomenon as the ‘‘opacity’’ issue, represented in Fig. 5.3

Fig. 5.2 The components of
a simulation-based learning
environment
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by the dashed versus solid lines connecting the student with the different con-
ceptual entities lying ‘‘behind’’ the visible part of the simulation.

Simulations can therefore be differentiated in terms of the commonly made
distinction between ‘‘black-box model’’ simulations and ‘‘glass-box model’’ (or
‘‘transparent’’) simulations. In black-box model simulations, students can explore
a system’s behavior, but the underlying conceptual and/or computational models
remain hidden and can only be inferred by what appears on the screen. For
example, many simulation games present thousands of scenarios, but do not show
the rules constraining these scenarios as established by the game’s creator(s). This
type of ‘‘black-box’’ situation could lead students to believe that their partial
conclusions are undisputable assumptions, as suggestively reported by Turkle
(1997) in her analysis of the ways in which simulation can affect education:

I ask Marcia, a student in her second year of secondary school, some questions about
SimCity"; she, who thinks to be very good at the game, lists what in her opinion are ‘‘the
ten most useful rules of the simulation’’. My attention was captured by the rule number
six: «Tax rises always cause uprisings». It seems that Marcia does not possess a language
to distinguish between this rule of the game and the rules in force in a ‘‘real’’ city. She has
never programmed a computer. She has never designed a simulation. She does not possess
a language to ask how you can rewrite the game so that you can obtain that a tax rise may
determine an increase of productivity and a harmonic society (p. 82).

The opacity issue is not limited to simulation games or complex simulations.
Students facing any type of simulation tend to automatically attribute rules to the
system, based on their own mental models formed in that moment. These rules
may match those actually present, but they can also be wrong or incomplete
inferences, and in this latter instance, they can actually interfere with proper
learning. For example, imagine a student watching a computer animation showing
the chaotic motion of a damped driven pendulum (see Sect. 4.5). Observing that
the pendulum oscillates unpredictably and erratically, she might infer that some
form of random force is acting on it, whereas the only factors involved in the

Fig. 5.3 Learning by using simulation
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phenomenon are the force of gravity, friction, and the applied periodic force.1

Similarly, the emergent phenomena characterizing agent-based simulations can
give the appearance of behavior regulated by complex laws, when only simple
local rules are conversely at work.

‘‘Glass-box model’’ or ‘‘transparent’’ simulations have alternatively been pro-
posed to obviate the above-described problems, as they overtly show relations
among variables, i.e., the structure of the computational model underlying the
simulation. This approach has frequently been used in system dynamics’ learning
environments, which show their stocks-and-flows diagram, and in some instances,
the relative equations to students using the simulation. Yet, Groesser (2012)
pointed out that the extra information provided by the high visibility of system
dynamics models can benefit only learners who are familiar with system dynamics
methodology, and who are thus able to read and interpret a stocks-and-flows
diagram. In general, it is reasonable to assume that the main effectiveness criterion
for glass-box model simulations is that the model’s structure be reasonably
understandable to students. A potentially effective way to render the model’s
structure more understandable is to present it to the student step-by-step, in the
form of a narration or guided tour. For example, Fig. 5.4 shows an intermediate
presentation step for the structure of the model underlying a virtual laboratory
designed to explore literature’s plot and character development.

Another risk involved with glass-box models, which show students the equa-
tions underlying the model is of a more epistemic nature—i.e., that students may
mistake these equations for the conceptual model, although the same conceptual
model can actually be implemented by using different equations or algorithms.

In any event, despite the practical utility of highlighting differences among
simulation-based learning environments, the black-/glass-box model distinction
tends to overlook a more fundamental aspect of the opacity issue—i.e., that:

• Every simulation model is cognitively opaque.

Cognitive opacity derives from the fact that it is difficult or impossible to
predict the behavior of a computational model based on knowledge of its structure
or equations only. Thus, to study the model, one must resort to simulation, as
described in the all of the examples reported in Chap. 4.

One way of rendering the model more ‘‘transparent’’ is to have students (to the
extent that this is possible) retrace the modeling processes used by the simulation’s
creator(s). This can be achieved by using multiple representations of the con-
ceptual model (e.g., images, animations, maps, graphs, explanations) and dis-
cussing its nature with students. They should also be asked to render the
hypotheses underlying the simulation explicit. Moreover, even when a simulation
is based on a simple equation, such as that of the simple pendulum, a more detailed
analysis can help students become more aware of the equation’s underlying

1 Indeed, many phenomena currently studied in chaos theory were long considered to be purely
random ones.
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abstractions and idealizations—awareness that does not develop when students are
asked to simply ‘‘put the numbers into the formula’’.

Delving into the merit of a given simulation’s conceptual aspects requires that
teachers also survey the students’ mental models and the ways in which these
models change during the learning process.

The next section will present an example illustrating some of the cognitive
processes that accompany students’ learning activities and changes in their mental
models.

5.2 The Cognitive Processes Involved in Simulation-Based
Learning

When studying simulation as an educational method, a simulation program’s
features (e.g., technology, visualization methods, level of interactivity) might more
easily capture our attention, but the mental processes involved in student’s
interaction with them must also be considered. These processes depend on many
factors related to the learning context, e.g., learning task, prior knowledge, interest,
instructional method, degree of instructional support, type of assessment. The role

Fig. 5.4 A screenshot of the Virtual Hamlet, a learning laboratory created with the STELLA"

modeling software. Image courtesy of isee systems. Web site: http://www.iseesystems.com
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of some these factors in simulation-based instruction will be examined in
Sects. 5.6 and 5.7. The present Section focuses on the more general issue of the
ways in which simulation- and cognitive processes are related.

Consider the case of a middle school student, Mary, who is using a simulation
to study the relation between temperature and particle motion in a gas. Let us
assume that: Mary can change the gas temperature by moving a slider on the
screen; the gas molecule motion is visualized via animation; and that a graph
represents the statistical distribution of molecular velocities (Fig. 5.5).

The conceptual model underlying the simulation is the kinetic theory of gases,
which is based on the following hypotheses:

1. The gas consists of molecules that have the same mass and are in a constant and
random motion. The molecules collide with each other and with the walls of the
container.

2. The number of molecules is so large that statistical methods can be applied.
3. The total volume of the gas molecules is negligible compared to the container

volume.
4. All the collisions are perfectly elastic, and the interactions between molecules

are negligible, except during collisions.
5. The molecules are considered to be perfectly spherical in shape.
6. Relativistic and quantum-mechanics effects are negligible.

Fig. 5.5 A simulation-based learning environment about temperature and particle motion in gases.
Image courtesy of ExploreLearning GizmosTM. Web site: http://www.ExploreLearning.com
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Kinetic gas theory was first established in 1738 by the mathematician Daniel
Bernoulli, who assumed a gas to consist of ‘‘very minute corpuscles, which are
driven hither and thither with a very rapid motion’’ (in Newman 1956, p. 774).
Bernoulli was also the first to recognize that pressure is caused by particle colli-
sions with a container’s walls, and that particle speed increases with increasing
temperature. This model is also called the ‘‘Billiard ball model’’ of a gas, because
the molecules in it are considered to be rigid spheres, such as the balls used in
billiard games. A possible learning goal for this type of simulation is to understand
the statistical mechanics’ explanation of temperature, and in particular, the
Maxwell–Boltzmann distribution of molecular velocities, which express the per-
centages of molecules with velocities differing from the average velocity. How
might Mary achieve this goal? By moving the temperature slider back and forth,
she observes the corresponding changes in the motion of the molecules. A hypo-
thetical dialogue between Mary and her teacher follows here below:
TEACHER What did you notice in this activity?
MARY Oh, that’s very simple; the molecules move faster as the temperature

increases and slower when the temperature decreases.
TEACHER Great! At the highest temperatures, are there still a few slow

particles?
MARY Obviously not, by increasing the temperature, all the molecules are

moving faster—that is what temperature is all about.

Previously, when introducing simulation use, the teacher had explained the
meaning of the graph on the right side of the simulation panel, by clarifying that
the curve represents the probability of a particle moving at the velocity shown on
the x-axis of the graph. The higher the curve, the greater the probability of finding
a particle moving at that velocity. She then asks Mary the following question:
TEACHER And what kind of changes did you notice in the graph?
MARY If I increase the temperature, the peak of the curve moves to the

right, and this confirms the fact that molecular speed increases with
temperature.

TEACHER What about the shape of the curve?
MARY (thinking) If I increase the temperature, it becomes flatter… but to

be honest I don’t know why this happens, I suppose it has something
to do with the movement of the molecules.

Shortly afterwards, the teacher assigns another activity, telling the students to
focus on the motion of individual particles as shown in the animation. The stu-
dents’ task is to verify whether all the molecules move faster (or slower), by
increasing (or decreasing) the temperature, and imagining how this may be related
to the changes observed in the shape of the curve. While carrying out the task,
Mary notices, to her great surprise, that some molecules move more slowly than
the others, even at the highest temperatures:
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MARY I can’t believe I’d never noticed this before! The speed may actually
vary a lot from one molecule to the other, and the widest variety of
particle speeds occurs at the highest temperature, although the
speeds are more similar to each other at a lower temperature.

TEACHER Great Mary! And you’ve probably also noticed how this correlates
with the shape of the curve…

MARY (moving her hands to show the changes in the curve) Of course! The
pointier the curve becomes, the more the speeds concentrate around
their mean value; and the flatter the curve, the more dispersed they
are.

TEACHER That’s right! And you’d be surprised to discover how many other
things you can learn about the gases just from studying this curve.

We shall now analyse what presumably occurred in this fictionalized account of
simulation-based learning. Although our reconstruction is hypothetical, it may
help us gain a better understanding of the ways in which simulation can support
learning: While using the simulator, Mary constructed her own internal repre-
sentation of the system. This internal representation is constructed ad hoc to make
inferences on the causal relation between the change in temperature and the
observed phenomena. It may therefore be interpreted as a mental model, in
the sense of it being a temporary structure in working memory (WM). From the
perspective of embodied cognition theories, this initial mental model is presum-
ably grounded in the sensorimotor experience of setting the temperature value by
moving the slider indicator while watching the animation, and in the correlated
introspective state. At the same time, Mary is probably retrieving prior knowledge
about temperature and gases from long-term memory. She already knows that
gases can vary in temperature, as with hot or cold air. She also remembers an
educational cartoon she saw in elementary school, which represented molecules as
tiny coloured balls moving in all directions. Later, Mary expresses her mental
model to her classmates in the form of a verbal rule:
MARY The molecules move faster as temperature increases, and slower as

temperature decreases.

This rule is easy to remember and communicate, but fails to captures a basic
feature of the statistical account temperature, and namely, that the molecules of
any gas will move at a variety of velocities. In statistical mechanics, the tem-
perature of a gas is a measure of the average kinetic energy of its particles.
Moreover, the relative proportions of molecules moving at different velocities is
yielded by the Maxwell–Boltzmann distribution, which is the equation underlying
the curves shown in the graph of molecular velocities. By focusing on the motion
of individual particles, Mary realizes that the molecules move more quickly with a
temperature increase, but that even at extremely high temperatures, a few mole-
cules still move slowly; this insight changes her mental model of the phenomenon
thereby. The new mental model also allows her to better understand the concept
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underlying the Maxwell–Boltzmann distribution. Interestingly, Mary’s own initial
mental model is not unknown in the history of science; even Rudolf Clausius, who
made a great contribution to the kinetic theory of gases, assumed that all molecules
move with the same speed. It was only with Maxwell that the notion of a statistical
distribution of velocities was introduced into the physics of gases.

As an additional activity, the teacher asked Mary if she can express her mental
model visually, so as to communicate her idea to the other students. After several
attempts, she proudly showed the class her picture (Fig. 5.6), explaining that the
arrows represent molecular velocities. In brief, Mary did not use her mental
models to draw logical inferences only, but actually ran a mental simulation of
these models. She then expressed the results of her mental simulations as external
models (e.g., verbal explanations for both the teacher and the class, gestures
accompanying these explanations, and a picture drawn at the teacher’s request), so
as to share her ideas with others.

We conclude this section by assuming that simulation-based learning can
involve an epistemically rich interplay among different kinds of models even when
students do not build simulation themselves, but use existing ones—as long as the
learning activities involved thereby are sufficiently structured. This type of
interplay is not exclusive to simulation-based learning in educational contexts, but
may also occur in other contexts.

5.3 Simulative Reasoning in Science

Mental simulation is a cognitive strategy available to humans, essentially to reason
and solve problems (see Chap. 2). People prefer to use this strategy in situations
requiring them to understand how a given system functions, so they can predict the
potential consequences of several alternative courses of action. Understanding and

Fig. 5.6 A graphical model
of molecular velocities
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prediction are also psychological processes that are typical of scientific thinking.
For example, molecular biologists attempt to understand the way proteins fold to
predict their functions, and metereologists try to understand ocean–atmosphere
heat exchange mechanisms to predict climatic events in different areas of the
globe. It is therefore reasonable to wonder whether scientists also rely on mental
simulation. The answer is… of course they do! Recent studies on the ways in
which scientific inquiry is carried out in practice have yielded evidence that sci-
entists use mental simulation to generate hypotheses (Clement 2008), create novel
concepts (Nersessian 2002, 2008), and to interpret data in complex knowledge
domains (Trickett and Trafton 2002, 2007).

Philosophers of science have traditionally placed more focus on the ways in
which hypotheses are tested, than on the ways in which they are generated. The
origins of this preference are to be sought firstly in the separation introduced by
logical empiricists between the ‘‘context of justification’’ and the ‘‘context of
discovery’’ of scientific theories. The former refers to objective relations among
premises and conclusions, or theory and facts, whereas the latter concerns sub-
jective ways to find those relations (Reichenbach 1938). As a consequence, phi-
losophers of science have shown greater interest in the topic of empirical
verification (or falsification) of theories, than in the origin of scientific ideas,
considering the latter to be of an exclusively psychological nature.

The first philosopher to reject the distinction between the context of justification
and the context of discovery was Thomas Khun, in his seminal book, The Structure
of Scientific Revolutions (1962). With the exception of this effort and a few others
(Gruber 1974; Holton 1978), however, the source of scientific creativity has
remained relatively unexplored territory to date.

According to Clement (1989, p. 345), the question of how scientific hypotheses
are formed has traditionally presented three answers:

1. The Hypothetic-Deductive Method plus Induction. Hypotheses originate by
means of inductions made from a series of specific observations; once a
hypothesis is generated, it can be corroborated or falsified by a test on obser-
vable data.

2. Creative Intuition. Hypotheses originate from extraordinary and mostly
unconscious thinking processes.

3. Analogies and Successive Refinement Cycles. Hypotheses originate from
analogies and models. In particular, empirical laws, which merely summarize
observed regularities, can be distinguished from explanatory models, which
provide descriptions of hidden processes and explanations in the form of causal
relationships.

Clement followed this latter view by proposing a model-based account of the
scientific process of hypothesis formation, based on a cyclical process of
hypothesis generation, evaluation, and modification (or rejection). The model,
called the generate-evaluate-modify (GEM) cycle, is shown as a diagram in
Fig. 5.7. Clement then extended the model to the process of explanatory model
construction by experienced problem solvers in technical fields. According to the
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GEM cycle, scientists and experts alike generate a model not only by making
initial observations, but also by activating various possible initial analogies. Once
generated, a model is evaluated by testing its consistency both with established
theories and the empirical data at hand. The model may be modified or rejected in
function of the results of these evaluations.

Clement investigated the activation of these initial analogies, by examining the
mental processes of individuals involved in creative problem-solving tasks. Spe-
cifically, he conducted a series of experiments based on the protocol analysis
method—i.e., by eliciting verbal reports from the participants. The subsequent
analysis of the thinking-aloud protocols of these participants allowed him to
develop the idea that the mental processes involved in the construction of a model
are examples of nonformal reasoning, i.e., a type of reasoning that includes:

1. analogical reasoning;
2. mental model construction;
3. imagistic simulation;
4. physical intuition; and
5. thought experiments.

Clement maintained that scientists’ nonformal reasoning processes are not
actually extraordinary and that they conversely ‘‘appear to be describable as nat-
ural extensions of everyday reasoning and intuition’’ (2008, p. 444). To provide an
explanation of the cognitive mechanisms underlying these processes, Clement
closely examined the role of imagery, which he defined as ‘‘a mental process that
involves part of the perceptual/motor systems and produces an experience that
resembles the experience of actually perceiving or acting on an object or an event’’
(2008, p. 205). Two related concepts are those of:

1. Dynamic imagery, i.e., processes that involve imagining a situation that
changes with time; and

2. Imagistic simulations, i.e., processes involving dynamic imagery to generate
predictions of changes or movements.

Clement considered the sources of imagistic simulations to be perceptual motor
schemas, i.e., permanent cognitive structures residing in long-term memory. These
can be activated during the various phases of model construction to interpret or
explain the system under study. The premise that even the cognitive processes
students activate to achieve a deep understanding of novel scientific concepts are

Fig. 5.7 The GEM cycle of model construction (Clement 2008, p. 86)
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similar or equivalent to those involved in the construction of a model by scientists
and experts, led to a series of studies conducted by Stephens and Clement (2006,
2009, 2012), on the role of nonformal reasoning and in particular, imagery and
mental experiments, in science instruction.

The role of nonformal reasoning in scientific practice also has a key role in
Nancy Nersessian’s ‘‘cognitive-historical’’ approach to conceptual change in sci-
ence. Nersessian (1999, 2008) maintains that the hypothetic-deductive account of
theory formation does not adequately describe the way in which scientists con-
struct their theories, because it excludes scientific creativity from the investigation,
and therefore, the ways in which scientists create novel concepts. In fact, findings
derived from the analysis of historical sources, such as scientists’ notebooks,
publications, and instruments, have revealed that scientific reasoning does not
consist in deriving deductive or inductive logical inferences from observable facts,
but is based on the use of analogies, imagery and thought experiments. Nersessian
underscored (Nersessian 2008) that ‘‘model-based reasoning’’—i.e., a kind of
reasoning in which inferences are made by means of creating models and
manipulating, adapting, and evaluating them—could serve as a valid alternative to
the logic-based account of scientific reasoning. Model-based reasoning is not
exclusive to scientists, because ‘‘the cognitive practices of scientists are extensions
of the kind of practices humans employ in coping with their physical and social
environments and in problem-solving of a more ordinary kind’’ (2002, p. 135).
Model-based reasoning can occur in three forms:

1. analogical modeling;
2. visual modeling;
3. simulative modeling.

In particular, ‘‘simulative modeling’’ is a form of reasoning in which ‘‘infer-
ences are drawn by employing knowledge embedded in the constraints of a mental
model to produce new states’’ (Nersessian 2002, p. 149). It should be noted that
these modeling processes frequently occur together in scientific reasoning, for
example when a scientist or an engineer:

(a) constructs a mental model of a system to be studied (e.g., an electrical circuit)
using an analogy with a more familiar system (e.g., a mechanical system);

(b) visually imagines the model; and
(c) predicts the model’s behavior on the basis of mental simulation.

From an historical perspective, Nersessian assumes that model-based reasoning
is prevalent in periods of radical conceptual change, during which scientists cannot
rely on time-consolidated theories. This is the process, for example, that James
Clerk Maxwell used to derive his field equations for electromagnetic phenomena.
In any event, due to space reasons, it is not possible to retrace the historical-
cognitive reconstruction that Nersessian dedicated to this scientific conquest in
detail herein (see Nersessian 2008, Chap. 2), but several aspects are worthy of
note, as they shed light on model-based reasoning.
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Maxwell’s initial hypothesis was an analogy between the target domain of
electrical and magnetic phenomena and the source domain of continuum
mechanics (see Sect. 4.7). In particular, he considered ether to be an elastic
material entity, capable of sustaining stresses in response to electromagnetic for-
ces. Yet, the domain of continuum mechanics had no mathematical solution
available to be mapped directly onto the electromagnetic domain, whose phe-
nomena (e.g., the lines of force around a magnet) differ from those in any known
mechanical system. Maxwell therefore developed a series of what Nersessian calls
‘‘hybrid models’’, i.e., models that stand in between the target and source domain
and provide contexts in which to reason and draw inferences. These hybrid
models, expressed in the form of written descriptions, images, and equations,
eventually allowed Maxwell to derive his equations of electromagnetic phenom-
ena. In fact, Maxwell referred many times in his writings to his reasoning pro-
cesses, and in many instances, these corresponded to mental operations that can be
considered as simulative modeling occurrences.

Another similar line of research is that of Trickett and Trafton (2002, 2007),
who examined the topic of scientific reasoning in the context of scientific visu-
alization research: a branch of computer science concerning the graphical repre-
sentation of data as a means to gain understanding and insight into natural systems.
They adopted the in vivo methodology advocated by Dunbar (1995) for studying
the ‘‘on-line’’ reasoning of expert scientists occurring in naturalistic situations.
They therefore focused on the mental operations scientists perform while exam-
ining external scientific visualizations, e.g., weather forecasters examining visu-
alizations of atmospheric data, astronomers analyzing the optical and radio data of
a galaxy, physicists evaluating the match between a computational model and
empirical data. The two authors then described these mental operations in terms of
conceptual simulation, which they characterized as sequences of dynamic mental
images, similar to a ‘‘movie in the mind’’. They also compared conceptual sim-
ulations to scientists’ ‘‘thought experiments’’, i.e., mental processes that consist in
(1) visualizing some situation, (2) carrying out one or more mental operations on
it, (3) seeing what happens, and (4) drawing a conclusion (Brown and Fehige
2011). They found that experts most frequently use conceptual simulation when
evaluating hypotheses. To do so, they mentally ‘‘overlay’’ the end product of the
conceptual simulation on the actual data represented in the image displayed on the
computer screen. The degree of alignment between the two representations is then
evaluated, to support or oppose the hypothesis. The authors also stated that:

1. scientists are more likely to use conceptual simulation under situations of
informational uncertainty, i.e., when the available data are unclear or
anomalous;

2. conceptual simulations are of a strictly qualitative nature, rather than precise
numerical representation.

In line with the hypothesis that scientists’ cognitive practices do not differ
substantially from those that humans use in everyday reasoning, but are extensions
of the same type of practices, Trickett and Trafton (2007) emphasized that
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conceptual simulation is also used in a type of everyday reasoning called ‘‘what if’’
reasoning. We use this type of reasoning, for example, to figure out the steps
required to assemble a piece of furniture in the absence of written instructions
(Lozano and Tversky 2006).

Lastly, it can be noted that the cognitive processes described in this section—
i.e., imagistic simulation, simulative modeling, conceptual simulation—are in
many ways analogous to the mental simulation described in theories of embodied
cognition (see Sects. 2.4 and 2.5). In particular, due to its emphasis on the role of
perceptual and motor systems, Clement’s notion of imagery very closely overlaps
with that of ‘‘modal simulation’’ in Barsalou’s grounded cognition approach, and
perceptual motor schemas have an analogous role to that of Barsalou’s simulators
and the image-schemas of Cognitive Linguistics.

These analogies bring us back to the topic of mental models, whose role in
learning will be the subject of the next section.

5.4 Model-Based Learning and Teaching

Considering the interrelations among simulation, models, and learning described
in the previous sections, the present one will be dedicated to examining the relation
that exists between models and learning, also from the perspective of the sciences
of learning. The discussion will therefore help us pinpoint simulation-based
learning aspects that are in common with learning based on other types of models
(see Table 3.1) and those that are conversely unique to it.

Based on Norman’s (1983) perspective, mental models are naturally evolving
and unstable; this leads to the assumption that, as students learn, they continue to
modify their own mental models until achieving a result they consider satisfactory.
As early as the 1980s, various research areas in Cognitive Science produced
several explanations of learning based on changes in mental models. For example,
Johnson-Laird (1989) stated that an important mental model issue is that of ‘‘how
such models develop as an individual progresses from novice to expert’’ (p. 485).
This topic, however, was not his main focus of research, which mostly examined
mental model use in speech comprehension and logical reasoning.

Learning did play a key role in the development of the knowledge-based
approach to mental models. Many of the contributions in the 1983 book ‘‘Mental
Models’’, edited by Gentner and Stevens, dealt with the learning of scientific
concepts and related instructional aspects—see, e.g., Gentner and Gentner’s
chapter on analogical thinking, which investigated the role of mental models in the
comprehension of electricity concepts. In the same knowledge-based approach,
White and Fredricksen (1990) presented a theory of expertise and its evolution,
which viewed learning in the domain of electrical circuits as a process of acquiring
a set of coordinated mental models having a causal nature and evolving through
stages of increasing complexity.
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The role of mental models in science education has also been examined from
the perspective of conceptual development and conceptual change. Vosniadou and
Brewer (1992, 1994) represented students’ knowledge in terms of mental models,
in their studies of children’s concepts of the shape of the earth and of the day/night
cycle. Chi (2000) also represented students’ knowledge in these terms, in her
research on middle school students’ conceptions of the human circulatory system.
The latter studies, however, also revealed that mental models do not always
facilitate learning, but can also impede it, as with the occasionally flawed mental
models students use to study scientific concepts—e.g., a model of falling bodies in
which heavy objects fall at a greater speed than light objects do, or a model of the
moon’s orbit around the earth in which earth’s shadow causes the different phases
of the moon. Furthermore, mental model modification is not a process students
easily undertake on their own, even when faced with objectively cogent empirical
evidence, but it requires a series of teacher intervention steps aimed at overcoming
the barriers to conceptual change.

The relation among models, learning, and instruction is the specific topic of
investigation in a new approach in the sciences of learning, called ‘‘Model-Based
Learning and Teaching’’ (Gobert and Buckley 2000), which highlights the role of
students’ mental models, their externalization into external models, and the
changes that occur in them as students learn new concepts. Buckley specifically
defined model-based learning as the formation and subsequent development of
mental models by a learner, and model-based teaching as instruction designed to
support the development and evolution of learners’ mental models (2012a, b).
Other denominations used in this approach are ‘‘Model-Centered Learning and
Instruction’’ (Seel 2003) and ‘‘Model Based Learning and Instruction’’ (Clement
and Rea-Ramirez 2008).

One of the most significant influences in the development of Model-Based
Learning and Teaching has been science educators’ growing recognition of the
role of models in the formation of scientific theories and in scientific practice
(Gilbert 1991; Ingham and Gilbert 1991).2 This approach has focused on inves-
tigating the various types of models available, the function of models in teaching
and in learning, and on the process with which students and teachers create their
models. Gilbert and Boulter (1998) proposed a taxonomy of models based on their
different roles as teaching tools, distinguishing among:

• Mental model—a personal and private internal representation of a target system
formed by an individual either alone or in a group.

• Expressed model—a mental model, which have been expressed by an individual
through action, speech, written description, and other material depictions.

• Consensus model—an expressed model that has been agreed upon by any social
group, for example, a school class or a group of scientists.

2 Recognition occurring also following as a consequence of the new concepts of the scientific
method emerging in the history and philosophy of science (see Sects. 3.4 and 3.5).
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Gilbert, Boulter, and Elmer (2000) further classified consensus models into four
subtypes:

• Teaching model—specially-constructed to aid the understanding of a consensus
model.

• Scientific model—a consensus model that has gained acceptance by a commu-
nity of scientists, following formal experimental testing, as manifested by its
publication in a refereed journal.

• Historical model—a consensus model produced in a specific historical context
and later superseded for research purposes by new models.

• Curricular model—a version of an historical or scientific model that is included
in a formal curriculum.

Furthermore, these models may be expressed in different modes of represen-
tation (i.e., concrete, verbal, mathematical, visual, symbolic, and gestural) (see
Sect. 3.4). Gilbert (2004) identified the main functions for models as being:

(a) simplification of complex phenomena;
(b) visualization of abstract entities;
(c) interpretation of experimental results;
(d) explanation of and prediction about phenomena.

To describe the process students use to construct their models (both mental and
expressed ones), Justi and Gilbert (2002) developed a ‘‘model of modeling’’
framework, which is essentially based on Clement’s (1989) account of scientists’
and students’ model construction processes (see Fig. 5.7). The framework is
represented in the form of a diagram (see Fig. 5.8), which depicts ‘‘a non-linear
creative process comprised of multiple and complex stages mainly concern[ed]
with: acquiring information about the entity that is being modeled (from empirical
observations and/or from previous knowledge), producing a mental model of it,
expressing that model in an adequate mode of representation, testing it (through
mental and empirical experimentation) and evaluating its scope and limitations’’
(Justi 2009, p. 32).

Yet, the mechanisms by which mental models undergo these changes during
learning-linked processes remain unclear. Norman Seel investigated the issue from
the perspective of instructional psychology, instructional design, and multimedia-
based instruction.3 Seel et al.’s research examined the ways in which instruction
can facilitate the construction of students’ mental models (Seel 1995, 2003; Seel
et al. 2000; Seel and Dinter 1995) and the methods instructional psychologists or
teachers can use to assess the change in these models (Seel 1999; Seel et al. 2009).

The central concept in Seel’s instructional paradigm is that of a learning-
dependent progression of mental models. He introduced this concept in the context

3 Seel’s earlier studies on the relation between knowledge mental models were published as
early as the 1980s, but remained relatively unknown on the international scale, as they’d been
published in German (Seel 1986, 1991). Seel’s concept of models and of their functions was also
influenced by Herbert Stachowiak’s neopragmatic epistemology (see Sect. 3.7).

5.4 Model-Based Learning and Teaching 115



of experimental studies examining the effects of different instructional methods
(i.e., expository teaching versus discovery learning) on students’ learning of
physics concepts. Seel (2003) defined the learning-dependent progression of
mental models as a specific kind of transition between preconceptions (i.e., the
initial states of the learning process) and causal explanations (i.e., the desired end
states of learning). He maintained that if the learning process is to be effective, it
should start by presenting a conceptual model (e.g., a concept map), the aim of

Fig. 5.8 The ‘‘model of modeling’’ diagram (Justi and Gilbert 2002, p. 371)
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which is to help students create an initial mental model as the foundation for
constructing subsequent models. The student’s initial mental model then under-
goes a series of transformations that Seel described as follows: ‘‘When the model
is used successfully, it is reinforced and may eventually become a precompiled,
stable model. If it turns out that the model is unsatisfactory, it may be revised or
rejected in a progression of mental models’’ (ibid., p. 72).

Clement (2000) proposed a theoretical framework for model-based learning,
from the perspective of his research on model-based reasoning (see Sect. 5.3). The
framework includes: (a) the goal of a target model that one wishes students to
possess after instruction, (b) a map of the student’s preconceptions and natural
reasoning skills present before instruction, and (c) the learning processes that can
take the student from preconceptions to the target model. Clement emphasized that
preconceptions do not necessarily include only alternative conceptions in conflict
with the target model—i.e., the ‘‘misconceptions’’ studied so extensively in the
field of science education. He stated that they can also include useful conceptions
that are compatible with scientific models and can be used as building blocks to
develop the target model. A useful conception example is that of the ‘‘anchoring
intuitions’’ Clement (1993) described in his research on the role of analogies in
lessons designed to deal with students’ preconceptions in physics. These anchoring
intuitions are characterized as knowledge structures of a concrete rather than
abstract nature, which students self-evaluate and are of the same nature of the
‘‘physical intuitions’’ he characterized as an example of nonformal reasoning
(Clement 1994).

In summary, all of the heretofore described model-based learning explanations
share the idea that the learning process can be viewed as a pathway, which leads
from an initial model to a target model, through a succession of intermediate
models (see Fig. 5.9).

As a consequence, the main model-based teaching issue has now become that of
how to facilitate this learning pathway, both in individuals and in groups of
learners. Clement and Rea-Ramirez (2008) extensively researched this topic in a

Fig. 5.9 The model-based learning pathway
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series of studies examining model construction in the classroom. They described
new and innovative model-based teaching methods in science instruction, and
proposed an organizing framework that can help teachers design and conduct
activities developed to create ‘‘flexible’’ mental models in students’ and to prompt
their need to progress from one mental model to another.

An important area of research is that of the assessment of changes in the mental
models of students during the learning process. The measurement and comparison
of students’ mental models in successive moments (e.g., before and after studying
a specific topic) in the learning pathway are of fundamental importance for the
planning and facilitation of that pathway’s various steps. It is equally important to
compare the mental models of novices with those of experts. It must be noted,
however, that the concept of mental model is a theoretical construct introduced in
psychology to account for a wide range of phenomena—e.g., in perception,
memory and reasoning—and is not directly observable as such. Thus, the methods
of the researchers in this field are necessarily indirect ones, which can be divided
into two categories:

1. the observation and analysis of any behaviors produced as a consequence of
mental model construction and use (e.g., verbal descriptions, hand motions,
student-generated drawings);

2. the use of computer-based diagnostic tools for the automatic or semi-automatic
analysis of verbal or graphical representations of knowledge.

Nunez-Oviedo and Clement’s (2009) study of a model-based teaching strategy
presented an approach of the the first category type shown above, based on what
they called ‘‘co-construction modes’’, i.e., model construction modes that build on
both student- and teacher-generated model elements. Teachers used questions,
discussions, drawings, and diagrams representing teacher-student interactions
along the various learning pathway steps to assess student’s mental models and
their progression.

The use of computer-based diagnostic tools for assessing change in cognitive
structures has been undergoing rapid development, due to advances in knowledge
modeling methods and computer technology (for an introduction, see the essays
collected in Ifenthaler et al. 2010). The main idea underlying the use of these tools
is that external representations, such as concept maps, causal models, and belief
networks, can yield insight into internal constructs such as mental models and
thinking processes (Shute et al. 2009). This comparison is usually conducted via
algorithms, which calculate the degree of structural similarity between pairs of
representations and provide the output of both numerical indices and visual rep-
resentations. In particular, new software tools are being developed to use natural
language expressions, such as texts written by students or experts, as input for the
analysis, representation, and comparison of mental models (Pirnay-Dummer and
Ifenthaler 2010). This type of software automatically uses a sufficiently long text
to generate an associative network, which is visually represented as a graph and
also calculates structural and semantic measures for the analysis and comparison
of mental models.
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A remaining, open question in the sciences of learning and cognition is that of
the relation between mental models and other types of more stable and permanent
cognitive structures, such as schemas (see Sect. 2.1) and beliefs. This issue is
particularly evident in the study of conceptual change, which requires researchers
to account for the role of students’ prior knowledge when learning new concepts.
For example, Vosniadou (2002) considered mental models to be mental repre-
sentations constructed by students to deal with the demands of specific situations,
but also allowed for the possibility that these models might be stored in long-term
memory. Chi (2008) defined mental model as ‘‘an organized collection of indi-
vidual beliefs’’ (p. 67) and equiparated science misconceptions with mental
models that students retrieve to answer questions and make predictions, but which
must eventually be repaired or removed (i.e., mental representations highly
resistant to change). She also proposed the two learning processes of ‘‘assimila-
tion’’ and ‘‘revision’’ as mechanisms that can enrich a mental model or repair an
incorrect one. In fact, these are very similar to the processes of schema assimi-
lation and accommodation described by Piaget.

Seel (2003, 2012b) examined the issue of the relation between mental models
and schemas by integrating Rumelhart and Norman’s (1978) three modes of
learning—i.e., accretion, tuning, and restructuring—into a cognitive architecture
grounded on Piaget’s epistemology. In this architecture, mental models play a key
role in the accommodation process. When people cannot assimilate an experience
to an existing schema, they construct a mental model of the situation based on their
world knowledge. If the model is evaluated as being unsatisfactory for the task at
hand, it may be revised or rejected, but if it is deemed adequate, it is reinforced and
may eventually become ‘‘a precompiled, stable model’’ (Seel 2003, p. 72). (For a
detailed comparison of Johnson-Laird’s and Seel’s approaches to mental models,
see Al-Diban 2012, p. 2202.)

The possibile relations between schemas and mental models can also be ana-
lysed from the perspective of naturalistic decision making (NDM), a research
approach which investigates how people make decisions in real-world settings
(Klein 1998). In particular, Klein et al. (1986) formulated a recognition-primed
decision (RPD) model of how experienced people can make rapid decisions
in situations characterized by time pressure, ambiguous information, ill-defined
goals, and continually changing conditions.4 According to the RPD model, in these
situations individuals don’t base their decisions on analytical strategies to compare
options, but they use experience to rapidly generate a plausible course of action. In
the case of Simple Match, the decision maker recognize a familiar situation—i.e.,
it identifies plausible goals, relevant cues, expectancies, and a typical action—and
reacts accordingly. A more complex case is that of Evaluate a Course of Action, in
which the course of action is deliberately assessed by conducting a mental sim-
ulation to see if the option will work as it has been envisioned or it requires to be

4 As in the case of fireground commanders, army officers, naval commanders and emergency
room doctors.
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modified or rejected. According to Lipshitz and Shaul (1996), the RPD model is
compatible with the constructs of schemas and mental models, as when a situation
is recognized as familiar, the generation of an option corresponds to the activation
of a schema, and the possibile evaluation of a course of action to the construction
of a mental model, which is driven by the schema. However, in an unexpected
situation, or in case that a course of action fails in a mental simulation, the
available schemas may be inappropriate and the decision maker may collect
additional information prior to taking action, resulting in the construction of a
novel mental model (see also Marshall and Seel 2012). An additional component
has been added to the RPD model (Klein 1997), the Diagnosis of a Situation, in
which, in response to an anomalous situation the decision maker attempts to link
the observed events to causal factors, thus trying to obtain an explanation for the
events. Interestingly, from our perspective, a common diagnostic strategy is story
building, which often involves a type of mental simulation (Klein and Crandall
1995).

In conclusion, if mental models are to serve an integrative function between
new and existing knowledge, they must combine both kinds of knowledge. Thus,
their creation or modification most probably requires a process of intense interplay
between information processed in WM and that stored in long-term memory—a
process, in fact, about which relatively little is known.

5.5 Learning by System Modeling

This section examines the similarities and differences between model-based
learning in general and simulation-based learning. Some of the features of model-
based learning—i.e., model taxonomy, epistemic functions, modeling processes,
learning pathways—can be directly mapped onto simulation-based learning.
Analogies between these two ways of learning can be established thereby and are
listed here below.

• Model type. An instructional simulation is a particular type of teaching model,
designed to facilitate understanding of a consensual model (which is generally a
scientific or historical model).

• Epistemic functions. The epistemic functions usually assigned to models (i.e.,
simplification, visualization, interpretation, explanation, prediction) are also
typical of simulations.

• Modeling process. The activities that characterize the process of model con-
struction and revision are by and large the same as those of simulation model
construction and revision. For example, Clement’s and Justi and Gilbert’s model
construction diagrams (Figs. 5.7, 5.8, respectively) can be easily compared with
Birta and Arbez’s diagram depicting the activities of a typical modeling and
simulation study in the field of systems engineering (Fig. 4.1).
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• Learning pathway. Similarly to as described in the previous section,
simulation-based learning is also characterized by a progression of mental
models, which go from a student’s initial model of the system under study to a
more precise and scientifically correct conceptual model, passing through a
series of intermediate models (see Fig. 5.10).

Can simulation-based learning be considered a particular instance of model-
based learning? The answer is yes… but only in part! A closer examination reveals
that, in addition to their common features, they also present significant differences.
To highlight these differences, simulation-based learning environments can be
imagined as made up of four layers corresponding to (1) the computational model,
(2) the user interface, (3) the instructional support, and (4) the complementary
activities—each of which leads to specific actions and has implications for
learning.

5.5.1 Computational Model Layer

The most-studied models in model-based teaching are static models, such as small
scale models, pictures, computer graphics images, diagrams and formulas.
Conversely, computational models are dynamic models and therefore able to
autonomously reproduce some aspects of a system’s time evolution. The most
typical feature of a dynamic model is that a succession of system states are mapped
onto a succession of model states (as described by Ashby—see Fig. 3.6 and relative
description). Most likely, the dynamic aspect of computational models influences
students’ cognitive processes and, in particular, changes in their mental models.

Fig. 5.10 Simulation-based learning as progression of mental models
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As stated by Seel (2012a), dynamic modeling provides a new perspective, called
‘‘learning by system modeling’’. In this perspective, ‘‘Learning occurs by comparing
the expected results of operations on a system with the observed consequences of
transformations. In the case of gaps between expectations and observations, the
outcomes are used to update or revise the mental model’’ (ibid., p. 1053).

Moreover, when using simulation modeling software, students do not merely
create the model of a given system, but can create models of any type of system
and phenomenon. From this perspective, computational models are not models like
any others, but can be considered to be general-purpose templates, which can
simulate many other types of models. In fact, computational models are frequently
based on analogies with other models, e.g., system dynamics models, which are
based on an analogy with hydraulic models and are therefore ideal tools for
facilitating analogical reasoning.

5.5.2 User Interface Layer

The simulation program’s user interface allows students to visualize the simulated
phenomena which would otherwise remain inert, and to interact with the com-
putational model, which becomes not only dynamic, but interactive thereby. Thus,
a range of behavior can be created in function of students’ decisions. In suitable
conditions, a student-program ‘‘epistemic loop’’ can be activated, in which:

1. the student performs an action to explore the model’s behavior or to verify a
hypothesis;

2. the action prompts a change in the information shown on the screen; and
3. the student then decides to perform a new action, starting a new cycle thereby.

Moreover, simulation-based learning environments are very frequently ‘‘mul-
timodal’’, because they integrate knowledge about a system’s structure and
behavior expressed through different representation modes (e.g., verbal, visual,
mathematical, symbolic). Coordinated multiple representation use can help stu-
dents construct and revise their own mental models. For example, the interactive
animation of molecules in a gas heating simulation is a visual model of the
hypothesis that a gas consists of molecules in constant and random motion, which
elastically collide with each other and with the walls of the container.5 From a
more abstract perspective, the causal maps rendered visible in system dynamics
learning environments are symbolic representations of the cause and effect rela-
tions existing among the system’s variables.

5 Massironi (2002) defined the images that are visualizations of scientific hypotheses on parts of
the natural world, which cannot be directly observed, as ‘‘hypothetigraphs’’.
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5.5.3 Instructional Support

In many instances of model-based teaching, the instructional support of the stu-
dents’ activity is external to the model, i.e., teacher-provided. In simulation-based
learning environments, instructional supports of various nature—ranging from
simple questions and hints to detailed exploration guides and exercises—are
conversely typically software-integrated. This type of support can provide students
with opportunities for reflective thinking and metacognitive awareness tailored to
their individual needs. It can also be compared to what occurs in other interactive
multimodal learning environments that also feature similar levels of student
guidance and support (Moreno and Mayer 2007).

5.5.4 Complementary Activities

The term ‘‘complementary activities’’, as used herein, refers to individual and
group learning activities conducted by students as an adjunct to simulation pro-
gram use and which do not necessarily require the use of a computer. Examples of
these activities are:

• observation of a real system;
• conduction of laboratory experiments;
• formulation of hypotheses;
• presentation and analysis of results;
• explanation of observed phenomena;
• discussion of different ideas.

These activities, which are typically prompted and guided by teachers, are
important because they allow students to externalize their own mental models in
various ways and therefore, to communicate them and share them with others. The
teacher can use these activities both to diagnose the level of students’ under-
standing and facilitate progression from one mental model to another.

In brief, simulation-based learning is characterized by several distinctive
aspects—i.e., dynamic modeling, epistemic loop, coordinated integrated instruc-
tional support, links to extra-technological activities—based on both the con-
struction and revision of new knowledge and critical reflection. Moreover,
simulation-based learning environments are communication- and problem-solving
environments, which give students many opportunities to reflect on content and on
the learning process itself. Thus, simulation can be used as a cognitive tool to
extend other learning- and teaching approaches and may be particularly effective
when learning objectives require the restructuring of students’ knowledge, as in
the instance of conceptual change.

Any powerful instrument, however, presents its own risks, if not used appro-
priately. In simulation, the risk is that students are unable to effectively carry out
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the tasks requested. The next section will be dedicated to examining some of the
causes of these potential problems and the strategies that can conversely maximize
the instructional potential of simulation.

5.6 A Cognitive Load Perspective

Until recently, research on the instructional use of computer simulation was
characterized by an attitude of generalized optimism: Simulation was described as
an inherently valid teaching method, and its instructional effectiveness was rarely
questioned. In addition to its widely acknowledged safety- and economic advan-
tages, simulation was viewed as a technology that allows students to ‘‘learn by
doing’’ through multimedia-rich, interactive, and authentic learning opportunities.
It was therefore frequently considered to share many aspects with games and
virtual worlds. Moreover, most researchers presented simulation-based learning as
an example of active learning and discovery learning, and thus in line with
instructional methods strongly promoted by constructivistic pedagogy. In partic-
ular, with its emphasis on positing hypotheses, conducting experiments, recording
data, and drawing conclusions, simulation was considered one of the most suitable
technologies for facilitating inquiry-based learning—i.e., the prevailing science
instruction approach over the last few decades.

This optimistic scenario has clashed, however, with empirical observations that
do not always coincide with researchers’ and educationists’ expectations. As
mentioned in Sect. 1.1, simulation presents the paradox of an instructional tech-
nology that receives lavish praise but actually has a poor extent of application as a
teaching tool in school programs. As stated by the National Research Council
(2011) report on Learning Science Through Computer Games and Simulations,
this limited diffusion is paralleled by a lack of in-depth research on the instruc-
tional effectiveness of simulation. For example, only a few studies clearly artic-
ulate an examined simulation’s learning goal and in much of this research, unique
simulation effects are confounded with the overall effects of curriculum units
integrating simulation with other learning activities. The above-cited report
therefore stated that evidence as to whether simulations support the development
of science learning goals, other than motivating students’ interest in science, are
quite scarce.

More importantly, some studies have shown that students encounter difficulty in
exactly the types of discovery learning and inquiry-based learning that (according
to the most widespread view) represent the theoretical foundation of simulation as
an instructional method. In fact, since 2004, many constructivist tenets have been
questioned by some researchers upholding the superiority of direct instruction and
‘‘explicit learning’’ over that of discovery learning (Kirschner et al. 2006; Klahr
and Nigam 2004; Mayer 2004). A heated debate has arisen thereby, which will not
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be covered herein, due to space reasons.6 What is underscored here, however, is
that some ideas, with unquestioned validity until only a few years ago, are now
undergoing closer examination, to better define their limits and areas of applica-
tion. For example, recent research has elicited doubts about two aspects in par-
ticular: (1) that a direct relation exists between interactivity (the concurrent use of
different media) and learning, and (2) that an authentic learning- or inquiry-based
environment is always preferable over one presenting knowledge in an explicit and
guided way.

Regarding the first aspect, although interactivity and multimedia are concepts
that pertain significantly to learning processes, they should be analyzed and
evaluated in terms of specific educational needs, especially in light of indications
from the cognitive theory of multimedia learning (CTML) (Mayer 2005) and from
Cognitive load theory (CLT) (Sweller et al. 2011).

Researchers developing SimQuest7 (de Jong 2006; de Jong and van Joolingen
1998) investigated the problems students typically encounter in discovery learning
with computer simulations (including means for supporting learners in the dis-
covery process). The evidence they reviewed showed that students operating in
complex simulation environments generally have considerable difficulty in all
phases of the inquiry process (i.e., in hypothesis generation, design of experiments,
interpretation of data, and regulation of learning). For example, they ‘‘have diffi-
culty choosing the right variables to work with; they find it difficult to state testable
hypotheses; and they do not necessarily draw the correct conclusions from
experiments’’ (de Jong 2006, p. 532). To obviate these problems and increase the
instructional effectiveness of simulation, the researchers suggested that simulation
be integrated with ‘‘cognitive tools’’ aimed at guiding and supporting the students’
activities. Examples of these tools, which were integrated into the SimQuest
program, are assignments, explanations, background information, monitoring
tools, hypothesis scratchpads (software tools to create hypotheses from predefined
variables and relations), experimentation hints, process coordinators, and planning
tools. Thus, instruments of this type present learning environments that are based
less on free exploration and more on guided discovery—an approach also strongly
suggested by other researchers (as described in the following section).

Three levels of design can be used to examine the causes of potential problems
in a given simulation-based learning environment:

• Cognitive ergonomics—problems at this level are generated by a user-interface
that is difficult to understand and use, or burdened by unnecessary details, which
aim more to capture students’ attention than to illustrate important problems.

6 For a detailed account of different various viewpoints, see the volume edited by Tobias and
Duffy (2009), which integrates scientific thought from both sides of the debate by presenting
research findings for and against the constructivistic paradigm.
7 SimQuest is a software developed to create equation-based scientific simulations developed at
the University of Twente (http://www.simquest.nl).
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Students therefore find it difficult to translate their goals into intentions and
action sequences, and to perceive and interpret the system’s state.8

• Instructional design—problems at this level are due to a lack of, or insufficient
consideration of important instructional factors, such as the students’ back-
ground knowledge, learning goals, content sequence, characteristics of the
learning task, and/or classroom dynamics.

• Instructional strategies and methods—problems at this level originate in the
choice of instructional approaches that are not based on the cognitive processes
involved in model-based reasoning and learning (see Sects. 5.3 and 5.4).

Thus, how might program designers obviate these problems and maximize
simulation’s instructional potential? CLT provides some indications for identify-
ing design features that can greatly impact learning (positively or negatively). The
remaining part of this section will therefore be dedicated to a brief description of
these suggestions.

Cognitive load theory was developed in problem-solving research in the early
1980s by the Australian psychologist John Sweller. It has gained much ground
over the last decades, with many research groups producing a large body of
published experimental findings, both in Europe and in the United States.9 The
success of CLT is due to the fact that its learning principles are based on empirical
evidence; are applicable to any type of content and media; and allow for the
creation of efficient learning environments (i.e., in which to learn with better
results, less effort, and in less time). Moreover, these principles are founded on the
characteristics of human cognitive architecture and, in particular, on consideration
of limits in the information processing capacity of WM. The main CLT premise is
that learning consists in the construction of mental schemas, and can be optimized
if students are enabled to use their WM resources to the greatest extent possible to
construct the schemas required by the learning task at hand. Vice versa, learning
can blocked or hindered if WM is occupied in processes not pertaining to the
construction of these schemas. (The term ‘‘mental schema’’ used in this context is
only broadly linked to its meaning in other psychological theories—see Sects. 2.1
and 5.4).

As mentioned in the previous chapters, WM plays a determining role in pro-
cesses such as attention, the selection and organization of information, and
problem solving. It is nevertheless markedly limited in its capacity for storing and
processing new information. As first shown by Miller (1956), WM can, at the
most, simultaneously contain 7±2 ‘‘chunks’’ of information. In situations requiring
not only remembering of information (e.g., a list of words) but also processing (as
in the execution of an arithmetical operation) WM capacity is even lower, ranging

8 Cognitive ergonomics is a field of research and practice concerned with the application of the
cognitive sciences to problems of human–machine interaction (Long and Whitefield 1989).
A fundamental cognitive ergonomics topic is that of human–computer interaction.
9 See Plass et al. (2010) and Sweller et al. (2011) for a detailed overview of the theory and its
implications.
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from 3 to 5 elements (Cowan 2001). Moreover, the information present in WM is
subject to rapid decay (remaining present for only approximately 20 s), which can
be avoided only by keeping the information active through rehearsal. WM
therefore presents the paradox of being essential to learning, but with functional
limits that easily render it an information processing bottleneck.

Schemas play a key role in CLT because the approach underscores their nature
of organized nowledge structures in long-term memory, which allow for the
chunking of many elements of information into a single, higher-level element,
reducing information processing demands on WM thereby. According to this
interpretation, the concept itself of an information chunk in Miller’s studies of
short-term memory can be conceived of as a schema. Moreover, multiple schemas
can be linked together and organized into hierarchical structures (Kaliuga 2010).
In fact, a key criterion that differentiates experts from novices is that the former
possess a higher number of complex mental schemas and are able to use them
automatically.10

‘‘Cognitive Load’’ is defined as the total quantity of activity imposed on in WM
at a given moment. Intuitively, cognitive load corresponds to learner-perceived
mental effort and therefore, to the subjective difficulty of a learning task.11

It must also be noted that CLT shares several assumptions with the CTML,
(largely the creation of Richard Mayer; 2005), such as learning as schema con-
struction in long-term memory, limited WM capacity, separated verbal and visual
processing channels. Both theories state similar principles and are at times nearly
indistinguishable. Moreover, Wolfgang Schnotz (2005) proposed an integrated
model of text and picture comprehension (ITPC) which also assumes a cognitive
architecture with multiple memory stores and presents some similarities and dif-
ferences to Mayer’s theory.

The ‘‘standard’’ cognitive load model defines three types of load:

1. Extraneous cognitive load—associated with cognitive processes that are not
necessary for learning, such as operations that do not pertain to learning, or the
processing of redundant information.

2. Intrinsic cognitive load—caused by the complexity of the learning materials in
and of themselves, which is given by the degree of interconnectedness among
essential information elements requiring simultaneous processing in WM.

10 Students demonstrate expertise when they have familiarized with material and have mastered
the knowledge therein, which also means knowing how to apply it in solving specific problems.
11 Australian and Dutch researchers developed a method to measure mental effort, by using
questions that ask students to subjectively evaluate the difficulty they had experienced while
studying material and responding to learning assessment tests (Paas et al. 2003). The combined
assessment of learning and mental effort led to development of the concept of ‘‘learning
efficiency’’, which states that, given equal learning outcomes, the most effective teaching
methods are those demanding the least mental effort (Paas and Van Merriënboer 1993).
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3. Germane cognitive load—associated with cognitive processes that pertain
directly to learning, such as schema construction in WM and schema
automation.12

Sweller (2010b) and Kalyuga (2011) recently modified the above described
model (a rather surprising choice, given the model’s popularity!) by reducing the
types of cognitive load to only two categories—i.e., extraneous and intrinsic—and
redefining germane load as the student’s actual WM resources for dealing with the
intrinsic cognitive load associated with information to be learned.

The total cognitive load in a given learning task depends on the degree and
quality of interaction among contents, student, and instructions (Fig. 5.11).
Learning is compromised when the sum of extraneous and intrinsic loads exceeds
available WM capacity.

Let us now take a more in-depth look at different types of cognitive load—by
also considering the triarchic model’s recent modification. In particular, their
potential role in simulation-based learning will be examined by linking extraneous
load to the cognitive ergonomy level of instructional design, and the issue of WM
resources intentionally allocated to learning, to the instructional strategy method
level.

CLT’s main aim in learning environment design is to reduce extraneous cog-
nitive load to a minimum. This type of load essentially depends on the way in
which the information is presented to the student, and is typically caused by:

• the presence of irrelevant information, which interferes with learning;
• the need to integrate spatially- or temporally separated information.

The above presentation modes waste students’ time and mental effort because
they have to elaborate unnecessary information. Simulation contexts frequently
present situations with texts, images, and sounds that are not directly linked to the
learning task at hand. These ‘‘seductive details’’ therefore negatively impact
learning (Harp and Mayer 1998). Another frequently recurring instance is that of
sliders or buttons not being presented close to animations or graphs showing the
simulation’s time course.

Thus, the first aspect to consider in simulation design is that of user interface:
One that is overly complex and/or presents the user with too many choices is a
source of extraneous cognitive load that can interfere with learning. In particular,
factors requiring design-phase evaluation are:

• the type and number of elements—‘‘widgets’’—students can use to communi-
cate their decisions to the program (e.g., sliders, buttons, text boxes);

• the relative position of certain interface elements with respect to the others;

12 In Mayer’s cognitive theory of multimedia learning, the same types of cognitive load are
respectively mapped to three types of cognitive processes termed incidental processing, essential
processing, and generative processing.
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• the type and number of graphs showing students the consequences of their
actions;

• the type of images and animations representing the simulated phenomenon—of
great relevance in helping students form a correct mental model of the simulated
system;

• the navigation among interface items that are not simultaneously visualized
(e.g., the possibility of using tabs to visualize additional graphs or to open a
separate window with hints and guides);

• the possibility for students to control the simulation’s time course.

The other fundamental aspect to consider is that of information representation.
The informational elements typically used in simulation-based learning are texts,
pictures, and animations, which must be considered both alone and in their pos-
sible interrelations. With a written text, for example, one must decide on the
representation’s format (font, colors, dimension), its function in explanation of the
contents, its position with respect to pictures, and its relation to any audio-narrated
texts. Based on Schnotz’s (ITPC), the same types of elements can be dealt with
from a cognitive-semiotic perspective, which distinguishes between symbolic and
iconic types of information representation (corresponding, respectively, to text and
pictures), and emphasizes the combined processing of verbal and pictorial infor-
mation in the construction of multiple mental representations.13

Experiments comparing the efficiency of alternative instructional formats
(Mayer 2005) have shown several effects linked to specific combinations of ele-
ments such as images, written text, and spoken text. The effects reported here
below are of particular interest for user interface design and for information
representation:

• Split-attention effect. Multiple sources of information that are unintelligible in
isolation result in less learning when presented in a split-attention, versus
integrated format (Ayres and Sweller 2005).

Fig. 5.11 Factors
influencing total cognitive
load in a learning context

13 The application of this theory to simulation is limited by the fact that, from a semiotics
perspective, many of the elements characterizing a simulation program are neither symbols nor
icons, but, indexes—e.g., sliders, and bars—in which the indicator’s position visually signals the
value of a given variable.
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• Modality effect. Multiple sources of information that are unintelligible in
isolation result in less learning when presented in a single- (e.g., visual) versus
dual-modality format (e.g., visual and auditory) (Low and Sweller 2005).

• Redundancy effect. The presence of information sources that do not contribute to
schema acquisition or automation interfere with learning (Sweller 2005).

• Expertise reversal effect. With increasing expertise, instructional procedures that
are effective with novices can lose their effectiveness, whereas ineffective
techniques can become effective (Kalyuga 2005).

These effects take on special relevance in conditions that are defined as ‘‘high-
load’’ situations in the cognitive load framework and which are typically char-
acterized by a high number of interacting elements requiring simultaneous pro-
cessing in WM. Situations of this type are frequently present in simulation-based
learning environments, when students must mentally integrate dynamically
changing multiple representations of information, while carrying out complex
tasks, such as testing hypotheses or exploring alternative courses of action.

It is important to note that the expertise reversal effect shows us that any
presentation format or teaching method must always be examined in light of the
students’ expertise. For example, a picture explanation can be particularly effec-
tive, when accompanied by audio versus a written text, for students with little
knowledge of the subject, whereas the opposite can be true for expert students.

Some design factors for increasing the effectiveness of educational simulations
have been examined by experimentally manipulating variables such as the
grouping and position of sliders and the use of icons, in addition to text in scientific
simulations (Lee et al. 2006; Plass et al. 2009). For example, the effectiveness of
ideal gas simulations, which represent temperature in symbolic and iconic form
(e.g., by numbers and by flames, respectively, below the container) was compared
to that of simulations showing the temperature in symbolic form only. An
expertise reversal effect was observed, given that students with lower levels of
general scientific knowledge learned better from the first type of simulation than
the latter, and the opposite was true for students with higher levels of prior
knowledge.

The idea of reducing extraneous cognitive load does not concern only the
effects linked to user interface design and to information representation, but also to
the method of formulating problems and the use of examples, as described by the
following effects:

• Worked-example effect. Studying worked examples results in better performance
on subsequent problem-solving tests than does solving equivalent problems
(Renkl 2005).

• Completion effect. Asking learners to complete partially solved problems can be
just as effective as presenting worked examples (Paas and van Merriënboer
1994).

• Guidance fading effect. As their expertise grows, learners should be presented
worked examples, followed by completion problems, and then full problems,
rather than worked examples alone (Renkl 2005).
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Although it is widely believe that one learns better by solving a problem
(‘‘learning by doing’’) rather than by examining an example of it, the experimental
evidence underlying the latter effect reveals otherwise. Students who have not yet
mastered a subject can learn better through worked examples—i.e., examples
showing the way to solve a certain type of problem step by step—rather than by
‘‘tackling’’ problems head on. This is because conventional problem-solving in the
form of means-ends analysis requires a relatively large amount of WM processing
capacity. The latter is therefore unavailable for schema construction and auto-
mation, and thus, for learning. Later on in the process, guided examples can be
substituted with completion problems—i.e., problems presenting a partial solution,
which the student must complete. The gradual shift from guided examples to
problems by providing fewer completed steps each time is called backward
fading.14

Moreover, consistently with the model-based learning approach (see Sects. 5.4
and 5.5), worked examples have been found to positively impact the progression of
mental models during instruction. In particular, Darabi et al. (2010) studied the
effect of worked examples and problem solving strategies on chemical engineering
students’ mental model progression, with the learning goal of diagnosing mal-
functions in a computer-simulated chemical plant. They found that the worked
example strategy significantly contributed to participants’ understanding of causal
relations among the system’s components.

Thus, in the context of a specific learning goal, one must decide whether the use
of simulation is actually justified, or whether other teaching methods should be
used, such as the worked examples method—or a combination of methods. Lack of
consideration of this aspect can result in simulation misuse, which occurs when the
features of interactivity and problem solving that are typical of simulation are not
suited to a given student’s characteristics and learning context.

Intrinsic cognitive load, however, depends on the students’ degree of familiarity
with the contents to be learned and on the consequent level of learning task
difficulty. A learning task that is more difficult than the student’s level of expertise
causes a high intrinsic cognitive load and therefore, inefficient learning.

According to CLT, the most important student characteristic is that of prior
domain knowledge. This view is in line with Ausubel’s ‘‘assimilation theory of
learning’’, which holds that ‘‘the most important single factor influencing learning
is what the learner already knows’’ (Ausubel 1968, p. vi). Gitomer and Glaser
(1987) specifically investigated the role of domain knowledge in the construction
of mental models and described it in terms of cognitive structure accretion.
According to these authors:

14 In constructivistic terms, the backward fading method is a type of ‘‘scaffolding’’—i.e., a
situation in which students are a given a support structure, which is gradually removed with
improvement in knowledge acquired. It is a recurrent topic in instructional science, as a method
with similar aims was known in the 1950s in behavioristic instruction as ‘‘shaping behavior’’.
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The more knowledge one has about a certain domain, the more inferences that can be
drawn and used to construct models, elaborate new information, enhance retrieval, and
foster learning. This is, in part, attributable to more potential links existing between stored
knowledge and incoming information, which results in better, more elaborative encoding’’
(ibid., p. 307).

As opposed to extraneous cognitive load, intrinsic load cannot be generically
diminished. It must therefore be optimized, and to do so, the following effects must
be given due consideration during the design phase:

• The element interactivity effect. Cognitive load effects can be observed only
when using material with a high, versus low degree of element interactivity
(Sweller 1994).

• The isolated/interacting elements effect. Learning is enhanced when very high
element interactivity material is first presented as isolated elements, followed by
interacting element versions, rather than initially in an interacting element form
(Pollock et al. 2002).

These effects suggest several techniques to consider during the instructional
design- and technological interface development phases, as described here below.

5.6.1 Pre-Training

It is important to provide students with prior instruction about the names and
behavior of a complex system’s components before presenting the entire system—
e.g., presenting a simulation model’s structure, step-by-step, in the form of a
narration or guided tour, as with the system dynamics learning laboratory shown in
Fig. 5.4.

5.6.2 Segmentation

The original task or content should be subdivided into fragments of information
corresponding to manageable chunks—e.g., reducing the complexity of a simu-
lation by separating it from one screen into two screens.

5.6.3 Sequencing

Presenting the information by following a certain order—e.g., by gradually
increasing the number of variables the student is able to manage. The image in
Fig. 5.12 shows a virtual laboratory on clorophyillian photosynthesis with an
interface that allows for this type of sequencing. The initial situation corresponds
to the ‘‘white light’’ mode and shows only the following sliders: ‘‘Temperature’’
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(at the top), ‘‘Light intensity’’ and ‘‘Carbon Dioxide Level’’ (at the bottom of the
screen). By switching to the ‘‘colored light’’ mode, the ‘‘Light wavelength’’ tab
also appears at the bottom. Students can therefore first carry out the experiments in
the most simple situation, and then can pass on to the more complex one to
investigate the effect of different colored-light on photosynthesis.

5.6.4 Pacing

This criterion allows students to control the rate of information presentation. For
example, the molecular dynamics simulation shown in Fig. 4.12 presents a navi-
gation bar that allows students to pause and play the simulation at any time; to
move forward and backward between time intervals; to speed it up and to slow it
down; and to reverse the direction of time by playing it backward. These actions
can correspond to specific cognitive processes, such as directing attention to an
important bit of information or linking new information to prior knowledge.

Reducing extraneous and intrinsic cognitive load can create the conditions to
free up WM resources, which can be dedicated to the intrinsic cognitive load
imposed by the learning task. Some effects that have been ascribed to the use of
these germane resources are:

Fig. 5.12 An educational simulation of a photosynthesis lab. Image courtesy of ExploreLearning
GizmosTM (http://www.ExploreLearning.com)
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• The variable examples effect. Examples with variable surface features enhance
learning, as compared with examples presenting similar features (Paas and van
Merriënboer 1994).

• The self-explanation effect. Asking students to explain their answers to them-
selves while studying worked examples enhances learning (Atkinson et al.
2003).

• The imagination effect. Imagining procedures or concepts enhances learning, as
compared to studying materials (Leahy and Sweller 2004).

All of these effects can be tapped in simulation-based learning. For example, a
teacher can use simulation to show students a large number of examples with
variable features and can help them identify both similar features and differences
across many conditions thereby. A commonly used technique is that of a teacher
running a computer-projected simulation onto a screen in front of the class.
Kalyuga (2009) introduced the notion of ‘‘worked-out’’ simulation, as an
instructional format comprising a series of static frames that demonstrate the step-
by-step procedures of actual hypothesis testing. The same notion can be extended
to the comprehension of procedurally guided numerical experiments. For example,
worked-out simulation examples (in the form of mini-projects) were used in the
context of an advanced computational physics course to highlight numerical and
modeling issues, and to teach numerical-experiment practices (Couairon et al.
2011).

The self-explanation technique can be effectively combined with simulation by
asking students to explain their actions or their answers to problems during the
simulation. One type of self-explanation well suited to simulation is that of pre-
dicting what will happen next as the simulation proceeds. Self-explanations can be
prompted by the program or by the teacher; the latter type of prompting can also be
used to stimulate group discussion.

Another instructional technique used in designing and structuring simulation-
based learning situations is that of reciprocal learning, in which students work in
pairs: While one student (the ‘‘doer’’) interacts with the program, the other (the
‘‘observer’’) observes and takes notes (see, e.g., Iserbyt’s model of reciprocal
learning, 2012). Reciprocal learning allows a pair of students to process specific
information with an extraneous cognitive load that is lower than what they would
have individually experienced by interacting with the simulation exclusively on
their own.

Techniques such as varied examples, self-explanation and reciprocal learning
can facilitate student reflection and self-regulation of learning, and can make it
possible to optimize mental model construction thereby.

Ultimately, however, students must decide whether to consciously apply a
learning strategy; whether to re-structure the representation of a problem to solve it
more easily; and to meta-cognitively monitor their thinking processes. The
germane resources allocated to the learning task (i.e., until recently, ‘‘germane
load’’ in the CLT literature) therefore depend on the actual levels of student
engagement with the learning environment. Significantly, Kalyuga (2011) stated
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that ‘‘ensuring that sufficient germane resources are actually devoted to learning
requires appropriately engaged learners. This is undoubtedly a critical issue in
teaching and learning, but it cannot be resolved solely within a CLT framework
and requires specific methods and techniques external to CLT’’ (p. 15).

One effect attracting the attention of cognitive load researchers is that of
imagination, which occurs when students imagining a procedure or concept per-
form better on a subsequent test than learners studying only (Leahy and Sweller
2004). What mechanisms underlie this effect? One hypothesis supported by
experimental evidence (Leahy and Sweller 2007) is that imagining conditions
more easily allow information to be transferred from long-term memory to WM,
and that this process can facilitate learning when students must deal with complex,
high intrinsic cognitive load, information. This situation also frequently occurs in
simulation-based learning environments.

Yet, what if simulation were inherently more appropriate to facilitating imag-
ination than other, more well-known activities, such as testing hypotheses,
designing experiments, and interpreting data? The idea is not surprising, given that
cognitive scientists acknowledge imagination to be a key element of the model-
based reasoning processes underlying scientific practice (see Sect. 5.3).

Clement (2008) closely examined the link between classroom learning and
scientific thinking and found that students achieve deeper understanding of subject
matter when using the same nonformal reasoning processes used by scientists and
experts in their problem solving activities (e.g., analogical reasoning, mental
model construction, imagistic simulation, physical intuition, and thought experi-
ments). As illustrated by Nersessian (2008), constructing a mental model of a
system, visually imagining the model, and predicting its behavior on the basis of
mental simulation are forms of model-based reasoning that are historically pre-
valent in periods of radical conceptual change—i.e., in situations that are cogni-
tively analogous to those students face when asked to change or replace their
mental models of scientific concepts.

It is therefore proposed herein that:

• If extraneous cognitive load is reduced to a minimum, and intrinsic cognitive
load is optimized, then the germane mental resources freed up for learning can
be used for mental simulation.

From this perspective, simulation presents great potential as an imagination-
supporting tool, by facilitating the comprehension of scientific concepts and
stimulating scientific creativity.

For example, Fig. 5.13 shows a screenshot presenting an educational simulation
game aimed at creating awareness in children of the ways in which climate change
is linked with CO2 emission levels in the atmosphere.15 The simulation presents
the analogy of CO2 as water in a bathtub: water (CO2) enters the bathtub (the

15 The simulation is based on a system dynamics integrated climate-economy model (Fiddaman
2002).
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atmosphere) from the spigot above the tub and exits through the drain below,
similarly to CO2 entering and exiting the atmosphere.

The concept underlying the simulation is that of a dynamic balance between the
inflow of CO2 in the atmosphere (due to human activities) and the outflow of CO2

(resulting from photosynthesis and ocean absorption). Without going into the
details of the simulation (very interesting in and of themselves) this type or rep-
resentation can be highly effective in supporting mental simulation of the dynamic
balance phenomenon, because students can compare the output of their own
mental simulation with that shown on the computer screen.

5.7 Choosing the Right Mix

From the mid 1980s to the end of the 1990s numerous studies were published on
the instructional effectiveness of simulation.16 Various types of computer simu-
lation were compared to other teaching modes, such as lectures, expository texts,

Fig. 5.13 Use of an instructional analogy for linking the concept of climate change with the
existing knowledge about the water level in a bathtub. ! 2012 Schlumberger Excellence in
Educational Development, Inc. All rights reserved. Web site: http://www.planetseed.com

16 See, e.g., the studies reviewed in Lee (1999), Strangman and Hall (2003), and Sahin (2006), in
addition to the previously cited National Research Council report (2011).
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laboratory activities, and case studies. The research findings, however, were mixed
and at times conflicting, mostly because simulation was considered an instruc-
tional medium able to foster learning in and of itself. Variables characterizing the
learning context in which simulation was examined—especially expected learning
outcomes (e.g., conceptual change, skill development, content area knowledge),
grade level, student characteristics, instructional methods, teacher training, and
teacher support—were nearly always not examined. As revealed by meta-analyses
(Bernard et al. 2004; Sitzmann et al. 2006) comparing the effectiveness of other
instructional media (e.g., distance learning and classroom-based instruction), all
factors being equal, the largest proportion of an observed difference between two
types of instructional intervention, is due not to the medium used in either of the
two conditions, but the underlying instructional methods. The research focus has
therefore now shifted to issue of which teaching method is the most suited for
optimizing the instructional potential of simulation.

As the constructivist position gained ground over recent decades, simulation
was gradually equiparated nearly exclusively with the discovery learning method.
This association was facilitated by the similarity between student-conducted
activities in a simulation-based learning environments and those characterizing
inquiry-based learning, which is a popular discovery learning approach in science
education. The National Science Education Standards (1996) defined inquiry-
based learning as

a multifaceted activity that involves making observations; posing questions; examining
books and other sources of information to see what is already known; planning investi-
gations; reviewing what is already known in light of experimental evidence; using tools to
gather, analyze, and interpret data; proposing answers, explanations, and predictions; and
communicating the results (p. 23).

These activities therefore closely correspond to those typically conducted by
students in a simulation-based learning environment (see Sect. 5.1). Moreover, the
problems one can encounter in these environments (see Sect. 5.6) are similar to
those encountered in inquiry-based learning. For example, the instance in which
students simultaneously modify too many variables in a simulation is quite similar
to the difficulties they experience in designing and conducting scientific investi-
gations (de Jong and van Joolingen 1998).

Simulation is also frequently considered similar to other methods commonly
thought to be examples of discovery learning (e.g., problem-based learning,
experiential learning, active learning), and it is frequently cited together with these
methods in the Direct instruction versus Discovery learning debate described in
the previous section. (For a recent meta-analysis of discovery based approaches to
education, see Alfieri et al. 2011). Yet, is equiparation of simulation with dis-
covery learning justified? A closer look reveals that the methodological options
available to teachers and researchers are actually more diverse and stimulating
than they might appear at first glance. In fact, direct instruction and discovery
learning are frequently viewed dualistically, in opposition to each other, although
they can be more usefully considered as the two poles of a continuum ranging
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from purely receptive learning to purely discovery learning. Romiszowski (1981)
proposed the notion of an instructional method continuum based on Biggs’ (1972)
and Landa’s (1976) previous classification of these methods and placed some key
teaching methods along the continuum (see Fig. 5.14), specifically:

1. Impromptu reception learning (or ‘‘accidental reception’’)—facts and obser-
vations are teacher-provided or given by other sources in an unplanned way.

2. Rote reception learning—provision of information mostly requiring
memorization.

3. Deductive exposition—a rule is given, followed by examples thereof.
4. Inductive exposition—examples are given, followed by the corresponding rule.
5. Programmed discovery—examples are given, and students must discover the

underlying rule through a sequence of carefully programmed steps.
6. Guided discovery—each learning step’s goals are presented, and students are

free to explore the learning environment, but are given guidance and help at
each stage.

7. Exploratory learning—general learning goals are presented, and students may
choose sub-goals, methods, and activities.

8. Impromptu discovery learning (or ‘‘accidental discovery’’)—facts and obser-
vations are discovered by students in an unplanned way.

Expository teaching strategies and discovery teaching strategies correspond,
respectively, to the two learning poles of reception and discovery learning. In most
practical situations, however, effective instruction requires a mix of strategies and
methods, defined in terms of student characteristics and learning goals, modulated
over time in function of the student’s progress.

It is important to note that both reception learning and discovery learning can be
two different types of meaningful learning, i.e., learning in which individuals
acquire new knowledge by integrating it into their prior cognitive structures
(Ausubel 1968). In other words, discovery learning is not synonymous with
meaningful learning, nor is reception learning with rote learning (i.e., by mem-
orizing facts only). For example, a book or television documentary can be as

Fig. 5.14 A continuum of instructional methods (based on Romiszowski 1981, p. 179)
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engaging, thought-provoking, and relevant to students as can group discussion or a
last generation videogame, even when students do not conduct any observable
activities (as in the first example). This is because, as Mayer (2004) noted,
‘‘activity may help promote meaningful learning, but instead of behavioral activity
per se (e.g., hands-on activity, discussion, and free exploration), the kind of
activity that really promotes meaningful learning is cognitive activity (e.g.,
selecting, organizing, and integrating knowledge)’’ (p. 17).17 More than generic
‘‘activity’’, we should reason in terms of active processing, which can occur even
during traditional lessons, as long as teachers are able to stimulate students’
attention and interest. It can conversely be absent in simulations that disorient
students because they have no clear learning goal or an overly complex techno-
logical interface. Moreover, Renkl and Atkinson (2007) maintain that processing
should be not only active, but also focused, i.e., linked explicitly to the concepts
and principles that are crucial to learning a subject.

Findings from a study conducted by Stephens et al. (2010) on the in-class use of
simulation suggested that behavioral interactivity can at times be less crucial to
learning goals than is cognitive interactivity. The researchers used two conditions
to compare the instructional effectiveness of simulation: (a) small groups working
hands-on with computers, and (b) whole classes observing a teacher-conducted
simulation projected onto a screen before the class. Although students in the small
group situation appeared to be more engaged, the whole-class format produced
similar or even better learning results. This outcome was due to the fact that when
students did not explore the simulation on their own, teachers had more oppor-
tunities to ask the class questions and to synthetize, summarize, and restate
important aspects of the simulation.

A closer examination of the objections to discovery learning by promoters of
direct instruction, however, reveals that they concern instructional situations
characterized by ‘‘pure discovery’’ (Mayer 2004), ‘‘minimal guidance’’ (Kirschner
et al. 2006), or ‘‘unassisted discovery’’ (Alfieri et al. 2011). In the same vein, Klahr
and Nigam (2004) created an experimental condition using a discovery learning
exemplar with ‘‘no teacher intervention beyond the suggestion of a learning
objective; there were no guiding questions and no feedback about the quality of the
child’s selection of materials, explorations, or self-assessments’’ (p. 662). These
types of minimally guided conditions correspond to the right-most part of the
diagram in Fig. 5.14, and specifically, to what is called ‘‘exploratory learning’’.
They are also significantly different from guided discovery or programmed dis-
covery methods.

In one study examining the effects of simulation on high school biology stu-
dents’ problem-solving skills, Rivers and Vockell (1987) divided simulations into
two categories—guided and unguided. Results showed that students using the

17 Similarly, Kennedy (2004) proposed a distinction between functional interactivity, which
links an instructional event to students’ actions, and cognitive interactivity, which refers to
students’ cognitive processes.
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guided version of the simulations surpassed the other students on tests of scientific
thinking and critical thinking. This finding suggests that students perform better
when some form of guidance is provided.

Some types of simulation were initially presented by their proponents as
exploratory learning environments, on the foundation of constructivist or inquiry-
based premises, but in most instances, these environments gradually developed
guiding and support functions for students. They therefore shifted from explor-
atory learning to varying degrees of guided learning. For example, Van Joolingen
and de Jong (1991) offered students a tool to support hypothesis generation while
exploring a computer simulation, in the form of ‘‘hypothesis scratchpads’’. These
are paper forms containing variables, conditions, and relations aimed at helping
them construct hypotheses. As mentioned in Sect. 5.6, the SimQuest software later
integrated scratchpads into the program (Fig. 5.15).

Many other studies have shown a similar pattern. For example, Horwitz and
Christie (1999) attributed some disappointing learning results observed in the use
of the GenScopeTM program (a popular exploratory environment designed to help
students learn genetics) to a lack of assistance from the software. Instructional
activities for guiding students’ interactions with the genetics model—in the form
of ‘‘embedded reflective guidance’’—were consequently included in a new version
of the program, called BioLogicaTM.18

The shift from exploratory and open-ended learning to a more structured form
of instruction is also occurring in the Connected ChemistryTM learning environ-
ment.19 This environment is a set of model-based chemistry instructional units
dedicated to students and teachers. The activities making up the units are based on
agent-based simulation models (see Sects. 4.10) that allow students to use con-
ceptually interpret macroprocesses, such as the chemical reactions and state
changes of matter, in terms of emergent properties that link macroscopic- and
molecular-level processes (Stieff and Wilensky 2003; Blikstein and Wilensky
2005).20 Despite the theoretical references to Bruner and to ‘‘constructionism’’
(i.e., Seymour Papert’s theory of science education, which combines Jean Piaget’s
epistemology with the idea of ‘‘learning-by-making’’), both the activities making
up the instructional units and the simulation environment are organized in several
sequential steps of increasing complexity. The steps are described in detail and are
carefully programmed, equipped with introductions, stimulus questions, sugges-
tions, thoughts for reflection and final tests. The result is a simulation-based
learning environment that is so structured as to be more akin to programmed
discovery than to guided discovery or exploratory learning.

18 Web site: http://biologica.concord.org.
19 Web site: http://ccl.northwestern.edu/curriculum/ConnectedChemistry.
20 The Connected Chemistry simulation models are written in the multi-agent modeling
language NetLogo (Wilensky 1999b), which has been used in many biology and physics
classrooms (e.g., Wilensky and Reisman 1999; Wilensky et al. 1999).
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The need to structure and guide students’ activities was also acknowledged by
the creators of ‘‘River City’’, a multi-user virtual environment (MUVE) for
teaching scientific research to U.S. middle schools, which also contains simulation
elements (Nelson 2007). The first version of this virtual world contained only tacit
and collaborative-type guiding elements, although later versions presented a
window with an ‘‘individualized guidance system’’, in addition to the three-
dimensional environment window. The guide offers hints designed to help students
interpret the data they collect in River City and to facilitate the inquiry process. It
contains links to specific pages, an interactive map, a tutorial, and buttons for
navigating forward and backward among contents.

All of the above-described guidance modes can be considered to be ‘‘cognitive
scaffolding’’, i.e., the support structure provided to students in an initial learning
phase. It allows them to carry out a task that would otherwise be too difficult for
them to do alone, and is therefore removed as students become capable of doing
the task autonomously. According to the hypothesis of an instructional method
continuum, provision of this kind of scaffolding can be interpreted as moving from
the right to the left extreme of the diagram in Fig. 5.14.

The same type of considerations can be more generally extended to inquiry-
based learning. In fact, different levels of inquiry can be defined in terms of the

Fig. 5.15 Examples of instructional support provided in a physics simulation. Students can
change the two forces acting on the people and the distances to the center of the seesaw and
discover the effect on the moment. Image from a simulation conducted with SimQuest software,
courtesy of Jan van der Meij. Web site: http://www.simquest.nl
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degree of structure and guidance provided to students (Colburn 2000; Bell et al.
2005). A guide published by the National Research Council (2000) presents a
classification (p. 29) that lists the essential features of classroom inquiry and their
variations in order along two lines: one indicating a varying degree of direction by
the teacher or the materials, and the other, degree of student self-direction. This
representation is also essentially in agreement with the concept of an instructional
method continuum.

The duality between direct instruction and discovery learning is preferably
viewed, however, as a polarity, which is able to generate ‘‘creative tension’’
ultimately able to generate better ideas or outcomes.21

Once one acknowledges the need to integrate activities corresponding to dif-
ferent methods and techniques, the practical issue is that of how to design the
sequence for proposing these activities to students. Gagné’s ‘‘Nine events of
instruction’’ can be a helpful tool here, as it is an instructional design model
broadly used by teachers and curriculum designers (Gagné et al. 1988), and the
events it lists represent the necessary conditions for learning, and specifically:

1. Gain attention
2. Inform learner of objectives
3. Stimulate recall of prior learning
4. Present the stimulus information
5. Provide learner guidance
6. Elicit performance
7. Provide feedback
8. Assess performance
9. Enhance retention and transfer.

The exact format of any of these events cannot be generally specified for all
instructional contexts, but must be decided on a case-by-case basis.22

Moreover, although it is recommended that each event be presented in a given
lesson or unit, their order is not absolute. In fact, much of the differences among
instructional methods concerns the decision as to present the information first and
follow it by practice, as suggested in the above events sequence, or vice versa, to
present the information after practice. In particular, expository instructional
strategies are characterized by (1) information presentation, (2) remembering and
comprehension tests, (3) practice in applying the rules to examples, and
(4) application to problems and real situations. Conversely, discovery instructional
strategies are characterized by (1) the opportunity to act and to observe the con-
sequences of one’s own actions, (2) testing of the comprehension of cause-effect
relations, (3) testing of the understanding of general principles, and (4) application

21 From a scientific model perspective, a useful analogy is that of electric current polarity, which
provokes the flow of electrical current in a circuit.
22 As early as the 1970s, Rosenshine (2002), conducted a series of studies on the efficacy of class
teaching methods. Results showed that the most effective teachers’ activities mostly overlapped
with Gagné’s events of instruction.
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to problems and real situations. An example of a discovery instructional strategy is
that of the ‘‘5E’’ scientific education instructional model, consisting in the fol-
lowing phases: (1) Engagement, (2) Exploration, (3) Explanation, (4) Elaboration,
and (5) Evaluation.23 An examination of each phase’s activities revealed analogies
with Gagné’s events of instruction. As typically observed with discovery learning
methods, the main difference consisted in the inversion of the information pre-
sentation phase (Explanation) with the practice phase (Exploration).

The key aspect characterizing the various approaches is that of sequencing and
therefore, the order in which the various events of instruction are presented to
students.

From this perspective, simulation is at times viewed—similarly to lab activ-
ity—as a type of practice, and therefore, a way to apply and reinforce knowledge
acquired through other instructional media. Other times, it is considered a way to
present new contents to students. For example, Thomas and Hooper (1991) dis-
tinguished between pure simulation (i.e., practice only features) and impure sim-
ulation (i.e., practice and presentation features), and attributed the following
instructional roles to simulation:

1. Experiencing—setting the cognitive or affective stage for future learning.
2. Informing—supplementing or replacing textbooks and lectures to provide ini-

tial formal exposure to a topic.
3. Reinforcing—strengthening specific learning objectives or consolidating newly

acquired knowledge by applying it to a situation similar to one that could be
encountered in the real world.

4. Integrating—providing students with the opportunity to apply previous learn-
ing to new situations and to associate previously unconnected ideas.

The cited authors considered pure simulations to be most useful for experi-
encing and integrating functions, and impure simulations as being more suited to
informing and reinforcing functions. Along the same lines, Brant et al. (1991)
investigated whether it is more effective to use simulation before or after lessons.
Their participant students receiving the simulation as a framework for under-
standing prior-to-formal classroom instruction scored significantly higher on an
applications post-test than did students using the simulation as an integrating
activity following formal instruction. (See Lee 1999 for a meta-analysis on the
effectiveness of computer-based simulation, through examination of the relation
between pure and hybrid forms of simulation, and between the presentation and
practice modes of instructions).

From an instructional design perspective, the progression of one (physical or
mental) model to another, which characterizes model-based instruction, can also
be viewed in terms of sequencing. For example, Swaak et al. (1996) studied the
effect of model progression in a simulation on harmonic oscillation, where the

23 The model was developed by the Biological Sciences Curriculum Study, an organization with
the aim of improving biology teaching in schools (http://www.bscs.org).
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model developed from free oscillation, then to damped oscillation, and lastly, to
oscillation with an external force (see Sect. 4.5). They found that model pro-
gression was successful in enhancing the students’ intuitive knowledge (but not
their conceptual knowledge) as compared to an environment without model
progression.

Seel and Dinter (1995) studied the effect of presenting a conceptual model (in
the form of a well-organized knowledge structure) at the beginning of the learning
path in the construction of students’ mental models. Their findings confirmed that
a conceptual model tailored to students’ prior knowledge was directly associated
with an increase in learning. Darabi et al. (2010) further investigated the issue of
the effect of instructional planning and sequencing on the construction of mental
models. They found that ‘‘despite the essential role of problem-solving practice for
integration and transfer of knowledge and skills, providing novice learners with
supportive information before practice can contribute substantially to the pro-
gression of a learner’s mental model toward an expert-like mental model’’ (p. 101).

In a presentation of his approach to model-based learning and instruction in
science, Clement (2007) noticed teachers’ difficulty with pure discovery methods
and alternatively proposed a method of student/teacher co-construction of a visual
model during large group discussion (see Sect. 5.4). This approach is a form of
guided discovery, in which teachers establish the nature and sequence of the
activity conducted in class. Specifically, Clement distinguished between the two
dimensions of directing activities and generating ideas: the first is more the tea-
cher’s responsibility and the second, the students’. (According to Clement, during
experimentation of these methods in class, the teacher directed the activity for
approximately 85 % of the time and the students generated approximately 60 % of
the ideas emerging.)

Regardless, however, of the strategy adopted, as long as a specific mental model
represents a sufficiently plausible explanation for students, they will not be
motivated to construct a new one. Equivalently, CLT tells us that the students will
not automatically allocate the resources they have available in WM to constructing
the mental schema required for learning. It is therefore the teacher’s responsibility
to set up a sequence of activities to stimulate the need to progress from one mental
model to another, and to facilitate the construction of these models. This approach
also requires consideration of the role of motivational variables that combine
affective and cognitive functioning. A variable of this type is interest, which can
be defined as a psychological state manifesting itself as ‘‘a relatively enduring
predisposition to reengage particular contents over time’’ (Hidi and Renninger
2006, p. 111). Empirical evidence does show that simulation can motivate stu-
dents’ interest in science (National Research Council 2011), but a distinction
should be made among different types of interest. A useful reference model for this
purpose is Hidi and Renninger’s (ibid.), which proposes that interest develops in
four phases:

1. Triggered situational interest—a psychological state of interest that results
from short-term modifications in affective and cognitive processing.
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2. Mantained situational interest—involves focused attention and persistence
over an extended episode in time.

3. Emerging individual interest—when students begin to regularly generate their
own ‘‘curiosity’’ questions and are characterized by positive feelings.

4. Well-developed individual interest—which enables people to sustain long-term
constructive and creative endeavors.

The model can help us distinguish between the interest sparked by a given
simulation’s features such as attention-grabbing images and animations or unex-
pected information, and other forms of interest that are more significant to learning
purposes and are potentially linked to the restructuring of students’ schemas and
beliefs.

Another research area worthy of investigation is that of students’ study strat-
egies, i.e., the repertoires of methods and techniques they apply when using a
simulation, or building a simulation model. Examples of these strategies are:
brainstorming, taking notes, visually structuring information (e.g., using charts,
maps, diagrams, timelines), summarizing, self-questioning, self-monitoring, cre-
ating sub-goals, and managing time.

Considering simulation as an activity that can be explicitly linked to, and
integrated with other learning activities, broadens the horizon of instructional
design from the simulation program or learning environment to that of the
instructional unit—i.e., to a series of lessons or learning experiences, rather than
single lessons. It is therefore possible to refer to the concept of integrated
instructional units, which were defined by ‘‘America’s Lab Report’’ (National
Research Council 2006, p. 76) as an instructional sequence integrating laboratory
activities with other types of science learning activities, such as lectures, reading,
and discussion.24 The duration of these units can range from several days to
several weeks, in agreement with the time students require to meaningfully learn
new concepts and practices. For example, as a part of a unit dedicated to the study
of astronomical factors causing variations in the temperature between summer and
winter, a simulation-based activity could allow for a change in the tilt of the
earth’s axes, and for virtually measuring the angle with which sunbeams strike the
earth in various parts of the globe. This activity could then be integrated with an

Fig. 5.16 Levels of
instructional structure when
using simulation

24 The same report also considers simulation as a technology to support learning, which can be
integrated with real laboratory experiences making up an instructional sequence.
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experiment conducted in class, by using a portable lamp to illuminate sheets of
squared paper tilted at various angles to the direction of the light, and by using a
felt-tip marker to trace the outline of the illuminated areas. This approach can
make it possible to identify and consequently identify analogies to facilitate
understanding of what happens when the sun’s rays strike the earth’s surface from
different angles as the seasons change.

Thus, the integrated instructional unit represents the final level of a progression
of elements starting from the simulation program (as a technological instrument
for manipulating a model) and going to simulation-based learning environments
(simulator equipped with instructional support tools), and then to integrated
instructional units (simulation only one of the elements involved—not necessarily
the main one)—in a sequence of activities designed with a well-defined learning
goal (see Fig. 5.16).
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Chapter 6
Simulations for Thinking

When the ideas are grasped, the words are forgotten.
(Zhuangzi, XXVI.II)

6.1 Cognitive Partnering

This chapter will examine a topic that (more or less explicitly) emerged in many of
the previous pages: the relation between mental simulation and computer-based
simulation (Fig. 6.1). What are the similarities and differences between these two
types of simulation? How do they interact? How can they be integrated to enhance
learning?

A preliminary attempt to answer these questions can be grounded in several
general considerations on the relations that exist between humans and computer
systems, and specifically, the ways in which these systems can extend human
cognition. This view will make it possible to envision learning scenarios with
simulations serving as ‘‘partners’’ in developing cognitive processes that lead to
conceptual understanding and creativity.

The use of computers to extend human intelligence was a specific field of
investigation in educational psychology, especially in terms of the effects of the
introduction of microcomputers into schools, which occurred during the 1980s and
the early 1990s.1 Pea (1985), for example, proposed that the computer can be used
not only as an ‘‘amplifier’’ of cognition, but also as a ‘‘reorganizer of mental
functioning’’. For instance, a word processor can be simply used to more rapidly
and precisely create documents and therefore by considering it as an amplification
of a typewriter’s possibilities. It can conversely be viewed and used as a tool for
interactively creating and revising a document’s structure. This type of use gives
people an opportunity to reorganize their own writing processes and to experiment
with different activities during writing. Pea (ibid., p. 174) cited simulation as an
example of software that can have dramatic cognitive implications for the reor-
ganization of mental processes—alongside expert systems and knowledge-based

1 The Apple II home computer was released in 1977 and was the first computer to be used on a
broad scale in American secondary schools. IBM responded to the success of Apple II by
releasing the IBM PC in 1981. This was the first microcomputer based on an open architecture,
which allowed third parties to develop software and hardware for it and other companies to
manufacture ‘‘PC compatible’’ clones, igniting the personal computer revolution thereby.

F. Landriscina, Simulation and Learning, DOI: 10.1007/978-1-4614-1954-9_6,
! Springer Science+Business Media New York 2013
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intelligent tutors. (The latter two intelligent technologies were the focus of edu-
cational technology research at the time.)

Salomon et al. (1991) distinguished between effects with technology, which
occur ‘‘when people work in partnership with machines’’ (p. 2), and the effects of
technology, which occur when ‘‘when such partnerships have subsequent cognitive
spin-off effects for learners working away from machines’’ (ibid.). According to
this view, a given technology can have two types of effects on students: change in
performance while using the program, or a later change in knowledge or skill
when away from the computer. Salomon and Globerson (1987) associated the
second type of change with a state of mindfulness, which activates non-automatic,
controlled mental processes, and therefore mental effort and metacognitive mon-
itoring. They contrasted this mindfulness state with that of mindlessness, which is
conversely characterized by ‘‘blind reliance on the marked structural features of a
situation without attention to its unique and novel features’’ (ibid., p. 4).2

The interplay between human cognition and computers is also a key issue in the
field of cognitive ergonomics (see Sect. 5.6). Norman (1991) in fact viewed
computer programs as an example of cognitive artifacts—i.e., artificial devices that
‘‘maintain, display, or operate upon information in order to serve a representational
function and that affect human cognitive performance’’ (p. 17). Cognitive artifacts
may enhance performance—not by changing a person’s capabilities, but the task
itself. An example is that of a check-list to monitor tasks calling for many steps and
requiring special attention (and therefore tapping a rather high cognitive load).
From a ‘‘system view’’—i.e., the perspective of an observer viewing the total
system composed of the elements of person, check-list, and task ‘‘from the outside
looking in’’—the system’s overall performance appears to be enhanced, because the
person involved is able to do the task more rapidly and with fewer errors than
without the check-list. Yet, the check-list does not actually enhance this person’s

Fig. 6.1 The relation
between mental simulation
and computer-based
simulation

2 In a cognitive load perspective (see Sect. 5.6), a state of mindfulness can be compared to a
condition in which a student’s available working memory resources are currently devoted to the
learning task at hand, whereas a mindlessness state refers to a condition of high extraneous
cognitive load.
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memory: From the ‘‘person view’’ (the user’s viewpoint), it only changes the task,
from that of remembering the items on the list to the three new tasks of (1) con-
structing the list (which should be done ahead of time), (2) remembering to consult
the list, and (3) reading and checking the items on it. Moreover, in his popular book
‘‘Things That Make Us Smart’’ (1993), Norman distinguished between two general
modes of cognition in interacting with a machine:

• Experiential cognition—a state of mind in which we perceive, act, and react to
events around us effectively and effortlessly (e.g., driving a car, reading a book,
having a conversation, playing a video game), and…

• Reflective cognition—a state of mind that involves thinking, comparing, and
decision-making, and leads to new ideas and creativity (e.g., designing, learning,
writing a book).

Both modes are essential for everyday thinking, but each relies on different
types of technological support. Reflective cognition is based on the storing of
temporary results and the use of those results in further thought processes. This
process can be facilitated by external representations that allow us to overcome
working memory limitations, for example, in building the chain of reasoning
required to understand a system’s functioning. This occurs, e.g., when students
sketch a diagram of a mechanical system or a map of the cause-effect relations in a
simulation model.

From the mid-1990s onwards, the cognitive sciences yielded several new the-
oretical approaches to representations and mental processes; these were charac-
terized by the idea that cognition is not only a property of the human brain, but
necessarily depends on external factors. The more well-known of these approaches
are listed here below:

• distributed cognition (Hutchins 1995);
• external cognition (Scaife and Rogers 1996);
• extended mind (Clark and Chalmers 1998).

All these approaches have many points in common and are related in content to
a position known in philosophy of mind as ‘‘externalism’’ (Rowlands 2003).

Distributed cognition is a theory developed by Hutchins (1995) on the basis of
cognitive ethnography research examining navigation aboard US Navy ships and
commercial airline cockpits. The purpose of these studies was to study ‘‘cognition
in the wild,’’ a term coined by Hutchins to indicate cognition occurring in the
everyday natural environment, versus under laboratory conditions. The theory’s
main tenet is that cognition is constructed from the coordination of both internal
and external resources and that the meanings of actions are directly grounded in
the context of a given activity.3

3 A position that has its roots in Vygotsky’s sociocultural theory of mind development, which
also influenced Cole’s cultural psychology and Engeström’s activity theory. These approaches in
turn focus on the notion of artifacts as culturally constructed mediators of human cognition and
behavior (Cole and Engeström 1993).
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Hutchins (ibid.) used the example of the ‘‘three-scale nomogram’’, a material
artifact used by navigators when attempting to calculate a ship’s speed from
distance traveled over a specific time period. If the values of any two of the three
variables of distance, rate, and time are known, the remaining one can be deter-
mined by laying a straightedge on the nomogram, such that it touches the two
known values. As a consequence, the straightedge will touch the third scale at the
answer value.

The distributed cognition theory emphasizes the fact that the use of these kinds
of tools requires the coordination of typically human skills—such as pattern
matching, manipulation of objects, and mental simulation—and the material
resources to carry out a computation that would otherwise not be possible.
Moreover, Hollan et al. (2000) proposed distributed cognition as a foundation for
human–computer interaction research.

Scaife and Rogers (1996) examined the cognitive value of external represen-
tations by referring to graphical representations, such as pictures, diagrams, ani-
mations, and virtual reality environments. Coining the term external cognition,
they proposed an approach that is based on an analysis of the ways in which the
relation between graphical representations and internal representations influence
learning and problem solving. A central aspect of external cognition is that of
computational offloading, i.e.:

• an operation in which a tool is used in conjunction with an external represen-
tation to reduce the amount of cognitive effort required to carry out a mental
task.

Kirsh and Maglio (1994) conducted a study providing an example of cognitive
offloading during computer use by asking participants to play the video game
Tetris. In this real-time game, ‘‘blocks’’—consisting of colored squares called
‘‘tetrazoids’’ or ‘‘tetrominos’’—fall from a height (the top of the display), and the
participant’s task is to rotate or move them by using the keyboard to create a
horizontal line of blocks with no interruptions. After creating the row, the blocks
fall to the bottom of the screen to create new lines. Kirsh and Maglio’s (ibid.)
findings showed that participants attempting to decide how to rotate or translate a
falling block to create a horizontal line prefer to physically maneuver the block on
the screen rather than first mentally imagining the movement. The authors cal-
culated that a block’s physical rotation through 90" requires approximately
100 ms, plus approximately 200 ms to select the rotate button. Achieving the same
result by mental rotation takes approximately 1,000 ms. To account for these
findings, Kirsh and Maglio (ibid., p. 514) introduced the idea of epistemic actions,
i.e., physical actions with the primary purpose of improving cognition by making
mental computation easier, faster, and more reliable. (Epistemic actions should be
distinguished from pragmatic actions, the primary function of which is to bring
agents closer their physical goals.) For example, Tetris players’ block rotation—
and shifting operations are frequently used not only to position a shape ready to fit
a slot, but to rapidly determine whether the block and the slot are compatible.
Epistemic actions pertaining to a slower time-scale than video games can be
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observed in many everyday activities such as important-event reminders; time-
saving actions, such as organizing the space around us to facilitate the manual
location of objects we use daily; and information gathering activities, such as
exploring a new house, to decide how best to decorate it.4

Lastly, in Clark and Chalmers’ (1998) extended mind hypothesis, cognitive
processes occur not only within the brain, but in some circumstances can also
extend across physical and social environments. For example, when using a paper
and pen to calculate a complex sum, the objects used (and the actions carried out
on them) can also be considered part of the cognitive processes involved, similarly
to neural activity in the brain. This extended mind process can occur in those
instances in which ‘‘the human organism is linked with an external entity in a two-
way interaction, creating a coupled system that can be seen as a cognitive system
in its own right’’ (Clark and Chalmers 1998, p. 8).5

In brief, all of the approaches to cognition described in the present section
(distributed cognition, external cognition, and extended mind) highlight the
importance of tool use in manipulating external representations. As Dahlbom and
Janlert, the Scandinavian social scientists, effectively summarized in their motto,
‘‘just as you cannot do very much carpentry with your bare hands, there is not
much thinking you can do with your bare brain’’ (unpublished manuscript, quoted
in Dennett 1996, p. 134).

What simulation consequences can be derived from these studies? It should first
be noted that all forms of simulation—physical, analog, and digital—can be
considered cognitive artifacts, as (given Norman’s definition cited above) they are
instruments that allow for the manipulation of representations and impact students’
cognitive performance in understanding, decision-making, and problem solving.
Simulation programs, however, do present some characteristics that distinguish
them from other types of cognitive artifacts. A first difference concerns the type of
representations that are involved. The examples described in the literature on the
topic typically describe artifacts that are static, material objects with a function
linked to the use one makes of them—e.g., paper and pencil use in calculating a
mathematical result, figures and diagrams facilitating the resolution of a problem,
and calculation instruments such as an abacus or nomogram. With respect to
relatively more ‘‘immaterial’’ cognitive artifacts, such as computer programs, the
program information and data representations yielded via word processors or

4 From an anecdotal perspective, the present Author has observed that many people, rather than
searching for specific information in their own memory prefer looking it up on the Internet.
5 This position is less outlandish than might first seem, as it stems from the functionalist
viewpoint in philosophy of mind, which states that it is the functional organization of a process
that determines whether it is cognitive or not. Cognitive processes can therefore be instantiated in
a given physical system, as long as this system performs the appropriate functions. It should also
be noted, however, that the extended mind hypothesis presumes that it is not phenomenal
consciousness (the distinctively subjective character of a conscious experience) that extends
beyond the customary boundaries of cognition, but the non-conscious portion of cognitive
processes (see Chalmers 2009, p. xiv; Clark 2009, p. 267).
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spreadsheets are actually inert, unless of course someone acts upon them by car-
rying out specific operations to modify them in some desired way (e.g., by writing
or modifying a text, inserting numbers, creating formulas, or changing the visu-
alization of a graph).

Simulations, conversely are instruments that allow for the creation and
manipulation of a specific type of representations—i.e., dynamic models. Once
one of these models is constructed and a simulation run is started, the model
unfolds autonomously through time, in a process that includes a potentially
unpredictable final state. These aspects render simulation in common with sci-
entific laboratory experiments or observations of natural phenomena.6

A further difference between cognitive artifacts as commonly understood, and
simulation concerns the mental processes that the latter are (at least theoretically)
able to extend beyond the brain and the nature of the ‘‘division of labor’’ between
the mind and the program.7 In fact, researchers in the field essentially consider
cognitive artifacts to be cognitive offloading tools that are useful for reducing
complexity and improving decisions. Kirsh and Maglio (1994) most clearly
articulated this point of view, which holds that the primary function of epistemic
actions is to improve cognition by:

• ‘‘reducing the memory involved in mental computation, that is, space
complexity;

• reducing the number of steps involved in mental computation, that is, time
complexity;

• reducing the probability of error of mental computation, that is, unreliability’’
(p. 514).

Moreover, researchers have mainly focused on investigating fast-paced envi-
ronments and on tasks that last several seconds at the most, as typically occurs in
real time video games or piloting systems (for airplanes or other types of vehicles).
These situations are characterized by a tight temporal coupling between internal
and external processes and reflect Salomon and Globerson’s (1987) state of
mindlessness, and Norman’s (1993) experiential cognition, i.e., mental states with
the priority of obtaining the right information at the right time and reacting
accordingly, as required by the task at hand. A completely different timescale is
that considered in the ‘‘socially distributed remembering’’ framework, proposed by
Sutton et al. (2010) in the field of the psychology of memory. These authors

6 Even when simulation reproduces a highly well-known phenomenon, as typically occurs in
instructional contexts, its results are not preliminarily known to students; it is therefore analogous
to an actual experiment. The analogy holds even more soundly in the scientific research context,
where simulation is used as an actual experiment (Morrison 2009), or supports the lab experiment
set-up and the interpretation of data generated thereby (Tal 2011).
7 The division of labor is an economic concept highlighted in Marxist philosophical and social
thought, as it indicates the ways in which workers are assigned to various stages in the production
process. Activity theory (Engeström 1987) uses the same notion to indicate the division of
activities among actors in a socio-technical system.
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presented a conception of external and distributed cognition that includes the
resources of not only cognitive artifacts but also the functions of collaborative
recall and social memory provided by external resources, such as media, cultural
institutions, and social networks.

The extended aspect of mind in fast-paced environments is essentially that of
the processing capacity of working memory’s visual-spatial components. In the
socially distributed remembering approach, however, cognition extension refers to
the supplementation of long-term memory’s information and knowledge storage
capacity through the above mentioned external resources. To all effects, this
process is accompanied by new forms of social memory enhanced by electronic
technologies and in particular, by Internet.8

The potential of cognition extension with simulation has conversely received
little attention to date.9 In fact, the only simulation paradigm investigating the
relation between computer-based simulation and mental simulation is that of
system dynamics (see Sect. 4.11). As early as the 1960s, Jay Forrester, the
founder of system dynamics, underscored that main purpose of his new simu-
lation models was not that of reliably reproducing reality, but of rendering
explicit—and therefore, sharable—people’s mental models. The aim involved
was to help people better understand the functioning of an industrial, economic,
or social system, and to intervene on it by modifying its behavior in the direction
desired. In his seminal book, ‘‘Industrial Dynamics’’, he wrote: ‘‘A mental image
or a verbal description in English can form a model of corporate organization
and its processes. The manager deals continuously with these mental and verbal
models of the corporation. They are not the real corporation. They are not
necessarily correct. They are models to substitute in our thinking for the real
system that is represented.’’ (1961, p. 49).

His acknowledgment of the important role of mental models in decision-
making is particularly worthy of note (and far-reaching, considering that it orig-
inated in a period still dominated by behaviorism!) More recently, Doyle and Ford
(1998, 1999) analyzed and compared the different ways in which the term ‘‘mental
model’’ is used in system dynamics, noting the lack of a clear and universally
acknowledged definition, and how the approach occasionally tends to confuse
mental models (which, by their very nature, are internal and not directly acces-
sible) with paper or computer-based external models, such as causal maps or
stock-and-flow diagrams. To facilitate communication among researchers, they
defined a dynamic’s system mental model as ‘‘a relatively enduring and accessible,
but limited, internal conceptual representation of an external system (historical,
existing or projected) whose structure is analogous to the perceived structure of

8 thanks to which, research on the content(s) of personal memory can be now extended to the
contents of global memory, available at any moment, nearly anywhere on the planet.
9 The media theorist Derrick De Kerchove commented on the topic in his book ‘‘The Skin of
Culture’’ (1997), but did so by emphasizing the extension of sensory capacity (e.g., visual,
kinaesthetic, tactile) allowed by virtual reality environments, such as flight simulators or multi-
user virtual environments.
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that system.’’ (1999, p. 414). Moreover, system dynamics is the only simulation
paradigm that explicitly uses the tool of mental simulation, defined by Doyle et al.
(2001) as:

• ‘‘the act of inferring the dynamic consequences of a mental model in one’s head
without computer assistance’’ (p. 2).

The above-cited authors described the interrelations among a real system, a
mental model of that system, mental simulation, and computer simulation by
presenting a highly detailed causal map. Moreover, the chapters of ‘‘Road
Maps’’—a self-study guide developed by the ‘‘System Dynamics in Education
Project’’—present mental simulation exercises with the aim of reinforcing basic
concepts such as positive or negative feedback. These exercises require students to
mentally simulate the behavior of a simple stock-and-flow model and to trace the
trend of one or more variables of the model in a corresponding graph (see, e.g.,
Whelan 1996). The underlying idea of these exercises is that a strong set of mental
simulation skills will enhance students’ abilities to validate, debug, and understand
dynamic systems and models.

Computer simulation in turn can support and enhance mental simulation. In
fact, systems dynamics researchers have frequently highlighted the limits of
mental simulation in reliably reproducing the behavior of system characterized by
the mutual interaction of many elements, information feedback, and circular
causality. Forrester (1968) described these limits as follows: ‘‘The human mind is
well adapted to building and using models that relate objects in space. Also, the
mind is excellent at manipulating models that associate words and ideas. But the
unaided human mind, when confronted with modern social and technological
systems, is not adequate for constructing and interpreting dynamic models that
represent changes through time in complex systems.’’ (p. 3–2).

From this perspective, the purpose of building and simulating system dynamics
models is indeed that of enhancing people’s mental processes in dealing with time-
varying systems. This view therefore does not appear to be very distant from the
previously described concepts of distributed cognition and extended mind. Yet,
mental process enhancement in this case does not coincide merely with a reduction
in the amount of cognitive effort required to carry out a mental task [as in Scaife
and Rogers’ (1996) external cognition] or, equivalently, of memory resources or of
the number of steps involved in a mental computation [as in Kirsh and Maglio’s
(1994) epistemic actions]. It pertains, rather, what might be a more general limit of
the human mind in effectively manipulating the mental model of a dynamic
system. As stated by Forrest: ‘‘We often draw the wrong conclusions about system
behavior, even if we start with a correct model of the separate system relation-
ships. Perhaps this incorrect dynamic interpretation occurs because we solve for
system behavior, not by tracing actions and consequences […], but by drawing
conclusions by analogy to past experience.’’ (1968, pp. 3–3). This consideration is
not limited to economic and social systems only: The reader will remember (see
Chap. 4) that physical or biological systems describable with few variables—such
as the pendulum or models of ecosystems with populations of only two
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species—can also generate complex and unpredictable behavior, which is
investigated in disciplines such as chaos theory or fractal geometry.

Thus, our brain shows evidence of being ‘‘hard-wired’’ to effectively simulate
situations presenting an effect and a cause that are spatially or temporarily adjacent
by linking them in a linear relation (A ? B). It runs into trouble, however, when a
cause manifests its effect only after a longer time interval (e.g., after the ‘‘delays’’
characterizing models studied in systems dynamics) or when causality becomes
circular (A ? B ? A). Moreover, mental simulation has a strictly qualitative
nature, which does not allow for the attainment of quantitatively accurate results or
for the exploration of behavior determined by incremental parameter changes. It is
therefore not surprising that computer simulation results are frequently said to be
‘‘counterintuitive’’.

As illustrated in the follow sections, the most cognitively important charac-
teristic of (mental or computer) simulation should be sought, not so much in its
reproduction of a specific phenomenal instance, but mostly in the categorization
and recognition of general patterns of change. It is therefore this aspect that
renders both types of simulation applicable to different types of systems.

The interdependence of mental and computerized simulation in formal
instructional contexts is still a relatively unexplored field. Yet, one methodologi-
cally innovative study was conducted by Monaghan and Clement (1999), who
investigated the use of computer simulation to help high school students learn
relative motion concepts. Students first interacted with a computer simulation
presented in a ‘‘predict-observe-explain’’ format and were then asked to solve
post-test problems. The researchers found that computer simulation interaction can
also facilitate mental simulation off-line, by helping students learn to solve related
target problems. The method of case study protocol analysis was used to examine
the students’ ability to run mental relative motion simulations on their own, both
during and after computer simulation use. This meant observing the indicators
Clement (1994) had proposed for mental dynamic imagery research (i.e., depictive
hand motions, reference to perceptions, imagery reports) based on the systematic,
empirical observations of scientists and experts involved in creative problem-
solving tasks.10 Moreover, in light of the present work the study’s findings point to
a need for further research on factors influencing the transfer of knowledge and
skills gained via simulation to other learning and problem solving contexts.

More formal and automated methods can also be used to assess the ways in
which the dynamic aspect of computational models influences changes in students’
mental models. For example, Kopainsky et al. (2010) investigated whether soft-
ware for the automated analysis of verbal protocols can improve the assessment of
students’ understanding in a system-dynamics-based learning environment.11

10 The students’ off-line use of mental simulation based on their memory of on-line simulation in
facilitating the solution of post-test problems is an example of Salomon et al. (1991) ‘‘cognitive
effect of technology’’, which they distinguished from an ‘‘effect with technology’’.
11 The software used was T-MITOCAR (Pirnay-Dummer and Ifenthaler 2010).
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Essentially, when classroom simulation design is based on a careful analysis of
the specific learning context, the students’ cognitive processes can induce a state of
mindfulness (Salomon and Globerson 1987) and of reflective cognition (Norman
1993)—the terrain for mental simulation construction—when interacting with the
simulation and later, during other learning activities focused on same or similar
content. In learning contexts conversely characterized by an excessively high
cognitive load (caused by poor user-interface design, distracting or redundant
details, or by an overly difficult learning task), students have a hard time properly
structuring their actions. A state of confusion and frustration typically results,
leading to limited exploration of the various options available, hindrance in the
construction of an adequate mental model of the system and in particular, in the
mental simulation of it.

The relation between mental and computerized simulation can therefore be
considered a relation of complementarity between internal and external resources.
In this type of relation, the computer becomes a partner in a larger, but coordinated
cognitive system, where each component has a distinct role and cooperates with the
other components.12 This cooperation can manifest itself in the coupling of internal
and external simulation on a short time-scale, as in situations requiring students to
predict what will happen next and then to compare their predictions with the results
shown on the screen. In a model-based learning perspective, the cognitive conso-
nance or dissonance between prediction and simulation can respectively foster the
reinforcement, revision, or rejection of a student’s initial mental model. This
cooperation can also have a more time-distributed effect, as when students rely on
their perceptual memory of certain simulations as a framework for visualization,
problem solving, or in class discussion. Furthermore, an even stronger relation
between mind and computer can be established when students build and test their
own computational models. This process provides a greater opportunity to analyze
a specific system and develop a conceptual model of it.

All of these cognitive partnering scenarios can be analyzed in light of the new
perspective of ‘‘learning by system modeling’’ described in Sect. 5.5.

What remains now to be examined in greater detail, are the similarities and
differences between mental—and computer-based simulation and the ways in
which they can be integrated to enhance learning.

6.2 Thinking (and Computing) Analogically

This section will examine the relation between mental—and computer simulation
from a semiotic perspective, which will then allow us to trace a functional paral-
lelism between these two forms of representation. Due to its unique features, mental

12 Sutton et al. (2010) defended the idea of a complementarity framework for extended
cognition, in opposition to approaches based on the parity or functional equivalence of neural and
external components.
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simulation will be then characterized as a kind of analog simulation that is aug-
mentable through the use of computer technologies. The successive section will then
be dedicated to examining the interaction between mental simulation and language.

Let us begin by referring to some aspects of Peirce’s philosophy, as described in
Sect. 2.1. The reader will recall that Pierce conceived his triadic model of the sign in
an attempt to approach the age-old semantic problem of understanding how a sign
can represent something other than itself. His model newly defined a sign in terms of
relations among a sign-vehicle, an object, and an interpretant (see Fig. 2.1). Pierce
held that an object is a real or imaginary thing, which can be represented by a
material sign-vehicle, to produce a further type of a sign—the interpretant—in a
person’s mind. The material sign is called a ‘‘vehicle’’, because it actually conveys
something that is outside of the mind into the mind. This view therefore closely links
cognition and semiotics.13

Computer simulations are among the most powerful types of sign-vehicles ever
designed by humans, because they aim to represent not only a given reality, but also
the ways in which this reality might change through time.14 Moreover, due to its
multimodal nature, simulation incorporates other types of signs—symbolic, iconic,
indexical—all of which are typically considered in isolation from each other.

It is therefore hypothesized herein that the effect produced in a person’s mind—
the interpretant—can be that of a simulation, but of a mental simulation. More-
over, the situations in which this is more likely to occur are presumably those in
which individuals are cognitively engaged by a simulation program and are
motivated to invest their own mental resources in understanding the system’s
functioning or in predicting future events related to the simulated scenario. This
approach to simulation is represented in Fig. 6.2 as a variant of the classic
‘‘semiotic triangle’’.

In line with Peirce’s triadic theory, the three elements considered—i.e., sys-
tem, simulation, and mental simulation—influence each other in a way that
cannot be reduced to action between pairs of elements, i.e., to a sum of dyadic
relations.15 Specifically, the triangle sides can be considered ‘‘pathways’’ by
starting from any of its vertices. In this instance, by moving anti-clockwise, from
the vertex at bottom right to the one at the top, the relation between computer
simulation and mental simulation can be viewed—from a Vygotskian perspec-
tive—as a type of ‘‘internalization’’. In his book ‘‘Interaction of Media, Cog-
nition, and Learning’’ (1979), Gavriel Salomon described in detail the ways in

13 See Seel (2012b) for an overview on potentially fruitful relations between the sciences of
learning and semiotics.
14 This peculiarity of representing the future, in ancient times, was exclusively reserved to
prophesy or magic.
15 As illustrated in Chap. 3, reducing the relation between model and reality to a dyadic relation
based on logical correspondence or structural isomorphism has been an approach long-used in
philosophy of science. The pragmatic approaches described in Sect. 3.4 re-introduced the
intentional agent as an essential aspect for the representation relation, but generally focused more
on his/her practical purposes than on underlying mental processes.
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which the external symbol systems provided by media such as television and
computer programs can be internalized to serve as mental tools, and the corre-
sponding educational implications. Similarly, mental simulation can incorporate
the symbolic elements provided by computer simulation and can use them as
tools for thought. For example, the interactive representations of molecules in
the ideal gas or of the gradients of temperature and velocity in the simulation of
a fluid can become visual frameworks for conducting mental simulations. They
therefore provide a base from which inferences on the examined system’s
behaviour can be derived or even extended, analogically, to other systems. In
turn, these thought processes can lead to a new conception of the system itself
(through the mental simulation-to-system pathway). This process in turn changes
the way in which the target system is represented (through the system-to sim-
ulation pathway), concluding the complete triangle pathway thereby, but con-
currently beginning another.16

In particular, Salomon observed that to be internalized and used as a mental
tool, a symbolic code ‘‘requires the preexistence of the mental operations that lead
to it’’ (ibid., p. 133). It is therefore proposed herein that this observation can be
interpreted in simulation terms by meaning that, if students are able to internalize
the simulation-provided symbolic elements, they must already possess a mental
model of the system and be able to simulate it. The semiotic simulation triangle
can thus also be represented in terms of models (Fig. 6.3).

According to Seel’s model-based learning approach (2003, 2012b), as long as
new information can be assimilated into previous knowledge structures, students
do not actually need to construct a mental model and to consciously employ their
own mental resources in a given simulation. It becomes necessary, however, to
construct and simulate a new mental model when the computational model’s
behavior does not correspond to what is expected.

The following qualitative proportion, which illustrates the relations between
four different forms of representation, can be used to compare both versions of the
simulation triangle.

Mental model: Mental simulation ¼ Computational model: Computer Simulation

Fig. 6.2 The semiotic
triangle of simulation

16 Peirce (1907, p. 411) termed this process of meaning creation ‘‘semiosis’’.
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As occurs with all analogies, much can be learned from both the similarities and
differences among the above concepts. For example, by starting from the second-
to-left concept—i.e., mapping mental simulation to computer simulation—it can
be noted that both types of simulation:

• never completely recreate the original experience or phenomenon, but are
always partial recreations, which can also contain biases and errors;

• are characterized by a sequence of (computational or mental) models, respec-
tively, that become increasingly adequate to the aim requiring their construction.

Moreover, from a cognitive standpoint, Barsalou’s proposal that perceptual
simulators in long-term memory can produce infinite simulations in function of a
given situation (see Sect. 2.4) can be compared to the computational model’s ability
to generate a potentially infinite number of quantitatively or qualitatively different
simulation runs in function of its various parameter settings. A further correspon-
dence between mental simulation and computer simulation lies in the fact that
mental images can be considered a type of mental simulation output, similarly to
the images and animations that are frequently the outputs of a computer simulation.

The above proportion, however, is not to be confused with the Mind = Soft-
ware analogy of classical cognitive science. In fact, coherently with the hypothesis
of mind-computer complementarity stated in the previous section, it can be rea-
sonably assumed that the information representation and processing mechanisms
involved in the two instances actually differ considerably. For example, one dif-
ference between mental and computer simulation concerns the nature of their
underlying models. Although mental models and computational models are both
runnable and are therefore able to generate a variety of behavior, mental models
are usually not clearly defined; they are difficult to communicate to others; and are
not always easy to manipulate (Forrester 1968; Norman 1983).

Starting from the far left of the qualitative proportion presented—the relation
between mental models and mental simulation—three, progressively complex
types of mental models, characterized by the growing complexity of mental
simulation, can be identified:

Fig. 6.3 The simulation
triangle represented in terms
of models
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1. Spatial mental models—these represent the topological or metric relations
among a set of entities; they can be static or can allow for the rearrangement of
their elements to explore their possible pattern spaces.17

2. Causal mental models—these represent the possible cause-effect relations
among the elements of a system, but do so on what is still a structural rather
than dynamic level, and therefore allow only for inferences on interactions that
occur among elements that are local and limited in time.18

3. Dynamic mental models—these map a succession of system states onto a
succession of model states and allow us to simulate the global and time-
extended behavior of a system (e.g., imagining a complex course of action,
which consists of many distinct steps and their potential consequences).

In fact, it is in constructing and simulating this latter type of mental model
(which requires the integration of structure, function and behavior) that humans
encounter the most difficulty. This limit has particular relevance in science, given
that the dynamic complexity of most natural and artificial systems does not allow
them to be captured in a mental model, without the aid of computational models.
Consider, for example, a system dynamics model representing the diffusion of an
epidemic in a population (Fig. 6.4).

Models of this type are created by (1) spatially arranging the names of the
variables defining the system, (2) connecting them with arrows to indicate their
cause-and-effect relations, and (3) adding an equation or rule to each relation to
specify a given variable’s influence on the other. Clearly, the mental construction
and running of this type of model would immediately conflict with the limits of the

Fig. 6.4 Stock-flow diagram for a simple epidemic model (Dangerfield 2009, p. 9035)

17 Similarly as occurs in software for architectural design or molecular graphics.
18 As occurs in the mental simulation of simple mechanical or hydraulic systems. (see Sect. 2.2).
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memory systems involved—limits that would impede the ‘‘mind’s eye’’ in fol-
lowing the entire chain of events involved in the phenomenon. Vice versa, the
corresponding computational model can run easily even on a personal computer.

Another distinction between mental and computer simulation is related to
fundamental differences in the underlying information representation and pro-
cessing mechanisms. Both empirical evidence and theoretical models from the
neurosciences suggest that the brain’s computing mechanisms are radically dif-
ferent from those at work in a computer. In fact, there is no evidence that the brain
actually executes algorithms, uses formal languages, or has a discrete, digital,
architecture (as posited by classical cognitive science). On the contrary, it has been
proposed that the human brain is a special kind of analog computer (see Sect. 4.1).
It is important to note, however, that analog computation can be defined at dif-
ferent levels of abstraction. In strictly mathematical terms, ‘‘the principal dis-
tinction between digital and analog computation is that the former operates on
discrete representations in discrete steps, while the latter operates on continuous
representations by means of continuous processes’’ (MacLennan 2009, p. 272).

We can better understand the concept of analog representation by comparing
two systems frequently used to measure the temperature of a room: a wall ther-
mometer and an electronic temperature sensor linked to a computer. Both systems
are physically coupled with the external environment, but are so in different ways.
The height of the mercury column in the thermometer varies continuously with
room temperature variations: when the temperature goes up, the level of mercury
rises in the thermometer and vice versa. Conversely, the computer represents
temperature through a series of symbols (the conventional 0–1 patterns) that
depend on the computer’s programming code.

In his fascinating history of the analog computing field, Small (2001) described
how electronic analog computers were developed in Britain and in the USA before
the invention of the digital computer.19 In the 1940s, research had revealed that
general purpose electronic analog computers were able to simulate any type of
dynamic system and to solve nonlinear equations. ‘‘Programming’’ an electronic
analog computer meant designing its circuits such that electrical quantities (e.g.,
voltage, current, conductance) representing the variables under study would obey
the same mathematical laws as those of the system to be simulated.20 Running a
simulation therefore meant: (a) configuring the initial state of the circuits (input),
(b) allowing the simulation to take place until the system reached a stable state
(computation) and (c) reading the computer’s stabilized values (output).

19 They became feasible in the 1940s, after the invention of the operational amplifier, i.e., a
device able to transform a small input signal in into a much larger output signal. This type of
amplifier was called ‘‘operational’’ because it allowed for the development of electronic circuits
able to use a continuously variable signal to perform numerous mathematical operations, such as
summation, subtraction, multiplication, logarithm, and integration with respect to time.
20 These laws are typically expressed through ordinary differential equations (ODEs), with time
as the independent variable. Yet, analog computers based on field computation can also solve
partial differential equations (PDEs).
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Analog and digital computing technologies co-existed from the end of the
Second World War until the late 1960s. Moreover, during the late 1950s and
1960s, a variety of hybrid analog/digital computers were developed, in which a
digital computer was typically used to facilitate the control of an analog computer.
At the time, a generally acknowledged benefit of analog computers was that of
speed, because they operate in a parallel mode and therefore were faster than
digital computers, which followed sequential logic, executing one operation at a
time thereby. Analog computers, however, were less precise than digital com-
puters, because their circuits are much more susceptible to ‘‘noise’’ than digital
circuits are. Moreover, in comparison with the digital computer’s general-purpose
architecture, analog computers were criticized for being essentially special-pur-
pose and limited to scientific applications only. According to MacLennan (2009),
the fact that they operated only with continuous quantities and not with discrete
data, as required in business applications, may have been a key reason the com-
puter industry began investing more heavily in digital technology. Indeed, analog
computers began to disappear by the early 1970s and were ultimately eclipsed by
the digital computer’s growing success.

In the mid-1980s, the notion of analog computation made an unexpected return,
but in the field of microelectronics, when Carver Mead (a) seminal figure in
Silicon Valley) began to explore a new type of neurally inspired computing
architecture, called ‘‘neuromorphic circuits’’. These were implement shortly
thereafter as very-large-scale integration (VLSI) analog circuits.21

In the cognitive sciences, however, the concept of analogy more generally
indicates any systematic relation between a mental representation or process and a
target system (a meaning used several times throughout this book). For example, in
the context of the well-known debate on the format of mental images, the ‘‘pic-
torialists’’ (Shepard and Metzler 1971; Kosslyn 1973, 1980) held that the mind is
able to represent information analogically, by maintaining the visuospatial features
of visual perception. This view differed from that of the ‘‘propositionalists’’
(Pylyshin 1973), who stated that mental images are based on underlying language-
like representations.

Johnson-Laird (1983) characterized mental models as ‘‘structural analogues of
the world’’ (p. 165) and therefore in terms of a property that (according to Peirce’s
sign theory) renders them akin to iconic representations, such as diagrams.
Moreover, Gentner and Gentner (1983) pointed out how mental models of com-
plex systems are frequently based on analogical comparisons with a simpler or
more familiar system. This situation occurs, for example, when people think of
electricity in terms of water flowing through a water system’s pipes. Analogical
modeling—i.e., reasoning through analogical models—also plays a key role in
model-based reasoning and model-based learning, together with other nonformal

21 Mead’s proposal was motivated by the conviction that ‘‘the nervous system of even a very
simple animal contains computing paradigms that are orders of magnitude more effective than are
those found in systems made by humans’’ (1989, p. xi).
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reasoning methods such as visual modeling and simulative modeling (see Sect. 5.3
and 5.4 and references herein).

The heretofore mentioned uses of the term analogy in the cognitive sciences do
not conflict with the definition of analog computation as used in engineering and
computer science. Both are based on the notion of continuity, because concepts
typically used as analogues for reasoning or instruction purposes are nearly always
continuous. Examples are: a bathtub’s water level used to model CO2 levels in the
atmosphere and elastic body deformation used to model forces in an electro-
magnetic field).

The idea of the brain being a type of analog computer has been most clearly
expressed in the burgeoning field of ‘‘dynamical cognitive science’’—also called
‘‘dynamic cognition theory’’ (Chemero 2009; Port and van Gelder 1995; Spivey
2008). This line of research uses the language of dynamical systems theory
(see Sect. 4.5) to describe cognitive processes. A similarly-inspired approach is
pursued in the neurosciences by ‘‘cognitive neurodynamics’’ research (Freeman
2000; Izhikevich 2007; Rabinovich et al. 2006). These dynamical approaches view
mental states as continuously changing patterns of activity in brain networks, and
thinking processes are equiparated with trajectories in multi-dimensional space.
Moreover, mental states are considered to be metastable, meaning that they are
occupied for some time, but not permanently so and that they may be continuously
re-visited, in a roaming motion similarly to as occurs with a chaotic system’s
states.

When a student or scientist uses a simulation program to study the model of a
nonlinear physical system (such as the chaotic pendulum or a fluid in turbulent
flow), a rather peculiar scenario develops: A dynamical system (the human mind/
brain) is now relying on the intermediation of a digital system (the computer) to try
and understand another dynamical system (the model examined). Moreover, when
the system being examined is the brain, as occurs, e.g., in dynamical neuronal
network simulation, what we actually see is the brain trying to simulate its own
processes! Thus, a self-referential scenario develops, which is somehow similar to
the one depicted in Escher’s famous self-portrait of 1935 (in which the artist
observes himself in a reflecting sphere held in his left hand).

Both dynamical cognitive science e cognitive neurodynamics are promising
new approaches to cognition and provide the premise for the proposal made herein
that mental simulation can be considered a particular type of analog simulation.

Yet, why should humans rely on this type of mental simulation? What are the
evolutionary advantages of doing so? As mentioned previously, a strong point of
analog simulation acknowledged early on in electronic analog computer research
was that of speed; the same benefit can, of course, be ascribed to mental analog
simulation. Indeed, our ancestors had to access rapid mental simulation mecha-
nisms in quickly deciding what to do in potentially dangerous situations, and
probability of survival was likely a more important criterion than that of precision.
Conversely, the computational cost of most simulation algorithms makes them
implausible models for real-time reasoning. Moreover, analog computation satis-
fies the further criteria of robustness, flexibility, and adaptability, which also
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characterize human cognition (for a description of these criteria and their rele-
vance in a natural computation context, see MacLennan 2009, p. 290).

Another cognitive implication of analog mental simulation is that it is closely
related to qualitative reasoning. It is well-known that humans frequently reach
conclusions about physical or social processes based on very little information,
and that the available information is, in most instances, less precise than would be
required for purely quantitative reasoning methods. For example, we can deduce
what will happen when a sealed container of water is heated from below—even
without precise quantitative information about the initial water temperature—or
whether a string can push or pull a block to which is attached. These types of
reasoning tasks involve qualitative dynamics and are usually based on approxi-
mations such as considering numerical intervals—e.g., by indicating that a tem-
perature is ‘‘somewhere between’’ 70" and 80" Celsius, or linguistic symbols to
represent quantities (‘‘low’’, ‘‘high’’) or ordinal relations (‘‘larger than’’, ‘‘smaller
than’’). Cause-effect relations, moreover, can be specified by expressing the
influences between two entities (e.g., through the use of verbs, such as ‘‘affect’’,
‘‘increase’’, ‘‘decrease’’). This aspect of human cognition was thoroughly inves-
tigated in several strands of Artificial Intelligence research—e.g., in de Kleer and
Brown’s (1984) ‘‘qualitative physics’’, Hayes’ (1985) ‘‘naive physics’’, and in
Forbus’ (1984) ‘‘qualitative process theory’’. During those same years, these lines
of research also influenced—and at times overlapped with—the knowledge based
approach to mental models. As summarized by Gentner (2000): ‘‘Mental models
reasoning relies on qualitative relations, rather than on quantitative relations.
People can reason well about the fact that one quantity is less than another without
invoking the precise values of the quantities.’’ (p. 9684). Mental simulation, rather
than logical reasoning, was therefore viewed as a means for deriving the type of
inferences that qualitative physics requires. Furthermore, Forbus and Gentner
(1997) explicitly linked mental simulation to analogical processing, and based on
Forbus’ qualitative process theory, researchers at Northwestern University
developed VMODEL, a visual qualitative modeling environment for middle-
school students, which integrates ideas and notations from concept map theory,
system dynamics, and argumentation environments (Forbus et al. 2001).

The current section will conclude by drawing a rarely noted conceptual link
among analog, digital, and mental simulation, which highlight the importance of
analog representation in mental processes involved in simulation-based learning.
The link consists in analogies between electronic analog computer controls and a
simulation program’s controls.

Specifically, electronic analog computers typically have front panels with
numerous controls, and in particular, potentiometers are used to set the initial
conditions for a calculation or to scale intermediate results by desired constant
factors. These potentiometers can be either linear or rotary; the former allows for
adjustment of the simulated quantities by moving a slider along a slot, and the
latter, by rotating a knob.

Interestingly, the same type of controls—albeit of a virtual nature—is typically
present in a simulation program’s interface! This is the case of the slider, which is

164 6 Simulations for Thinking



a control with an indicator that can be moved up and down (vertical slider) or right
and left (horizontal slider) to alter the value of a given variable (see, for example,
Figs. 4.27 and 5.12). In some cases, rotating knobs are present and perfectly mimic
their analog homologues.22 An advantage of the slider over that of an input field is
that the indicator position shows a visual indication of its setting. Similar con-
siderations can be made about the interface’s output elements, given that contin-
uous curves were once shown on analog computer oscilloscopes as output and are
now shown as animated graphs in simulation programs. It therefore seems that the
most efficient way for humans interacting with a simulation program in con-
structing an (obviously) analog mental model of the simulated system is by relying
on the intermediation of an analogical interface!

6.3 Simulation and Language

Although mental simulation is essential for a surprisingly wide range of mental
capacities and processes, it does not account for many important facets of cog-
nition, and especially those pertaining to the two uniquely human abilities of
abstraction and imagination. Moreover, human mental simulation capacity most
probably evolved from the need to better coordinate perception and action by
iteratively updating an internal model of the world (see Fig. 2.2), and it is therefore
highly sensitive to context. This view is reflected in the focus of embodied and
grounded cognition theories on situated action, social interaction, and on the role
of environment in cognition. Nevertheless, what mostly differentiates human
cognition from that of other species is its capacity for abstracting concepts and
categories from a given context. This latter ability allows us to imagine situations
that are different from the current one, and in particular, situations occurring in the
past (retrodiction) or which might occur in the future (prediction).

Presumably it was a progressive development in human capacity for
constructing, simulating, storing (in long-term memory), and modifying increas-
ingly complex mental models that made it possible for our ancestors of the Upper
Paleolithic to think about objects and events that were not physically present. This
advance paved the way to the human ability to see things from different per-
spectives and in different contexts from those in which the original experiences
had occurred. In terms of cognitive dynamical science, the mind and the world
were initially two ‘‘coupled dynamical systems’’.23 Yet, with the ‘‘decoupling’’ of
mental simulation from the immediate context, humans had a greater opportunity

22 Similar progress occurred for television sets, where potentiometers were formerly used to
control picture brightness, contrast, and color. Nowadays, with digital technologies, they are
visualized on the screen as virtual sliders to be regulated by remote control.
23 A form of coupling that may be figuratively associated with the culturally recurring theme of
mankind’s initial ‘‘Edenic’’ condition, in which humans lived in an ‘‘eternal present’’ not yet
detached from nature and the world around them.
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to explain the past, plan the future, and even to imagine things and events of a
purely fantastic nature. From a neuropsychological perspective, this change may
have depended on the adaptive recruitment of working memory subsystems for the
monitoring and manipulation of information about objects in visual and auditory
space during perception. In any event, this type of change allowed humans to
represent the arrangement of other kinds of information in a more abstract mental
space, and in particular, to represent time. This development in cognitive capacity
went hand in hand with the need to communicate more effectively the contents of
one’s own mental simulations to one’s companions. By that time, these contents
had become more detailed and complex, through symbolic thought and, in par-
ticular, through its main form of expression: verbal language.

Indeed, being able to create and understand language allows us not only to
communicate complex messages across individuals and across time, but to reason
in terms of abstract categories and to creatively combine concepts. In turn this
ability involves a greater capacity for mentally simulating the functioning of
natural and artificial complex systems, and in particular, in considering a system as
being representative of a much vaster class of analogue systems (generalization).
If mental simulation is actually based on perceptual and motor processes and is
therefore fundamentally analogical, what then is its relation to language, which is
conversely based on conventional symbols and syntactic structures and is therefore
a digital system?

The distinction between mental simulation system and linguistic system can be
viewed in terms of the better-known distinction between images and words—and
therefore, in cognitive terms, between nonverbal information and verbal infor-
mation. According to Paivio’s (1986) dual-coding theory, these two types of
information are coded by the human cognitive system in different ways and are
processed along separate channels, which are interconnected but independent.
Nonverbal information is encoded analogically, i.e., by maintaining similarity with
the stimulus originating it, and verbal information, symbolically and thus via
conventional symbols. Paivio held that words and images correspond to two types
of long-term memory information units, respectively called imagens and logogens.
The two systems do not differ only in the format of their underlying representa-
tions (continuous or discrete), but also in the fact that the first type is specialized in
parallel processing (of many units simultaneously) and the latter is specialized in
sequential processing (of one unit of information at a time). Although Paivio’s
theory is frequently the theory of reference for researchers and teachers high-
lighting the differences between verbal and nonverbal systems, the theory actually
underscores the correspondences that exists between the two systems. For
example, we can form a mental image of a tree and then describe it with the word
tree; or we can hear the word tree and then form a corresponding mental image of
it. The theory (successfully) predicts that concrete words are remembered more
easily than abstract ones, because the verbal system activates the visual system
through referential connections between logogens and imagens. The distinction
between a visual and a verbal system in memory processes is also present in
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Baddeley’s model of working memory (1992), which posits the existence of two
separate subsystems for these two types of information.24

Both systems—verbal and nonverbal—are essential to cognition. Although we
can say, ‘‘a picture is worth a thousand words’’, it is not always true, because some
types of information can be expressed more easily verbally than visually. Try, for
example, to visually represent the sentence, ‘‘If it rains tomorrow, then we’ll have
to postpone the game; if not, we’ll play’’. The difficulty in visually representing the
informational content here and in other sentences of this type derives from the fact
that we use conditional operators, such as if, then, else, while to communicate
actions and intentions, and the resulting expressions do not have their own visual
counterparts.25

In fact, to account for these limits in visual representation, Peirce introduced
symbols as elements of his existential graph system, together with iconic and
spatial elements (see Shin 2002). Similarly, Johnson-Laird (2004) specifically
introduced abstract symbols as mental model elements to allow for the represen-
tation of propositional connectives such as negation and disjunction in logical
reasoning. It is therefore interesting to note—and is likely not a coincidence—that
the above-mentioned conditional operators are also constitutive elements of pro-
gramming languages, which in turn make it possible to build computational
models of highly diverse systems.

Theories of embodied and grounded cognition (see Sect. 2.4) which greatly
emphasize mental simulation, typically do not place as much attention on the
symbolic and syntactic aspects of language. This stance of focusing on sensori-
motor processes can be considered a reaction to the overwhelming predominance
of these syntactic and symbolic aspects in classical cognitive science, which still
identifies proposition-like cognitive structures as being the only type of repre-
sentation that can possibly underlie knowledge. Yet, coherently with dual coding
theory, the empirical evidence accumulating over the years has demonstrated the
close link that exists between the mental simulation and linguistic systems. This
link is particularly evident in experiments (reviewed in Barsalou 2008a) showing
that language can activate mental simulations; for example, to represent the
meaning of sentences, readers can construct mental models with spatial properties
and can simulate the situation described in texts. These and other experiments
(ibid.) have conversely shown that simulations can activate language. For exam-
ple, people involved in problem-solving tasks frequently activate associated words
and syntactic structures to verbalize the solution process, so as to plan their actions

24 Both Paivio’s dual code theory and Baddeley’s model of working memory have strongly
influenced cognitive theories of multimedial learning, which developed during the 1990s and in
the 2000’s (see Sect. 5.6).
25 An example of this difficulty is the failed attempt to transform the verbal language of
programming languages into the visual language of flow diagrams. During the 1980s, nearly all
programs had be accompanied by flow diagrams. It was then realized that methods other than
visual ones are easier to interpret, such as, e.g., the pseudo-code technique for writing
programming instructions that are similar to everyday language (Ware 2008).

6.3 Simulation and Language 167



and/or to share them with others. Thus, in attempting to understand mental
processes it is important to highlight the interaction between the simulation and
linguistic systems.

In fact, to account for the richness and complexity of the two systems’ inter-
actions, Barsalou (2008b) broadly extended his initial ‘‘perceptual symbols sys-
tems’’ approach to cognition. In this new and broader view, he proposed that
symbolic operations result not from simulation alone, but also from language-
simulation interactions. He specifically stated that ‘‘symbolic capabilities could
have increased dramatically once language evolved to control the simulation
system in humans. Adding language increased the ability of the simulation system
to represent non-present situations (past, future, counterfactual). Adding language
increased the ability to reference introspective states, thereby increasing the ability
to represent abstract concepts and perform metacognition. Adding language
increased the ability to coordinate simulations between agents, yielding more
powerful forms of social organization.’’ (ibid. pp. 36–37).

Yet, what exactly did Barsalou mean in his reference to ‘‘linguistic system’’?
Although linguistic research focused on the deep syntactic structure of language
until the mid-1990s, another concept has been developing for some time now,
which underscores the importance of statistical regularities in linguistic surface
structure (Burgess and Lund 1997; Landauer and Dumais 1997). This point of
view derives in particular from the success of algorithms able to extract the
meaning from a text based on statistical computations of the correlations among
words, the contexts in which they appear, and by the similarity between these of
algorithms and human cognitive processes. A well-known example of this type of
approach is that of the latent semantic analysis (LSA) algorithm, which uses large
text corpora to compute semantic similarities among concepts (Landauer and
Dumais 1997; Landauer et al. 1998). It is interesting to note that none of the
knowledge extracted by this method derives directly from perceptual information
about the body or the physical world. For example, the meaning of the word dove
is entirely derived from its associations with words like bird, pigeon, white,
feather, and peace. This approach to symbolic cognition is therefore quite the
opposite of embodied cognition! How then might we conciliate these two
viewpoints?

The language and situated simulation (LASS) theory of conceptual processing
(Barsalou et al. 2008) proposes a mechanism dedicated to the interaction between
simulation and language. The theory proposes that the linguistic system and the
simulation system both initially become active, but that word activation peaks
before simulation activation. If the linguistic forms generated as inferences thereby
suffice to produce accurate performance, there is no need for executive processes
to shift attention to the simulation system as an alternative information source.
When the linguistic system conversely stops being useful, simulation will begin to
dominate conscious, deliberate cognition. In LASS theory, linguistic system- and
simulation system activation are respectively associated with superficial verbal
processing and deep conceptual processing. For everyday decision making pro-
cesses and planning- and problem solving tasks, the theory posits a complex series
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of interactions among the two systems, during which they become active simul-
taneously at many points in time, and do so in varying proportions.

The two levels of processing described in LASS theory can also be linked to
Schwartz and Black’s (1996) observations on the use of mental simulation (see
Sect. 2.2). The two researchers proposed, in fact, that people use mental simulation
in novel situations for which they have no rule available or when their rules are
inadequate, and that, vice versa, they rely on the application of verbal rules (e.g.,
the ‘‘parity rule’’ for determining the motions of linked gears in a mechanical
system, which states that ‘‘if there are an odd number of gears connected, then the
first will go in the same direction as the last’’). According to Ritchie (2008), people
also apply a similar strategy to figurative language comprehension (see Sect. 2.5),
in that idioms are sometimes superficially processed as lexical units—i.e., by
tapping information contained in the linguistic system—and other times as met-
aphors—i.e., via activation of the simulation system.

Other theoretical frameworks similar to LASS, which propose that peak acti-
vation of the linguistic system is reached before peak activation of the simulation
system, are Louwerse and Jeuniaux’s (2008, 2010) symbol interdependency
hypothesis and Lynott and Connell’s (2010) embodied conceptual combination
(ECCo) model. The symbol interdependency hypothesis focuses on language
comprehension, and the authors have experimentally investigated the conditions
under which embodiment and linguistic factors determine performance in semantic
judgments for words. Their findings support the view that conceptual processing is
both linguistic and embodied. The researchers proposed a mechanism based on
symbolic cognition in the early stages of comprehension, to allow for the rapid
creation of an approximate representation (shallow language processing), and on
embodied cognition in subsequent stages, to allow for the creation of a complete
situation model (deep language processing). They also proposed that the relation
between these two types of cognition is made possible by the fact that language
encodes perceptual information.

The ECCo model (Lynott and Connell 2010) conversely focuses primarily on
the processes involved in creating a new concept from the combination of two
already-known concepts, as frequently occurs in everyday spoken and written
language. The model is based on a representation of knowledge that incorporates
linguistic statistical information and situated simulation. The main idea underlying
the model is that, ‘‘linguistic information guides or facilitates the simulation
process, but the new concept created during conceptual combination is funda-
mentally a situated, simulated entity.’’ (ibid. p.1).

The findings from all of these studies strongly suggest that the simulation- and
linguistic systems are tightly integrated and mutually reinforcing, such that they
can be considered ‘‘partial reflections’’ of each other. Their relation is therefore
complementary and dynamic (see Fig. 6.5).

As illustrated here below, the linguistic system can also serve similar functions
in simulation-based learning. In fact, verbal information plays a key role in all the
steps of a simulation-based learning pathway. To trigger students’ interest,
teachers typically begin a simulation-based learning activity by verbally describing
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the system under study to the class and the simulation’s goal, contributing thereby
to the definition of the students’ initial conceptual model (M0). During the inter-
mediate phases, questions and discussions will be required to progressively refine
the students’ initial model and to arrive at a target, teacher-student agreed-upon
model (MT). At the end of the learning pathway, the quantitative behavior revealed
by the simulation of the target model will be synthesized and summarized in
qualitative descriptions—typically in the form of verbal rules (‘‘The molecules
move faster as temperature increases, and slower as temperature decreases’’) or
narrations (‘‘When the number of prey began to grow, the number of predators,
who found more food available, also increased, but, after some time the prey began
to run out’’).

Language can support simulation-based learning in many other ways. For
example, it can be used by both teachers and students:

• to guide the exploration of an simulation-based learning environment (e.g., to
focus attention on various user interface features);

• to control the simulation (e.g., to decide which variables to modify, to try
different strategies);

• to facilitate student understanding of the underlying conceptual model (e.g., to
link the model’s structure with the behavior observed).

From a cognitive load perspective, language is the main instrument of
instructional techniques aimed at:

• reducing intrinsic cognitive load (e.g., through pre-training or worked-out
simulation examples);

Fig. 6.5 The simulation-
linguistic system relation
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• facilitating schema construction (e.g., through self-explanations or reciprocal
learning).

Nonetheless, in some instances, students may not feel it is necessary to fully
dedicate their mental resources to the construction of and during simulation of a
dynamic mental model. They may therefore opt to use language as a ‘‘shortcut’’ to
more rapidly achieve the expected learning outcomes. For example, in a reciprocal
learning situation, one of the two students involved may superficially adhere to a
conclusion reached by his/her companion and may memorize it without any further
effort to understand it. (This is a social conformity effect, more frequently
observed in large group settings). Similarly, students may passively listen to a
teacher-provided explanation of a simulation outcome and may accept it by going
no further than a merely linguistic level of processing. They may therefore end up
constructing a static vs. dynamic mental model.

The observation that some learning tasks can result in words being processed
only through their connections with other words, and not necessarily at the deeper
conceptual level of mental simulation (Barsalou et al. 2008) can also account for
the previously mentioned mixed research findings on the instructional effective-
ness of simulation (see Sect. 5.7). When students rely only on verbal rules such as
‘‘if… then’’, their information processing will be superficial. Moreover, assuming
that the simulation has activated a deep level of processing will result in an
efficacy ‘‘overestimation’’ error of the simulation as an instructional method.26

If the outcomes of a complex simulation can be summarized with only a few
rules, why not directly teach these rules (e.g., by using direct instruction methods
such as worked examples or drill-and-practice tutorials)? Well, in some instan-
ces…this can actually be the best strategy! Specifically, if the learning task is to
remember an empirical law (such as the ideal gas law [PV = RT] or Ohm’s law
[I = V/R]), mathematical or verbal descriptions with additional memorization
practice should suffice. Conversely, simulation may be a better strategy when the
learning task is that of understanding the microscopic origins of observed regu-
larities or of solving complex problems.

More generally, the answer is that rules learned merely linguistically are gen-
erally too rigid for application to a variety of different situations. If they are to
generalize any knowledge acquired, students must first construct flexible mental
models and then must be able to simulate them and modify them, as necessary,
when facing new situations requiring their modification or substitution of initially
learned rules.

Another instance in which the simulation system must necessarily accompany
the linguistic one is in the learning of new concepts that derive from the creative
combination of existing concepts (Lynott and Connell 2010). In these cases, direct

26 An error that in part accounts for the ‘‘hype’’ (exaggerated statements actually not supported
by solid scientific evidence) occasionally encountered in the promotion of simulation as an
educational technology.
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instruction methods—which are conversely ideal for constructing an initial
knowledge base—are no longer the most recommended.

The use of superficial linguistic strategies can be highly effective in producing
accurate performance, but may also be somewhat devoid of meaning. One way to
re-instill meaning in language is through the use of narratives. The function of
narrative—in its oral and written forms—has always been that of representing and
communicating time-extended events and the introspective states that accompany
them. As the reader will remember (see Sect. 2.4), Barsalou (2008a) held that
simulators for representing abstract concepts are indeed developed by capturing
the perceptual features of events and states of this type. Abstraction therefore goes
hand in hand with the typically human capacity for telling stories.27

Craig et al. (2002) have illustrated the interplay between perceptual simulations
and narratives in analogical problem solving and provided evidence that perceptual
factors can be manipulated via narratives in the form of short stories. Storytelling as
a way to understand and communicate the behavior of complex systems has been
mostly studied by researchers and practitioners in the field of system dynamics.
System dynamics-based microworlds are frequently presented in the form of stories
in which a student or manager must take on the role of a character (in the simu-
lation) and must make decisions causing the story to evolve towards one outcome
vs. another. For example, Senge’s (1990) systems archetypes are ‘‘elaborate
structures that recur in our personal and work lives again and again’’ (p. 92), which
we can begin to construct once the building blocks of the system dynamics method
have been learned.28 Systems archetypes can be seen as exemplar stories, which
different Division managers can see reflected in their own experiences: ‘‘Just as in
literature there are common themes and recurring plot lines that get recast with
different characters and settings, a relatively small number of these archetypes are
common to a very large variety of management situations.’’ (ibid., p. 94).

In the final analysis, the affinity between simulation and narration is due to the
fact that stories are a way to transmit time-related knowledge in more dynamic
form than allowed for by simple verbal rules.29

Consideration of the simulation-linguistic system relation can yield some
helpful indications for approaching simulation-based learning in a way that inte-
grates and balances the perceptual and motor components of instruction with

27 Baddeley (2000) added a component to his initial working memory model—the ‘‘episodic
buffer’’—which has the function of integrating visual, spatial, and verbal information from the
other subsystems to create coherent and storable episodic memories that can be consciously
retrieved from long-term memory.
28 Senge listed the following archetypes in his book ‘‘The Fifth Discipline’’: Balancing process
with delay, Limits to growth, Shifting the burden, Eroding goals, Escalation, Success to the
successful, Tragedy of the commons, Fixes that fail, Growth and underinvestment. Although
originally conceived for organizational learning, the same archetypes can be applied in other
fields, such as ecology and the social sciences.
29 Narrations have the power to ‘‘bifurcate’’ into a series of alternative branches, similarly to the
bifurcations of a nonlinear dynamical system, as suggestively illustrated by the author Jorge Luis
Borges in his 1941 story of ‘‘The Garden of Forking Paths’’.
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verbal components. In this approach, we must firstly consider that both cognitive
systems of simulation and language can be activated by two types of input:

• experiential input—and therefore from sensory stimulation (visual, auditory,
tactile, kinesthetic) or from physical activities;

• verbal input—and thus from explanations provided by teachers, textbooks,
discussions, and/or by stories.

In other words, the simulation system can be activated by sensory experiences
and by verbal information. (Motor simulations of functional actions can be trig-
gered by either a perceived object or by its name). Analogously, the linguistic
system can be activated by words, but also by images. In fact, a word can activate
other words through semantic or phonetic associations, just as the image of an
object can activate the name of that object. Teachers should therefore avoid
establishing a superficial correspondence between experiential and active learning
on one hand and between verbal input and direct instructions on the other. Spe-
cifically, they should avoid the a priori favoring of one type of input over another
in function of one of two main strategies (see the discussion in Sect. 5.7 on the
limits of dichotomously conceptualizing instructional strategies). The challenge
for educators and instructional designers, rather, is to integrate both types of input
in function of the specific instructional context and to take more recent cognitive
science models into account. These latter models essentially describe an activation
alternation between the two systems, in function of a given task’s characteristics
(Barsalou et al. 2008; Louwerse and Jeuniaux 2008, 2010; Lynott and Connell
2010).

This means that teachers using verbal input should initially rely on simple and
straightforward language (to facilitate the students’ creation of an initial,
approximated mental model), which should then be followed by words and
phrases/expressions to guide and facilitate the students’ mental simulation process.
This second phase is therefore focused on minimizing the shortcut effect, which
occurs when students limit themselves to using readily accessible verbal strategies
(such as ‘‘if… then’’ rules).

The field of cognitive linguistics can offer an important contribution in this
regard, as it investigates the relation that exists between figurative language and
mental simulation (Gibbs 2006b; Matlock 2004; Ritchie 2008).30 In particular (see
Sect. 2.5), researchers in this field have proposed the concept of image-schemas as
non-linguistic abstract structures emerging from sensorimotor experiences, and
serving as source domains for many conceptual metaphors. Embodied simulations
based on image-schemas can allow students to understand verbally described

30 Somewhat surprisingly, cognitive linguistics and instructional science have, for the most part,
developed along completely separate lines of research. From an instructional perspective, notable
exceptions are Hestenes’ (2010) modeling theory for mathematics and science education and
Fuch’s (2007, 2010) approach to the teaching of thermal physics. In cognitive linguistics, Lakoff
and Núñez (2000) investigated the conceptual metaphors underlying mathematics and conse-
quently proposed modifications to mathematics education.

6.3 Simulation and Language 173



abstract entities as if they were concrete objects.31 Moreover, in instructional
situations such as these, narratives can greatly enhance the simulation-inducing
effect of language. Craig Nersessian and Catrambone (2002) hypothesized that ‘‘if
readers generate perceptual simulations to represent events described in a story,
the image-schematic structure embedded in those simulations might depend to a
large extent on how the story is written, from what perspective, for example, and in
what context.’’ (p. 178). They tested this hypothesis by presenting undergraduate
students with different versions of stories derived from Gick and Holyoak’s (1980)
‘‘fortress story’’,32 and found some supporting evidence that a particular image-
schema—the convergent-force image-schema—can increase the probability that
the story is used to construct a mental simulation of the problem, facilitating its
solution thereby.

In brief, and in conclusion, two observations linked to the ideas proposed in the
preceding two sections can be formulated here below:

• when students use their mental simulation capacity to explore a computer
simulation and to understand the represented phenomena, the two types of
simulation influence each other, creating a cognitive partnering situation thereby
(see Sect. 6.1);

• due to constructive interaction between the linguistic and simulation systems,
mental simulation can be characterized as a type of ‘‘linguistically programmed
analog simulation’’. It can therefore be conceived as being based on a type of
hybrid analog/symbolic computation—a proposal requiring further exploration
in cognitive science research (see Sect. 6.2).

31 As for mental simulation in general, simulations of this type are not necessarily activated each
time a student hears a metaphorical phrase, but presumably only when the learning task requires
that a specific metaphor phrase be used for inferences.
32 A ‘‘classic’’ used in many Cognitive Science studies as an example of the difficulty of
analogically transfering one problem’s solution to another domain. The story concerns an army’s
attempt to conquer a fort with access roads planted with landmines. The problem’s structure is
similar to that of a problem requiring a doctor to use radiaton to destroy a malignant tumour
without damaging the surrounding tissues. Although the two problems are structurally analogous,
Gick and Holyoak (ibid.) found that only 30 % of participants reading the fortress story were able
to transfer their knowledge of the solution to the tumor problem.
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Chapter 7
Simulation-Based Instruction

Imagination has given us the steam engine, the telephone, the
talking-machine, and the automobile, for these things had to be
dreamed of before they became realities.
L. Frank Baum, Introduction to The Lost Princess of Oz (1917)

7.1 Content and Process

Throughout this book, we have focused on the cognitive processes underlying
simulation use and dynamic model building and, in particular on several processes
that are crucial to learning (e.g., creating analogies and metaphors, generating
inferences, reorganizing mental models and schemas). The present section will
conversely examine an aspect of instructional simulation not yet directly discussed
herein and, that is, what to teach via simulation.

Simulation is actually used for many different instructional purposes such as

• teaching specific knowledge (e.g., Newton’s laws of motion, the kinetic theory
of gases, the principles of photosynthesis, knowledge of subject-specific skills
and techniques);

• developing general thinking skills (e.g., critical thinking skills, problem-solving
skills, scientific thinking skills);

• increasing students’ interest in science (e.g., motivation to learn science, using
scientific language, apply scientific knowledge to everyday situations/life).

How then might teachers orient among such a variety of applications? The
approach proposed in the present section is to identify specific types of learning
outcomes students are more likely to achieve through simulation and which pertain
to science education. The approach is therefore aimed at

• helping educators align learning objectives, instruction, and assessment;
• making simulations an integral part of school curricula;
• supporting educators in their decisions as to when and how to use simulation in

a specific context.1

Firstly, teachers attempting to clearly define a given learning objective should
carefully consider two of the more general aspects of learning objectives:

1 The instructional use of simulation requires time and resources; it is therefore important for
teachers and educators to verify whether it is actually justified for a given instructional situation
or whether other instructional technologies and/or methods are more effective in achieving the
same learning objectives.

F. Landriscina, Simulation and Learning, DOI: 10.1007/978-1-4614-1954-9_7,
! Springer Science+Business Media New York 2013
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1. the knowledge students must acquire/produce; and
2. the level of cognitive performance required thereby.

Anderson and Krathwhol (2001) introduced a learning objective model that
considers both elements and can be readily applied to simulation-based instruction.
The model consists of a two-dimensional framework deriving from a revision of
Bloom’s (1956) original taxonomy of educational objectives. This taxonomy was
subdivided into six student cognitive performance levels:

1. Knowledge
2. Comprehension
3. Application
4. Analysis
5. Synthesis
6. Evaluation.

In the model’s revised version, the level names appear in their verb forms,
which refer to categories of cognitive processes, that is, thinking skills students
must use in a learning task; moreover, the last two level positions are inverted. The
categories are therefore as follows:

1. Remember
2. Understand
3. Apply
4. Analyze
5. Evaluate
6. Create.

Together, these categories make up the model’s Cognitive Process Dimension.
Specific cognitive processes are described for each category (e.g., Recognizing,
and Recalling, are the Remember category processes). The second dimension of
the model is the Knowledge Dimension and is subdivided into the following
knowledge types:

A. Factual knowledge
B. Conceptual knowledge
C. Procedural knowledge
D. Metacognitive knowledge.

Each of the knowledge types is in turn subdivided into further subtypes (e.g.,
the Factual knowledge subtypes are knowledge of terminology and knowledge of
specific details and elements). Factual and conceptual knowledge combined cor-
respond to what is termed declarative knowledge (traditionally defined as knowing
that vs. procedural knowledge, which refers to knowing how).

For teachers writing up learning objectives, the model dimensions, respectively,
coincide with the verbal part and the nominal part of a well-written objective
statement, as illustrated by the following learning objective example:

176 7 Simulation-Based Instruction



• Students will be able to explain in their own words which astronomical factors determine
temperature variation from summer to winter.

The verbal part of the objective—to explain [in their own words]—represents
the cognitive process category, and the nominal part—the astronomical factors
that determine temperature variation from summer to winter—represents the type
of knowledge to be acquired.

A two-dimensional visual representation of Anderson and Krathwhol’s
framework yields the Taxonomy Table, the rows and columns of which can be used
to classify the objectives, activities, and assessments of a given course or unit (see
Table 7.1). For example, the learning objective example reported above is the
‘‘understand conceptual knowledge’’ type and can therefore be placed in the B2
cell of the table.

Learning objectives related to remember or understand, simple forms of
knowledge can be taught effectively with reception-based methods (which do not
necessarily mean rote memorization!). Conversely, learning objectives linked to
understand, analyze, evaluate, and create, therefore, to more complex forms of
knowledge, can respectfully and progressively benefit from discovery-based
methods, including those based on simulation. In fact, simulation-based learning
activities corresponding to the three topmost categories of the cognitive process
dimension can be rather easily imagined and are similar to the examples presented
in the present book. Some examples are shown in Table 7.2 (the listed objectives’
various conditions and criteria have been omitted here for reasons of simplicity).

An important advantage of using the taxonomy table is because it ensures that
objectives, activities, and assessments are targeted to the same type of knowledge
and cognitive performance. When this occurs, these three elements are ‘‘aligned’’
with each other and can be placed in the same table cell.

Once more in reference to the astronomical learning objective example, one
option could be to design a simulation that allows students to visualize and modify
the Sun’s and Earth’s relative positions throughout the solar year, and to measure
the correspondingly different inclination with which the Sun’s rays strike the
Earth’s surface in different areas on the globe. Figure 7.1 shows a simulation of
this type (in this instance, no moveable numerical levers are present, but students
can directly manipulate either the Earth’s axis or a protractor to make

Table 7.1 The taxonomy table (adapted from Anderson and Krathwhol 2001, p. 28)
The knowledge
dimension

The cognitive process dimension

1.
Remember

2.
Understand

3.
Apply

4.
Analyze

5.
Evaluate

6.
Create

A. Factual knowledge
B. Conceptual knowledge x
C. Procedural knowledge
D. Metacognitive

knowledge

The x marks a B2-type instructional objective (see example in the text)
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measurements). A learning activity aligned with its objective—and, therefore, of
the B2 type—might in this instance consist in the following simulation task:

• Observe the degree of tilt of the Earth’s axis and the way in which the sun’s rays
strike the Earth’s surface at different angles in June and in December.

An assessment item that is aligned with the objective and with the activity
proposed might consist in showing students a still picture from the simulation and
in asking them:

Table 7.2 Examples of higher-order learning objectives that can be taught with the help of
simulation models
Cognitive
process

Learning objective

Understand Understand the molecular mechanism of phase transition between solid and
liquid states in a crystalline solid

Analyze Analyze how the length and initial angle of a pendulum concur to determine the
pendulum’s oscillation amplitude

Evaluate Evaluate the effects of different management strategies in limiting the diffusion
of an epidemic

Create Create a stock-and-flow model of two bodies in thermal contact

Fig. 7.1 A summer and winter simulation. Image courtesy of ExploreLearning GizmosTM. Web
site http://www.ExploreLearning.com
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• What season and day of the year is it for the man in the picture?

Simulation can also be used to teach procedural knowledge. Consider, for
example, ‘‘virtual laboratories’’ that are usually developed to integrate or poten-
tially replace the traditional, hands-on laboratory experience requiring the physical
handling of materials and tools.

In Anderson and Krathwhol’s revisited taxonomy of instructional objectives,
knowledge and cognitive processes are intrinsically linked, as the two essential
parts of a learning objective, and should therefore not be considered in isolation.
Conversely, over the past decades, an approach based on the idea that general
thinking skills acquisition is more important for learning than that of specific
knowledge has gained a great deal of ground in the instructional sciences. An
example of this view can be observed in the diffusion of ‘‘higher-order thinking’’
programs, which were launched in the mid-1980s in schools in the United States,
and which promoted a shift from acquiring knowledge to learning to think
(Lipman 1991; Resnick 1987). The movement was motivated by the conviction
that current economic and social changes require more complex reasoning abilities
than those of the past did. These skills are more difficult to acquire, but are
utilizable in various contexts, and are thus more easily transferrable to the
workplace. Student acquisition of higher-order thinking skills therefore became a
national goal, and teachers were encouraged to foster and assess the development
of these skills in the classroom.2

Yet, what exactly are these skills? How can they be precisely defined? Some
studies (e.g., Lewis and Smith 1993) consider them simply as the equivalent of, or
similar to the topmost three levels of Bloom’s taxonomy of instructional objectives
(i.e., Analysis, Synthesis, Evaluation). Other views include different types of skills,
including critical thinking skills (Ennis 1985; Lipman 1991; Paul 1992), problem-
solving skills (Hayes 1989), and scientific thinking skills (Kuhn 2005).

The proponents of programs aimed at teaching higher-order thinking skills
contrast these programs with other, more traditional school activities and nearly
always describe the latter as ‘‘an accumulation of facts,’’ ‘‘the superficial memo-
rization of bits of information,’’ ‘‘the mere absorption of knowledge,’’ and the like.
In these programs, domain-specific knowledge is seen as a necessary condition for
developing the thinking skills students will be required to demonstrate, but the
main instructional emphasis is on skills that transcend specific school subjects and
are therefore generalizable across different contexts.

It is important to note that computer simulation has been frequently considered
as a valuable approach to building and enhancing all of these types of skills. For
example

2 Methodologically, the development of higher-order skills was included in the instructional
repertoire and goals of the then-developing constructivist pedagogy.
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• Steed (1992) argued that, by authoring system dynamics simulations, students
are forced into higher levels of thinking, including predicting, analyzing, and
justifying;

• Rivers and Vockell (1987) investigated and proposed the use of computer
simulations to stimulate critical thinking;

• Kuhn (2005) used simulations with dichotomous variables (i.e., that can take on
only one of two possible values at a time) as a method to study the control of
variables as a form of scientific inquiry.

• Jonassen (2004) focused on the ways in which system dynamics–based mod-
eling tools can support complex problem solving.

This positive view of simulation is mainly based on its potential to develop
capacities such as analyzing situations, stating hypotheses, considering alternative
points of view, making decisions, and solving problems—that is, skills frequently
associated with higher-order thinking.

Yet, however fascinating the idea of ‘‘learning to think’’ might appear, a note of
caution is required. As early as the late 1980s, Crow (1989) warned that ‘‘research
has shown that transferability is somewhat limited, that is, developing critical
thinking within the confines of a biology course does not mean that this skill will
be transferred to other disciplines or other situations’’ (p. 116). Similarly, Bailin
(2002), argued against considering thinking processes as separate from knowledge,
stating that ‘‘it makes no sense to refer to a process of interpreting which remains
constant regardless of subject matter. Rather, what is involved in and even meant
by interpreting varies with the context, and this difference is connected with the
different kinds of knowledge and understanding necessary for successful com-
pletion of the particular task’’ (p. 366). According to Willingham (2007), the
evidence that students can learn a set of critical thinking skills to be employed in
any circumstance is actually quite poor. He maintains that programs teaching these
kinds of skills are mostly ineffective, because thinking processes are intrinsically
intertwined with the content of thought itself.

Similar considerations can be made about programs teaching problem-solving
skills. In the early days of cognitive science, the goal of research on problem
solving was to identify general-purpose strategies to be applied to a variety of
problems (Newell and Simon 1972). A body of research on problem solving,
however, showed that no single solution process can be devised to apply to dif-
ferent domains, and that the differences between AI and human problem solving
are far greater than their similarities. Cognitive scientists have observed that
domain knowledge plays a key role in problem solving, as it guides solvers in
focusing their attention on problem aspects that are crucial to determining the
solution (for a research overview, see Novick and Bassok 2005). Similarly, expert–
novice research has shown that familiarity with that problem domain-specific
content plays a more important role in solving a given problem than general
problem-solving strategies do, because students’ problem representation criteria
improve as their knowledge becomes more richly structured (Schoenfeld and
Herrmann 1982). As Bruer (1993) highlighted, expertise depends ‘‘on highly
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organized, domain-specific knowledge that can arise only after extensive experi-
ence and practice in the domain. Strategies can help us process knowledge, but first
we have to have the knowledge to process’’ (p. 15).

The higher-order thinking skills receiving the most science educator’s and
teacher’s focuses are undoubtedly those of scientific thinking skills, especially in
the context of inquiry-based learning. Scientific thinking has been frequently
characterized in terms of the cognitive abilities scientists [supposedly] use when
reasoning on scientific problems. For example, in a study examining the use of a
‘‘microcomputer-based laboratory,’’ Friedler et al. (1990) considered scientific
reasoning to include the following abilities:

(a) Define a scientific problem
(b) State a hypothesis
(c) Design an experiment
(d) Observe, collect, analyze, and interpret data
(e) Apply the results
(f) Make predictions on the basis of the results.

These types of abilities essentially overlap with the ‘‘five-step model’’ of the
scientific method, which can be stated as follows:

1. Define the problem
2. Make observations/gather information
3. Form a hypothesis
4. Test the hypothesis
5. Draw conclusions.

Multistep lists of this type (the five steps are sometimes extended to six, by
adding a final reporting and communication of results step) can be found in many
science textbooks and educational web sites. They are also frequently presented to
students as a procedure to follow in a nearly algorithmic sense, for example, with
lists represented in the form of flow diagrams, so as to give the idea of a computer
algorithm, and to emphasize the cyclic aspect of hypothesis testing and revision.
With its resemblance to laboratory experiments, simulation has oft been consid-
ered a way to teach scientific thinking skills as exemplified by the five-step
method.

Yet, do scientists actually use this step-by-step method? The concept of a single
scientific method, composed of rigorously and unambiguously defined steps, has
no correspondence in either Philosophy or the History of Science (Bauer 1994;
Chalmers 1999). The notion can be therefore considered an idealization (if not a
misconception!) of the nature of scientific enterprise. According to McComas
(1998), the idea of a general and universal scientific method, composed of steps
such as those listed above, is a ‘‘myth of science,’’ which remains pervasive,
however, among students and teachers alike. The steps do reflect the way in which
scientific results are presented for publications in research journals, but not the
process of scientific discovery as it actually occurs.
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As illustrated by Rudolph (2005) in his analysis of the historical origins of the
five-step method in American schools, the origins of this conception of science can
be traced back to ideas formulated in the early twentieth century by the American
philosopher and educator John Dewey (1910, 1938). Until then, the dominant
concept in science instruction in the United States had been that of the ‘‘laboratory
method of instruction,’’ based on a list of precisely described laboratory exercises,
which underscored the need for precision of execution and quantitative mea-
surement. Conversely, Dewey’s proposal was to describe the scientific method in
psychological terms. In How We Think (1910), he described ‘‘a complete act of
thought’’ as a mental process made up of the following five steps: ‘‘(1) a felt
difficulty, (2) its location and definition, (3) suggestion of possible solution,
(4) development by reasoning of the bearings of the suggestion; (5) further
observation and experiment leading to its acceptance or rejection; that is, the
conclusion of belief or disbelief’’ (p. 72). In this new framework, the main function
of experiments was not that of learning how to use an apparatus, as in the labo-
ratory method, but to corroborate, or verify, a conjectural idea. The focus on the
process of knowledge construction rapidly garnered favor among the leading
science educators of the time, and the five-step approach became the foundation of
the ‘‘scientific method’’ as taught to high school students. As highlighted by
Rudolph (ibid.), however, the need to adapt Dewey’s psychological schema to the
demands of a rapidly increasing student population resulted in the same steps
being interpreted as a rigid formula with standard lists of projects—and thus, in a
process differing little from the previously taught laboratory method!

Procedural descriptions of science must therefore overcome their current limits,
and specifically, (a) they do not give students a factual account of scientific
practice; (b) students may follow the procedure’s steps mechanically and uncrit-
ically; and (c) these descriptions risk portraying a cold and unexciting view of
science, which can discourage student interest and motivation in studying science
or in pursuing a scientific career.

Proponents of inquiry-based learning do acknowledge these problems, and two
solutions proposed have been those of emphasizing the recursive and nonlinear
nature of the inquiry process (Stripling 2003) and of describing scientific inquiry
more generally, in terms of higher-order thinking processes, such as those of
critical thinking and problem solving (Kuhn 2005).

Yet, referring to critical thinking or problem solving as the key components of
science education results in the same problems discussed above, in terms of
programs for teaching these skills, and, in particular, the risk of underestimating
the role of domain-specific knowledge. As observed by Crow (1989), ‘‘In many of
these instances, the entire course or program is devoted to the development of
critical thinking. Science content merely serves as the background for the skill
development’’ (p. 115).

Approaches to science education based on the development of higher-order
thinking skills are also frequently accompanied by a view of science as a sys-
tematic enterprise prominently based on logical, convergent, and disciplined
thinking processes. The appeal to think critically is almost invariably associated
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with that of thinking logically. Yet, research on the cognitive basis of science
offers an image of the scientific mind that is far more varied and complex (for a
review of studies, see Dunbar and Fugelsang 2005). Firstly, a more recent general
consensus is that scientific thinking relies on the same cognitive mechanisms all
humans use and is not a different type of thinking at all. Moreover, alongside
traditional lines of research (e.g., on problem solving, hypothesis testing, and
logical deduction), the current focus is on causal thinking, analogy, and concep-
tual change. In this context of renewed interest in the aspects of creativity and
imagination of scientific thinking, Clement’s (2008) and Nersessian’s (2002, 2008)
research on non-formal reasoning and model-based reasoning are particularly
promising, as they underscore the role of mental imagery and simulative reasoning
in science (see Sect. 5.3).

The considerations presented in this section allow us to conclude that instruc-
tional approaches based on the development of higher-order thinking skills pertain,
at best, to only a partial account of scientific enterprise. In a similar vein, primarily
considering simulation as a way to develop students’ higher-order thinking
skills—such as the ones involved in critical thinking, problem solving, and sci-
entific thinking—may not be the most effective system for exploring this learning
method’s true potential. In fact, all of the activities related to simulation building
or using (see Sect. 5.1) rely heavily on the student’s background knowledge of the
domain being explored. Process-based approaches to simulation may therefore
undervalue the role of simulation in the situations that are the most frequently
encountered in schools, in which the objective is to acquire a subject matter’s
specific contents and skills.

The view of simulation as merely an instrument for developing higher-order
thinking skills is one reason its diffusion in schools and universities has remained
rather scarce to date.3

If we are to overcome the limits of a purely process-based view of simulation,
an approach is needed to more effectively integrate knowledge with the processes
concurrently acting upon it. In an integrated approach of this type, knowledge of a
given domain should not necessarily be equiparated with information to be
memorized.

In this regard, Anderson and Krathwhol’s (2001) model of learning objectives
(see the beginning of the present section) allows for the frequently cited
requirement of moving beyond the simple presentation of facts, by moving from
factual knowledge—which contains ‘‘the basic elements students must know if

3 This is particularly evident in the case of the system dynamics simulation paradigm: despite the
great potential of this method for modeling and simulating all kinds of systems, the tendency to
consider it mostly as an instrument for developing ‘‘systems thinking skills’’ (Forrester 1996;
Richmond 1993), and to focus on large-scale and highly complex problems only, is one of the
reasons it is little used as an instrument to teach the standard science curriculum. Researchers at
the Creative Learning Exchange organization (http://www.clexchange.org/) have recently
undertaken an effort to more closely link system dynamics to educational standards. See also,
Fisher (2001) for an integration of system dynamics with mathematical education standards.
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they are to be acquainted with the discipline or to solve any of the problems in it’’
(p. 45)—to conceptual knowledge, procedural knowledge, and metacognitive
knowledge. Furthermore, conceptual knowledge need not comprise an undiffer-
entiated category, because it includes knowledge of:

• classifications and categories
• principles and generalizations
• theories, models, and structures.

Students’ conceptual knowledge therefore includes all the schemas, mental
models, and theories that they have developed up to a given moment in time. The
next section will examine the issue of the ways in which simulation can support
the construction of such a rich and complex body of knowledge.

7.2 Crosscutting Concepts

The previous section argued that simulation-based learning activities or units
should be based on both the knowledge to be acquired and the students’ cognitive
performance levels. It also highlighted how simulation can be used as a tool for
understanding (as well for analyzing, evaluating, and creating) conceptual
knowledge. The present section will address two related issues, that is, the types of
scientific concepts that are best suited to be taught through simulation, and how
simulation can improve students’ understanding of these concepts, when compared
to other teaching methods.

A first point underscored here is that conceptual knowledge should not be
viewed exclusively as subject-matter content. Most science education experts
agree that the accelerating pace of science makes it impossible to teach all the
ideas related to a given discipline in a school or university curriculum’s limited
time frame. Moreover, science is increasingly characterized by a blurring of the
boundaries between traditionally separated disciplines (and between ‘‘pure’’ and
‘‘applied’’ science). This situation poses educators and teachers with the challenge
of adopting an increasingly interdisciplinary approach to science education.

Several recently published science education standards and benchmarks have
acknowledged the role of conceptual knowledge in establishing connections
between various disciplines (e.g., the American Association for the Advancement
of Science 1993; the College Board 2009; the National Research Council 1996,
2012; these are examined more closely here below in terms of their content
standards). One point made in all of these publications is that instruction should
focus on a small number of conceptual themes that can find applications across
different domains of science. Rutherford and Ahlgren (1990) made the first rec-
ommendation of this kind in their influential book, ‘‘Science for All Americans,’’
by stating that ‘‘Some important themes pervade science, mathematics, and
technology and appear over and over again, whether we are looking at an ancient
civilization, the human body, or a comet. They are ideas that transcend disciplinary
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boundaries and prove fruitful in explanation, in theory, in observation, and in
design’’ (p. 165). The authors called these ideas common themes and presented
four main ones in their book:

• Systems
• Models
• Constancy and change
• Scale

The Benchmarks for Science Literacy (AAAS 1995) produced standards for the
same four themes, for grades 2–12, and the National Science Education Standards
(NRC 1996) proposed the content category ‘‘Unifying concepts and processes in
science’’ to provide connections between scientific disciplines. These concepts and
processes include

• Systems, order, and organization
• Evidence, models, and explanation
• Change, constancy, and measurement
• Evolution and equilibrium
• Form and function.

The Science College Board Standards for College Success (College Board
2009) confirmed the emphasis on conceptual knowledge by proposing the fol-
lowing unifying concepts:

1. Evolution
2. Scale
3. Equilibrium
4. Matter and Energy
5. Interaction
6. Form and Function
7. Models as Explanations, Evidence, and Representations.

The College Board Standards also used the term ‘‘scientific practices’’ to
indicate ‘‘a rich set of integrated processes and ways of thinking that support the
development of a conceptual understanding of scientific concepts’’ (p. 18).

It is important to note that common themes and unifying concepts such as the
ones cited above should not be considered as being substitutes for discipline-
specific concepts (e.g., concepts from the physical, life, and earth sciences), but as
complementary to them (e.g., the concept of equilibrium may find applications in
the physics of evaporation–condensation, as well in photosynthesis or in the water
cycle). Moreover, students need to work with these concepts over a period of years
rather than weeks or months.

The Framework for K-12 Science Education (NRC 2012) is a report high-
lighting the role a limited set of concepts can have in connecting knowledge from
various disciplines into a coherent scientific view of the world. The report is
framed around three dimensions:
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• Scientific and engineering practices
• Crosscutting concepts
• Core ideas in the science disciplines.

The first dimension describes ‘‘(a) the major practices that scientists employ as
they investigate and build models and theories about the world and (b) a key set of
engineering practices that engineers use as they design and build systems’’ (ibid.,
p. 30).4 The second dimension focuses on conceptual knowledge, and in particular
on the following crosscutting concepts:

1. Patterns
2. Cause and effect: Mechanism and explanation
3. Scale, proportion, and quantity
4. Systems and system models
5. Energy and matter: Flows, cycles, and conservation
6. Structure and function
7. Stability and change.

These concepts clearly summarize the other publications’ common themes and
unifying concepts, whereas the ‘‘core ideas’’ are discipline-specific concepts,
grouped into four major domains: the physical sciences; the life sciences; the earth
and space sciences; and engineering, technology, and applications of science.

The interdisciplinary approach to science, which informed all of the above-
described standards and benchmarks, is also a distinctive feature of simulation, in
which a relatively small number of computational models can be applied to a wide
range of phenomena, on different scales, and in seemingly unrelated disciplines.

From a History of Science perspective, interdisciplinarity was a goal of
cybernetics from its very beginning. The later fragmentation of cybernetics into a
series of increasingly specialized disciplines (e.g., computer science, artificial
intelligence, systems science, cognitive science) occurred toward the end of the
1970s and has since slowed down the search for a unitary conceptual framework
for human/natural/artificial system interaction. The purpose of studying abstract
organization principles in different types of systems was re-launched in the late
1980 and in the 1990s in the contexts of dynamical systems, cellular automata,
adaptive complex systems, and artificial life—all of which largely rely on simu-
lation as an innovative research tool/methodology (see references, Chap. 4).

The versatility of computational models in describing a wide range of systems
has its origin in the versatility of equation-based mathematical models overall.
Ordinary differential equations (ODEs) and partial differential equations (PDEs)
can be viewed as computational templates, that is, equations that can be used in a
variety of situations and contexts. For example, the ODE governing the simple
harmonic oscillator originated in the physical sciences and has applications in
molecular and cell biology, where it describes the rate at which mRNA produces

4 Note how this description focuses on ‘‘practices’’ (versus ‘‘skills’’), as the Science College
Board Standards do; note also the consideration accorded to engineering alongside pure science.
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proteins in a cell. It also has neuroscience applications, as noise-driven harmonic
oscillators can model rhythmic neural activity in the central nervous system.

An advantage of simulations is that they allow teachers to introduce advanced
mathematical and scientific concepts through numerical experiments rather than
via equations. In this way, qualitative trends can be demonstrated without having
to laboriously go through each step required to solve an equation (and in situations
presenting unsolvable or a complete lack of equations!).

The reader might notice that the crosscutting concepts listed in the Framework
for K-12 Science Education can be effectively exemplified and made intelligible
through the instructional use of simulation. Some examples are given below.

7.2.1 Patterns

Patterns are all around us—in nature, for example, in the venation of a leaf or the
structure of a snowflake. They are also ubiquitous in all forms of art, from painting
and architecture, to music and dance. Patterns are also ubiquitous in cognition, for
example

• In the visual system, patterns (simple combinations of lines and colors) are a
form of information that mediates between low-level visual features and
meaningful objects.

• Perceptual learning—the ability to identify similarities and differences in
stimuli—is a form of pattern recognition.

• Expert performance in various fields is largely based on the ability to identify
meaningful patterns in a given situation or problem.

Simulation can dynamically represent pattern formation in natural and artificial
systems, through the use of computational models based on numerical solution of
PDEs (e.g., reaction–diffusion equations) or on cellular automata: it therefore
supports the ability to think in patterns. These two specific types of models allow
scientists to simulate phenomena ranging from the arrangement of stripes on a
zebra coat to the spiral shapes of galaxies. They also facilitate investigation of
pattern formation mechanisms in highly idealized systems (as in, for example,
Conway’s Game of Life). Moreover, these dynamically generated patterns can be
classified into distinct universality classes, as in the instance of Wolfram’s
one-dimensional cellular automata.

According to studies examining the relation between perceptual learning and
conceptual learning (Goldstone Landy and Son 2008), simulations that represent
abstract scientific principles via easily understandable visual patterns can have
important instructional applications. In particular, these types of simulations allow
students to ground their knowledge of symbolic abstractions and to simultaneously
transfer it analogically from one learning context to another.

Another important advantage of simulation is that it allows for the represen-
tation of patterns of change, which are common to different systems. One example
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is the logistic, or ‘‘S-shaped’’ curve, which appears as an output in the simulation
of physical, biological, or social models. These simulations render easily evident
the idea that quantities as diverse as the concentration of reactants and products in
a chemical reaction, the size of a population, or the number of customers of a new
product can actually all show the same pattern of change, which consists in a phase
of rapid growth, followed by a diminished growth phase, and ultimately, one in
which the curve asymptotically approaches a constant value. Significantly, the
perceived similarity can be linked to an underlying common mechanism and
namely that in which two processes compete for some critical resource (this
mechanism can be most clearly viewed in the causal maps and stocks-and-flows
diagrams of system dynamics models).

7.2.2 Cause and Effect: Mechanism and Explanation

Overall, scientists are interested in searching for causal mechanisms, that is, event
chains leading from a cause to an effect. Hence, a key component of scientific
thinking is that of being able to develop causal mechanism models. Mechanisms in
general have a distinguishing qualitative nature that differ from the quantitative
nature of statistical data models, as the latter are used to determine the degree of
covariation between a cause and an effect.5

Simulations designed for understanding the ways in which different systems
work are mostly based on causal models, for example

• Large-scale climate prediction simulations are used to investigate the oceans’
effect on climate.

• Simulations in the fields of molecular and cell biology are aimed at isolating and
understanding the mechanisms that regulate the functioning of biological
systems.

• Brain network simulations are used to explain cognition in terms of underlying
neural mechanisms, such as neuronal oscillations and synaptic plasticity.

In fact, as Bechtel and Abrahamsen (2005) pointed out, a mechanistic expla-
nation—that is, one accounting for a system’s behavior in terms of the functions
performed by its component parts—is a widely used modeling strategy in science.
Simulation can therefore serve to stimulate students to develop forms of scientific
thinking that are more akin to those of scientists.

One aspect of causal reasoning that is seldom considered in science is that
of ‘‘circular causality.’’ Teachers and textbook generally focus on linear

5 The covariation of A and B is not, in and of itself, a criterion for stating that A causes B. It may
be that a third factor C causes both A and B and that A and B covary only, as in the case of
‘‘spurious correlation.’’ Other instances are those in which B causes A but A does not causes B
(reverse causation), or in which A and B are both causes of each other (e.g., the variations of
pressure and temperature in an ideal gas).
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cause-and-effect relations—that is, relations of the form A causes B, B causes C, C
causes D, …—whereas many phenomena imply a circular relation—that is, A
causes B, B causes C, and C causes A. As previously underscored (see Sect. 6.1),
our own mental processes have a hard time following a circular chain of events,
most probably due to basic limitations in the working memory system. Simulation
programs do not present these limits and can therefore extend our capacity to deal
with circular causality.

The simplest way of modeling circular causality is via feedback. In fact, any
simulation models aimed at explaining goal-directed behavior and self-organiza-
tion in complex systems focus on the role of feedback in these processes. In
particular, feedback loops visually represent the relations between variables in
system dynamics models and also in the diagrams used in the modeling and
simulation of biological cells (e.g., compare Fig. 4.26 with 4.31). One aspect of
causality that is also frequently underscored in system dynamics modeling is that a
system’s behavior may be determined by internal rather than external causes. This
endogenous point of view does not imply that a given system is closed to the
exchange of matter, energy, or information with the environment, but that external
factors only serve to trigger the system’s behavior and that the latter mainly
derives from the system’s internal structure.

7.2.3 Scale, Proportion, and Quantity

Science describes many natural phenomena on an enormous variety of space and
timescales, ranging from the subatomic level of elementary particles to the cos-
mological level of galaxy clusters. Moreover, different descriptional levels not
only characterize different fields of inquiry, but can also be observed within the
same field. An interesting example is that of thermal physics, in which heat-related
phenomena are studied from both the macro perspective of thermodynamics and
the micro one of statistical mechanics. (The terms ‘‘macro’’ and ‘‘micro’’ will be
used herein to indicate, respectively, a level of description consisting in the rep-
resentation of entities and properties that are available to the senses, and, vice
versa, a level of description for which this is not possible).6

The teaching and learning of phenomena at different scales is usually based on
multiple representations, which are aimed at providing students with opportunities
to construct appropriate mental models of the phenomena under study. These
representations, however, are either frequently static (e.g., scale models, diagrams)
or of a highly symbolic nature (e.g., mathematical formulas). They may conse-
quently fail to capture the dynamic dimension of the phenomena they intend to
represent and/or may not allow students to ground their conceptual understanding

6 The terms ‘‘microscopic’’ and ‘‘submicroscopic’’ are sometimes used to respectively indicate a
portion of the world that can be seen under magnification, as with an optical or electron microscope,
and a portion which, conversely, is so small that cannot be directly seen with any instrument.
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in perceptual and motor processes. Students can therefore find it difficult to link
different types of representations at different levels.

The above-mentioned drawbacks of multilevel representation can be obviated
through the instructional use of simulation. For example, Wilensky and Resnick
(1999) proposed an agent-based approach, to support students’ understanding of
the concept of ‘‘emergent levels’’ in complex systems. They designed simulations
for explaining pressure and temperature in an ideal gas, in terms of a system made
of ‘‘particles in a box’’ or, similarly, the aggregation of amoebas into slime mold
cells, or predator–prey interactions in population model. In fact, in all of these
systems, objects and phenomena emerge (i.e., originate spontaneously) from
simple interactions between homogenous elements.

The same emergent level-based perspective was adopted by Sengupta and
Wilensky (2009) in NetLogo Investigations in Electromagnetism (NIELS), a
curriculum of multiagent-based computational models. The models represent
phenomena such as electric current and resistance as emerging from simple
interactions between electrons and other charges in a circuit.

The Molecular Workbench is a simulation-based learning environment devel-
oped by the Concord Consortium (Xie and Pallant 2011) and is based on the
molecular modeling paradigm (see Sect. 4.8) and on quantum mechanics calcu-
lations. The basic idea of the Molecular Workbench is to render the invisible world
of atoms and molecules, and the dynamic phenomena occurring in that world,
visible for students. The learning environment is structured around a series of
lessons that are based on one or more simulations and form a guided learning
space. As with the agent-based modeling paradigm, the Molecular Workbench
allows students to interpret many basic concepts on a macro-scale (e.g., heat
transfer, diffusion, osmosis, phase transitions) by referring to micro-scale pro-
cesses. But it also highlights ‘‘first principles,’’ in the form of foundational sci-
entific laws, such as the first and second laws of thermodynamics, and the law of
momentum conservation.7

All of these projects point to simulation as an effective strategy when the
learning objective is to understand the microscopic origins of observed macro-
scopic regularities. Accordingly, by connecting dynamic representations at the
macro- and micro-levels, students learn which concepts are meaningful at a
specific scale level.

7.2.4 Systems and System Models

Emphasis on systems and models is a recurring theme in all of the standards and
benchmarks cited in the present section, reflecting a current general consensus on

7 The Molecular Workbench creators use these and other laws as test cases to ensure the validity
of the computational engine underlying the simulation program.
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the importance of models and model building in science thereby. The modeling
and simulation process, as described from various perspectives in this book’s
previous chapters, comprises many aspects of scientific modeling in general. The
phases of the process (see Sect. 4.3) are common to various disciplines, application
areas, and simulation paradigms. Moreover, simulation-based learning is a form of
model-based learning, in that it is based on a progression of mental models. Thus,
simulation building (or even simple discussion of the models underlying different
simulation programs) can be an effective way for students to familiarize with the
concepts and methods of model-based science.

7.2.5 Energy and Matter: Flows, Cycles, and Conservation

The concepts of energy and matter are equally the most common ones in science
and the most difficult ones for students to understand. Energy and matter are
always part of a system, but can also transfer into or out of the system, or from one
of its component parts to the others—a process that is of great relevance in natural
systems and in engineering. Indeed, a specification frequently missing from edu-
cational contexts is that both energy and matter can be described in alternative
ways and therefore represented through alternative models.

The main concern of educators and teachers is frequently that of teaching
elementary and middle schools students that matter is made of small particles
(atoms and molecules), which goes against the common sense notion of matter
being a continuous substance. Children are consequently instilled with the idea
that the world they perceive with their senses is—from a scientific perspective—a
kind of ‘‘illusion,’’ and the macro-level of reality is explained by referring to the
micro-level only (see the above paragraph on scale, proportion, and quantity).

Although simulation can be a perfect window on the otherwise invisible world
of atom and molecules, it can also be a window to another and equally relevant
view of the world, which plays, however, only a minor role in traditional curric-
ulums: the view of continuum physics (see Sect. 4.7).

Continuum physics describes both the macroscopic physical world around us
and phenomena occurring at the interface between the macroscopic and micro-
scopic worlds.8 The field has many applications in science and engineering
(e.g., materials science, geophysics, astrophysics, construction science, thermal
engineering, and nanotechnology), where researchers must grapple with a multi-
tude of aspects that characterize real solids, liquids, and gases. The modeling
approach used in continuum physics is based on the notion of continuum body, that

8 It is based on a theoretical approach—continuum mechanics—which was introduced as a
branch of classical mechanics during the nineteenth century by the French mathematician
Augustin-Louis Cauchy. (Many of his theorems in the field of infinitesimal calculus were
conceived in the context of continuum mechanics). It was then reorganized upon rigorous
mathematical foundations in the twentieth century by Clifford Truesdell.
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is, a body (solid or fluid) assumed to be infinitely subdividable. This continuity
hypothesis makes it possible to identify the material points of a body as the
geometrical points in a region of space and to define a continuous density function
within this region.

Continuum physics examines the collective behavior of many atoms or mole-
cules, but without the need to explicitly compute the motion of every particle in a
system. Of course, this approach is an approximation based on the separation of
scales between microscopic structure and the phenomenon of interest, but it is also
a very useful one. Moreover, a similar approximation underlies the use of con-
tinuum functions in calculus—as when differential equations are used to describe
the aggregate behavior of systems composed of a great number of discrete
elements.9

The germane point from an instructional perspective is that the notion of
continuity, used as a modeling strategy in continuum physics, is in accordance
with the intuitive notions of matter and energy used by laypersons and scientists
alike, and with the related mental processes of analogical reasoning, visualization,
and mental simulation (Sect. 5.3).

One reason continuum physics has been excluded from traditional science
curricula, however, lies in its complex mathematical methods—studied in
advanced university courses only. Yet, simulation itself can be a valuable tool to
overcome this limitation, and to introduce these types of models to students and
teachers at nearly any educational level, with no need to master the underlying
mathematical formalisms.

This type of continuum physics-based approach is used in Energy2D (Xie
2012), an interactive, visual simulation program developed by the Concord Con-
sortium, which models heat transfer mechanisms (i.e., conduction, convection, and
radiation). The program’s computational engine is based on the numerical solution
of the heat equation and on the Navier–Stokes equation. The modeled systems
pertain to the fields of thermal engineering, earth science, and fluid dynamics and
are visualized through information visualization methods that are derived from
simulation-based engineering and science (see Fig. 4.11).

The system dynamics simulation paradigm is well suited to a continuum
physics-based approach to science education. For example, Fuchs (2010) used
system dynamics as a method to teach a unified approach to physical processes
(see Table 4.5). The system dynamics’ modeling metaphor of stocks-and-flows
perfectly matches the conceptual model underlying Fuchs’s theory in which pro-
cesses are represented ‘‘as the result of the storage and flow of fluidlike quantities’’
(ibid., p. 26).10 The next section will also refer to Energy2D and Fuch’s models,
due to their implications from an embodied cognitive science perspective.

9 It fact, Chaucy’s theorems of infinitesimal calculus were developed in the context of continuum
mechanics. The same holds for ‘‘tensor calculus,’’ which was originally developed for calculating
stresses acting within a deformable body and has since found applications in many other fields,
including Maxwell’s theory of electromagnetism and Einstein’s relativity theory.

192 7 Simulation-Based Instruction



7.2.6 Structure and Function

The relation between structure and function is an issue that cuts across different
disciplines. As underscored in the Framework for K-12 Science Education: ‘‘The
functioning of natural and built systems alike depends on the shapes and rela-
tionships of certain key parts as well as on the properties of the materials from
which they are made’’ (NRC 2012, p. 96).

The term ‘‘structure’’ frequently refers to a static organization of parts, as in an
architectural model (the etymology of the term is linked to ‘‘construction’’).11 In
fact, in science programs students are often asked to learn the content (i.e., the
elements and relations) of hierarchical structures, which are usually represented in
the form of tree diagrams (e.g., the classification of living organisms, or the
cladograms of phylogenetics). Nevertheless, all natural structures are also dynamic
patterns, which may appear static, however, only due to the timescale on which
they occur (as is apparent, for example, in time lapse videos of plants growing).
Moreover, a substantial difference between natural and artificial systems, which
also has educational implications, is that an artificial system’s structure and the
functioning of its parts are established by a designer. In natural systems, con-
versely, they are the result of biological evolution processes.

Simulation can help students explore different kinds of dynamic structures.
Indeed, most simulation modeling activities have the key goal of connecting
structure and behavior. Specifically, simulation facilitates students’ understanding
of a conceptual model by linking a model’s structure with observed behavior. For
example, system dynamics modeling consists in visually representing a system’s
causal structure and using equations and rules to describe the functional relations
between the model’s elements. Similarly, in cellular modeling and simulation,
different kinds of modeling and diagramming techniques have been developed to
represent the structure of a cell in terms of its subsystems and the functional
connections that exist among them.

Simulation can also be well suited for teaching the basic principles of
self-organization and in particular, the key role of nonlinearity in self-organizing
processes. Indeed, students of any age level may be surprised to discover the ways
in which stable structures can emerge from nonlinear dynamical systems without
explicitly external intervention.

Students are often required to explain structure by referring to function and vice
versa, to explain function by referring to structure. Although in some instances this

10 Fuch’s approach conceptually derives from the ‘‘Karlsruhe Physics Course,’’ in which
‘‘extensive’’ or ‘‘substance-like’’ physical quantities play the role of basic concepts. These
quantities are mass, energy, electric charge, amount of substance, momentum, angular
momentum, and entropy. (The course material is available at: http://www.physikdidaktik.uni-
karlsruhe.de/index_en.html).
11 In the National Science Education Standards and the Science College Board Standards for
College Success, the term ‘‘form’’ is used in place of ‘‘structure’’—a choice that highlights a
focus on natural forms, as opposed to man-made structures.
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is a relatively simple task, in others it is impossible without the aid of simulation.
For example, the structure of a fir tree needle can be easily linked to its function—
to let falling snow slide off of it and not accumulate on the tree’s branches—and
the function of a gear in a mechanical system can be understood by the way in
which it is connected with the other gears.12 Yet, it may be difficult or impossible
to identify the function of a computational model’s component solely on the basis
of the model’s structure and equations, without explicitly simulating the model.13

The interplay between structure and function is most evident and has been most
widely investigated in modern network theory (Canright 2009). The field origi-
nated from studies on graph theory conducted in the 1990 and 2000s and has since
found applications in a variety of fields, similarly to as occurred with research on
fractals in the 1980s.

The ‘‘Seven Bridges of Königsberg’’ problem (Sect. 3.2) showed us how graph
theory can yield an abstract representation of the notion of structure, which allows
different kinds of systems and problems to be modeled as vertices connected by
edges. Yet, although their relevance to mathematical research and engineering
applications, classical graphs are not very useful for understanding the dynamic
nature of real networks encountered in nature or in human societies, because they
are static structures. Conversely, small-world networks (Watts and Strogatz 1998)
and scale-free networks (Barabasi and Albert 1999) are dynamic structures, in the
sense that they can increase the number of their nodes and links over time: As a
network grows, it is subjected to constant topology changes, which can in turn alter
the network’s function. Moreover, the states of these nodes can change, giving rise
thereby to complex dynamical phenomena, such that a change in a node can induce
a change in other node states. Thus, networks can support the same kinds of
phenomena that generally characterize nonlinear dynamical systems, including
self-organization and synchronization in node activity.

Simulation can be used to teach the basic notions of network theory, as well
some of its more advanced applications, and the process of moving from simple
paper-and-pencil network representations to computational models is relatively
easy. Students, moreover, tend to find network theory applications very interesting,
because they range from the social network relations between members of a group
to the structure of the Internet.

12 Student comprehension in both instances may rely on mental simulation.
13 In the system dynamics modeling method, it is frequently stated that a system’s behavior can
be explained in terms of its structure, but this statement is based on the premise that only
simulation use allows for this type of explanation, because the model would remain otherwise
opaque.
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7.2.7 Stability and Change

The interplay between stability and change is a key aspect of dynamical systems,
which comprise simple physical systems as well as entire human societies. The
most simple type of stability refers to the commonly shared meaning of the term—
that is, static equilibrium, in where there is no system change (e.g., a ladder
leaning on a wall). A different type of stability is that characterized by dynamic
equilibrium, in which the system’s form does not change, even if its material
composition does. Some examples are whirlpools in a stream, a tornado’s funnel-
shaped cloud, or the Great Red Spot on Jupiter. A dynamically stable situation can
also consist in a repeating pattern of cyclic change, as in the motion of a satellite
around a planet. A more complex type of stability is that of homeostasis, in which
a system (typically a living organism) maintains some properties constant, in
function of its own internal regulation mechanisms (e.g., the physiological
mechanism of blood glucose concentration regulation). The concept of homeo-
stasis is also at the origin of the concept of closed-loop regulation in control
systems (a well-known example is the thermostat) and, consequently, of the
feedback concept in cybernetics.

Simulation can be an effective means for introducing students to all of the
above-described concepts of stability; it can be especially helpful when shifting
from static to dynamic equilibrium concepts. We previously discussed an educa-
tional simulation example (Fig. 5.13) that models the mechanism of dynamic
equilibrium through the analogy of water in a bathtub, the level of which may
remain constant with steady quantities of water moving, respectively, in and out of
the bathtub. This concept can be generalized to any system characterized by a
continuous exchange of matter or of energy with the external environment and in
which the entering flow equals the outgoing.

Simulations of physical systems in dynamic equilibrium with their environ-
ments can allow students to vary the parameters determining the equilibrium, and
to analogically transfer these examples to more realistic and complex situations
(e.g., the water cycle, the composition of the atmosphere, the monetary dynamic
equilibrium of a nation’s economy). Students can also grasp the idea that a system
may be stable within a certain range of conditions only and may conversely
become unstable when the conditions change. Lastly, they can learn about the
crucial role of feedback in determining a system’s stability (e.g., by exploring the
roles of reinforcing loops in causing the system’s growth or decay and of balancing
loops in leading a system to stability).

Moreover, simulation can convey the notion that instability is not… such a bad
thing after all! This idea may come as a surprise for students, because the term
‘‘unstable’’ frequently has negative connotations in everyday language, meaning
‘‘not firmly fixed,’’ ‘‘unpredictable,’’ or even denoting a person with emotional
instability. Conversely, the simulation of nonlinear dynamical systems demon-
strates that instability can be a source of variety and innovation, because a system
‘‘at the edge of instability’’ can switch spontaneously into a variety of new and
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potentially innovative states. Thus, instability can serve a useful role in many
situations. Moreover, the study of dynamical systems can enrich a student’s view
of stability and change with other concepts such as ‘‘metastability’’ and ‘‘multi-
stability,’’ which are currently the focus of research endeavors in many scientific
areas, from gene regulation to neurodynamics (e.g., see Freyer et al. 2012).

The crosscutting concepts listed in the Framework for K-12 Education, which
were examined in the present section from the point of view of simulation-based
instruction, are not independent from each other, but are interrelated in many
ways—for example, patterns are a kind of structure; the flow of energy and matter
in and out of an open system can give rise to stable structures; change may imply
mechanisms at different scales; dynamical models rely on circular cause-
and-effect relation, etc. Students can very effectively explore these concepts and
their interrelations by using simulation.

7.3 A Grounded Cognition Perspective on Simulation

We now come to the question of, ‘‘How might simulation be used to effectively teach
the unifying concepts highlighted by science educators?’’ A first step in answering
this question is to investigate the contents of the mental representations developed
by students when using a simulation program or build a simulation model. As
described previously (Sect. 5.5), simulation-based learning can be characterized as a
progression of mental models, beginning with a student’s initial model of an
examined system and developing into a target conceptual model—presumably the
same one underlying the simulation’s computational model. Moreover, to arrive at
the target model, students must first develop their own intermediate conceptual
models, which are mental models expressed as cognitive artifacts (e.g., descriptions,
drawings, maps, equations). Essentially, conceptual models serve to bridge the
world of the mind with the world of computers and programs (Fig. 7.2).

From a grounded cognition perspective, knowing a concept means being able to
mentally simulate it, which entails the ability to

• construct an adequate mental model of the concept and run the corresponding
mental simulations;

• revise a mental model when confronted with empirical evidence of its
inadequacy.

Conversely, any difficulties in concept comprehension and conceptual change
frequently pertain to

• lack of domain-specific knowledge (essential for constructing and simulating an
adequate mental model);

• high extraneous cognitive load (which exceeds the available working memory
capacity);
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• difficulty in grounding the new knowledge in an embodied sensorimotor
experience;

• difficulty in comparing the outcomes of mental simulation with contrary
empirical evidence.

The interplay of mental and computer simulation, however, can increase the
effectiveness of concept learning and can obviate the above-listed problems.

Concept comprehension can be examined at different levels of analysis
(Table 7.3). Traditionally, it has mostly been identified with the ability to recog-
nize the instances of a concept and to differentiate it from other similar concepts.
From a teaching perspective, this view corresponds to the technique of giving
students a concept’s name, definition, examples, and non-examples.14 An addi-
tional level of complexity is that of representing relations between concepts, as in
the concept map method (Novak 1991). Although concept maps are an effective
way for students to represent and organize knowledge, they do not allow the
meaning of a given concept to be grounded in sensorimotor experience. For
instance, students will unlikely learn the concept of magnetism exclusively by
knowing its relations with other concepts and without having first-hand experience
of, or having imagined the effect of, a magnetic field. Thus, a third level of concept
understanding is required, that is, that of mental simulation, which is based on
sensorimotor experience.

Fig. 7.2 The mediating role of conceptual models

Table 7.3 Levels of analysis of concept understanding
Level Cognitive task Instructional method

1 Recognize occurrences of the concept,
discriminate

Providing concept name, definition, examples,
and non-examples

2 Identify relations with other concepts Concept maps
3 Mentally simulate the concept Grounded and embodied instruction

14 Also, the method advocated in classical instructional design (Clark 2008).
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According to Black (2010), three steps are involved in grounded and embodied
learning:

1. Have a perceptually grounded experience
2. Learn to imagine the perceptually grounded experience
3. Imagine the experience when learning from symbolic materials.

For example, Chan and Black (2006) found that graphic computer simulations
of a roller coaster, which also involve movement and animation, can effectively
help 5th and 6th grade students to learn and understand the functional relations
between potential energy and kinetic energy. A related line of research develops
haptic augmented simulations—that is, simulations based on emerging tactile
feedback technologies allowing forces, vibrations, and/or motions to be felt by
students (Hallman et al. 2009; Han 2011). These simulations make it possible to go
beyond the usual visual and auditory ‘‘channels,’’ and actually ‘‘touch’’ phenom-
ena, such as intermolecular, magnetic, and mechanical forces (Park et al. 2011).

Grounded and embodied instruction should not be limited to physical manip-
ulation, because cognition can be grounded in many ways, not only through bodily
states. In fact, according to the recent developments in the cognitive sciences
reviewed in Sect. 6.3, conceptual processing involves a continuous interaction
between mental simulation and language. The notion of image-schemas can help
us shed light on the nature of this interaction: On the one hand, image-schemas are
non-linguistic abstract structures emerging from sensorimotor experiences, and
they are not directly available to consciousness; on the other hand, they support
language understanding by serving as source domains for many conceptual met-
aphors. For example, Mandler (2008) used the term ‘‘conceptual primitives’’ to
indicate aspects of spatial information that are used to form early global concepts
in infants (e.g., animal, vehicle, plant, furniture), and she highlighted image-
schemas as a possible format for these spatial descriptions. In Mandler’s view,
conceptual primitives are the outputs of an attentive mechanism (Perceptual
Meaning Analysis), which identifies patterns in perceptual data and re-describes
them in a reduced and re-coded form that is suitable for use in the limited capacity
system of conscious conceptualization.

Thus, image-schemas allow students to understand abstract mathematical and
scientific concepts as if they were concrete objects. Specifically, the verbal or
visual description of a concept can activate an image-schema, which in turn can
activate a mental simulation. The same holds for concept-related experiences
involving motor action, tactile, and kinesthetic input (see examples below in this
section). It is not an automatic process, however. A student can rely on deep
conceptual processing (associated with the simulation system) or on superficial
verbal processing (associated with the linguistic system), in function of a given
learning context.

To facilitate the mental simulation-based process of concept understanding, the
following instructional design guidelines are proposed:
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1. Imagine the experiential and verbal input that can be associated with the concept’s
comprehension.

2. Identify the relative conceptual metaphors and image-schemas underlying this input.
3. Devise and design instructional activities that can facilitate mental simulation of the concept

(on the basis of the target conceptual metaphors and image-schemas).

An example of these guidelines could be that of how to teach the concept of
temperature field: We begin by noticing that temperature is usually considered a
global property of a system; for example, people usually refer to the temperature of
a building, a liquid, or the human body. This notion, however, holds only for the
temperature of a system that is uniform in space, and many real-world situations
do not present systems in this condition. For example, the temperature in a house
can vary continuously from ceiling to basement, and that of a lake, from bottom to
surface. The phenomenon of point-to-point temperature variation therefore
requires reference to the concept of temperature field, which is defined as:

• the set of temperature values at all points in a given space at a given instant.

The temperature field is a physical quantity that can be measured by moving a
thermometer to different points within a system. Moreover, a temperature field can
also change in time, as when cold air rushes into a house when a window is opened
in winter, or when the water used as a coolant in a power plant is returned to the
natural environment at a higher temperature. Thus, two conditions pertaining to
this concept can be distinguished: (1) steady-state (or static) temperature field, and
(2) unsteady-state (or dynamic) temperature field.

Let us now try to imagine what experiential and verbal input might be asso-
ciated with the temperature field concept. In the first instance, we can refer to the
sense of thermoception, which is based on receptors in the skin that codes changes
in temperature within the physiological range: by touching a metal bar slightly
heated at one extremity, we can sense temperature differences at various points of
the bar.

With reference to the visual system, we can notice that certain colors are
usually associated with the sensation of ‘‘hot’’ and others with that of ‘‘cold.’’ In
fact, in graphics and design, color (a purely visual phenomenon) is characterized in
terms of temperature. Red, orange, and yellow are generally considered ‘‘warm’’
colors, and blue, violet, and green are called ‘‘cold’’ colors.15 It therefore comes as
no surprise that in the practice of scientific visualization, temperature fields are
usually represented through temperature gradient maps, in which color varies

15 From an embodied cognition perspective, this mapping between temperature and color is
based on our interactions with physical objects (e.g., a red hot iron, the blue of water in a
swimming pool), and on bodily experiences of an interoceptive nature (e.g., flushing red with
fever).
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from red (areas with higher temperatures) to blue (areas with lower ones), and
using all the intermediate colors ranging between.16

Temperature gradient maps are extensively used in the fields of astrophysics,
physical geography, and thermal engineering. In these maps, a two-dimensional
temperature field is represented by means of a family of isotherms, each of which
connects all points having the same temperature (the distance between isotherms
being inversely proportional to the temperature gradient). Moreover, an analogous
type of color representation has also been extended to phenomena not involving
temperature, such as the velocity field in a fluid or the neural field in a population
of neurons.

Based on the above-described type of sensory input, we can consider that a
simulation based on the use of gradients in a temperature map will enhance stu-
dents’ understanding of the temperature field concept. Indeed, the isotherm method
of representation is used in the Energy2D simulation program (Xie 2012) to teach
students about the mechanisms of heat transfer. Specifically, an Energy2D model
shows the difference between convection and conduction (Fig. 7.3) by showing a
heater at the bottom of the screen, which warms a chamber of air and a solid of
equal size. The air and the solid are separated from each other by a thermal
insulator, but they are not insulated from the rest of the environment. During the
simulation, heat propagation through the two materials is vividly represented by
turbulent and hot currents in the air chamber and by slow changes in the solid’s
colors. The heater’s temperature is set at a constant value of 30 "C. Initially
(t = 0 s), both the represented air temperature (T1) and that of the solid (T2) are
shown to be 0 "C. After only a few seconds, however, temperature increases in the
air chamber much more rapidly than it does in the solid (e.g., for t = 1.5 s,
T1 = 12.9 "C, and T2 = 1.1 "C). Moreover, the heat in the air chamber is visibly
more uniformly distributed than in the solid, because it is rapidly transported by
the turbulent air currents into different parts of the chamber, whereas the heat in
the solid slowly rises upward from the bottom of the material.

Table 7.4 lists several image-schemas that can be activated by the above-
described simulation.

The linguistic system also presents many associations between temperature
variation and emotional states. For instance, the conceptual metaphor EMOTIONS
ARE TEMPERATURE (Lakoff 1987) is grounded in sensations of heat and cold,
as in the following phrases: ‘‘I vividly remember having a heated discussion with
my boss’’; ‘‘He is a cold person’’; ‘‘The thought chilled him’’; ‘‘She received a
warm welcome.’’ Moreover, it is also a primary metaphor (Grady 1997) that
emerges directly from correlations between bodily experiences and subjective
emotional states.

16 This type of representation has become familiar for many of us, thanks to the use of infrared
thermography images (in which thermal imaging cameras detect radiation in the infrared range of
the electromagnetic spectrum and produce images called ‘‘thermograms’’).
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Fig. 7.3 A model that shows the difference between natural convection and conduction. Image
from a simulation conducted with the Energy2D simulation program, courtesy of the Concord
Consortium. Web site http://energy.concord.org/energy2d

Table 7.4 Levels of analysis of concept understanding
Image-schema Group Indicator

IN–OUT CONTAINMENT Heat appears to spread out from its SOURCE (the heater),
like a dense fluid spreads out from its CONTAINER

FORCE FORCE The difference in temperature between the heater and the
rest of the system acts as the driving force of the heat
transfer process

RESISTANCE FORCE The air chamber and the solid appear to oppose the heat’s
movement, which would otherwise be instantaneous

EQUILIBRIUM BALANCE The process moves toward a state of equilibrium, in which
the temperature remains constant in time, in all parts of
the system
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Teachers can tap the power of these associations with devise instructional
activities that emotionally engage students and simultaneously facilitate the acti-
vation of image-schemas emerging from the interaction of students’ preexisting
mental representations and new knowledge. As described in Sect. 6.3, the use of
narratives can greatly enhance this process.

In his research on physics teaching, Fuchs (2007, 2010) identified what he calls
‘‘force dynamic gestalts,’’ that is, perceptual gestalts that have the three aspects of
(a) quantity (size), (b) intensity (quality), and (c) force or power (forms of cau-
sation). He maintains that these aspects are rooted in image-schemas that are
projected metaphorically onto an examined phenomenon. He proposed a thermal
physics example, in which the aspect of quantity may related to what in everyday
language is called heat; the aspect of intensity, to temperature; and that of power,
to temperature difference.

Fuchs’s approach to physics education, based on image-schemas and dynamical
models, is perfectly in line with Clement’s research on non-formal reasoning
(Sect. 5.3). Clement (2008) proposes that teachers encourage and develop stu-
dents’ natural reasoning processes, because ‘‘it is essential that we not destroy the
student’s natural ability to use imageable mental models, model-based reasoning,
and intuition-based grounding for new meanings in science’’ (2008, p. 567).

The reader may have noticed (with perhaps some consternation) that the image
of heat as a substance is similar, if not equivalent, to the ‘‘caloric theory of heat,’’
which dominated thermodynamics in the eighteenth and nineteenth century. As is
well known, Sadi Carnot used this theory to derive the thermodynamic cycle
named after him. The caloric theory of heat was later superseded, however, by
Rudolf Clausius’ mechanical theory of heat, and the latter became the basis of the
kinetic theory of the ideal gas. Thus, among educators, the caloric theory of heat is
considered a typical and pernicious example of scientific misconception—one that
the students continue to hold onto, notwithstanding teacher’s efforts to teach them
a purely atomistic view of nature.

Fuchs recently (2010) proposed the rather elegant solution of considering
‘‘entropy’’ as the scientific equivalent of what is intuitively called ‘‘heat’’ in
everyday language. In fact, entropy ‘‘is the fundamental thermal property that is
stored in bodies (to make them warm, melt them, expand them…), flows from
system to system, and is produced in irreversible processes’’ (p. 124). His speci-
fication therefore allows what commonly appears to be a student’s misconception
to conversely become a valid imagery source.17

Moreover, the emphasis on temperature difference as the thermal driving force
(Fig. 7.4) allows teachers and students to make a series of analogical connections
with other physical (e.g., gravitational, hydraulic, and electrical) phenomena. (see
Table 4.5, for a comparison of different physical processes along this view).

17 We are focusing on this specific topic here, as it illustrates the fact that teaching a scientific
concept may require not only innovative instructional methods, but also a more accurate
re-examination of the concept itself, from historical and epistemological perspectives.
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A helpful image for introducing these connections is that of a waterfall with power
being proportional to its water flow and to the height from which the water falls.

At this point, the reader might easily imagine various kinds of instructional
activities that could facilitate a deep conceptual understanding of the temperature
field notion.18 We shall limit ourselves herein to highlighting the opportunities a
new type of sensor interface provides by allowing for the conduction of mixed-
reality experiments.

Mixed-reality applications are currently being developed as an extension of the
Energy2D simulation program and greatly extend the currently available range of
simulation possibilities (Xie 2012). These applications are based on the use of
surface temperature sensors connected to tablet computers. In a typical experi-
mental situation, a sensor measures the ambient temperature, and other sensors are
placed on the edges of the computer display. By bringing warm or cold objects to
the edges of the display, students can view the temperature field on the screen,
represented in the form of a color gradient map that changes in real time with the
ambient temperature variations.

These kinds of experiments are called ‘‘mixed-reality labs,’’ as they can be
categorized somewhere between the purely virtual experiments of computer sim-
ulation and traditional laboratory experiments. From a learning-by-system-mod-
eling perspective (Seel 2012a), the activities that students conduct in these
laboratories allow them to more rapidly construct and simulate their mental models
and to immediately compare the mental simulation outcomes with the empirically
available information. Moreover, on a micro-scale, this process constitutes a kind of
‘‘epistemic cycle,’’ which will be discussed further in the next section.

7.4 The Epistemic Cycle

Given that this book is about models, it is only natural to conclude it by presenting
…a model! The one presented in this section is termed the Epistemic Cycle
(Landriscina 2009a, b), which focuses on the ways in which students acquire
knowledge through simulation in an instructional context (see the flow diagram in
Fig. 7.5).

Fig. 7.4 Symbolic
representation of a
temperature difference as the
thermal driving force of a
flow of entropy (from Fuchs
2010, p. 124)

18 Assuming that, for every specific instructional context, the other simulation design aspects
examined heretofore would be equally considered, including cognitive load effects (Sect. 5.6),
instructional method (Sect. 5.7), and learning goals definition (Sect. 7.1).
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The model comprises four main simulation-related concepts, which have also
been clearly outlined in the previous pages, and namely

• Reality
• System
• Model
• Simulation.

The model assumes that each concept can manifest itself in the form of physical
objects (e.g., as an observed part of the world) and/or of epistemic artifacts (e.g., a
conceptual model). The inter-concept relations involved therein are modeled in
terms of epistemic processes, represented by arrows connecting the concept
names. Combined, these eight processes compose a cycle, which in its turn is
subdivided into three subcycles (feedback loops):

• The Reality-System Loop
• The System-Model Loop
• The Model-Simulation Loop.

Mental simulation completes the model and is considered to be a mechanism
that is tapped in all the represented mental processes making up the model. Each of
these processes is examined here below in terms of some specific simulation-based
learning issues. (These descriptions are kept brief, as this book has already covered
these issues in various ways. The following indications therefore serve as a
blueprint for further investigation).
From Reality to System (The system definition process)

Defining a system means creating a conceptual boundary between a part of the
world and the other parts that surround it. This act can be related to figure-ground
organization in visual perception: As with optical illusions, the system’s boundary
can be a purely subjective one (e.g., the borders of Kanisza’s triangle); or the

Fig. 7.5 The epistemic cycle (based on Landriscina 2009a, b)
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system itself and what lies outside of it can compete for attention (e.g., the
well-known image of a vase and two human face profiles).

Moreover, it can be difficult to define the boundary of a system when a part of it
remains invisible. For example, we usually conceive the Sun as a sphere, but if we
also consider an essential part of it, the heliosphere (the bubble of charged particles
created in space by the solar wind), the overall system becomes much larger,
because it extends, indeed, as far outward as Pluto’s orbit. Another issue related to
system definition arises when observer and system cannot be separated, and the
result of an observation depends upon their interaction (e.g., for phenomena at the
quantum scale, or in participant-observation in the social sciences).

Lastly, an important system-related notion is that of the observation interval,
that is, the time interval in which one is able to observe the system. During this
interval, a given system can remain essentially the same, or it can undergo dra-
matic changes, as occurs for geological or evolutionary systems, in which the
original system transforms into a completely different one (e.g., a caterpillar
metamorphosing into a butterfly).

From an epistemic perspective, it is important to underscore that what is usually
a system is already, in and of itself, a representation of reality (see Sect. 3.1 for a
review of some of the philosophical issues involved in the reality-representation
distinction). The passage/shift from reality to system requires that choices be made
about what should be included and what should be excluded from the system; it is
therefore subject to abstractions and idealizations. In fact, ‘‘real’’ systems (e.g., the
liquid in a container) are frequently distinguished from ‘‘model’’ or ‘‘ideal’’ sys-
tems (e.g., a collection of rigid spheres, the motion of which is governed by
Newton’s second law of motion). It is important to note that both kinds of systems
can be the topic of scientific investigation: a real system can be studied through
observation and laboratory experiments and an imaginary system, through mental
or computer simulation (which, respectively, correspond to scientists’ thought and
numerical experiments).

Overall, the criteria for defining a system are always of a pragmatic nature (see
Sects. 3.4 and 3.6). As pointed out by Ashby (1952), ‘‘every material object
contains no less than an infinity of variables and therefore of possible systems’’
(p. 39). The decision as to what elements should be selected to be part of the
system also depend on what actions will be conducted on it, and defining a system
and intervening on it are two closely intertwined processes (making up the epi-
stemic cycle’s reality-system loop). Scientists and engineers typically select and
study the facts that pertain to some main theory or project that is already given.
Hence, observing which elements an individual or group decides to include in a
system and what to leave out of it can yield significant information as to their
purposes and goals.
From System to Model (The representation process)

Modeling a system means representing it through a series of increasingly
complex models in which the description of the system’s composition and struc-
ture is followed by increasingly detailed descriptions of its functioning. During
this process, moreover, a model can in turn serve as a system for a further
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model—for example, the rigid spheres model of a liquid becomes, in and of itself,
the system to be modeled and simulated.

The modeling strategies simulation designers choose are frequently those dic-
tated by curricular models or software tools that are currently available. Yet,
consideration of only one strategy should be avoided: A given modeling strategy is
one way to understand a specific system and thinking that there is only one correct
model means that there is only one correct way to understand the world! For
example, in simulations using continuum physics methods to model a liquid,
students are asked to consider what is called a ‘‘representative elementary volume’’
of a liquid—that is, the smallest part of a liquid that maintains the macroscopic
properties of the liquid as a whole—and are not asked to focus on microscopic
particles. A comparison, however, of the two types of models would allow students
to ask ‘‘What is the true nature of a liquid?’’. In attempting to respond to this
question, the idea that both particles and elementary volumes are mathematical
abstractions would become more easily understandable.

In fact, scientists can select one type of model over another, in function of the
phenomena they are investigating and their research goals. For example, one
model may be best suited for studying the transition between the liquid and gas-
eous states; another, for studying the compressibility of a liquid; and still another,
for describing its motion. Thus, the comparison of different modeling approaches
can provide valuable insights into a better understanding of the system under
study.19

A final aspect to underscore is that some models can function not only as tools
for investigating an original system, but also as research objects in their own right,
by ‘‘substituting’’ themselves with the reality they originally were intended to
represent.
From Model to Simulation (The exploration process)

The distinctive characteristic of a dynamic model is its ability to reveal system
behavior that would otherwise be impossible to predict and/or explain. In the
absence of complex dynamical effects (e.g., nonlinear effects), simple behavior can
be simulated mentally or by using paper and pencil. For example, the concept of
‘‘analytically solvable equation’’ refers to an instance in which an individual (in
principle) can carry out all operations required to solve an equation. Yet, if the
system goes beyond a given complexity threshold, computer simulation becomes
an indispensable cognitive partner (Sect. 6.1). Simulation also makes it possible to
extend the original system’s observation interval, by extending it into the past or
into the future.

19 Lautrup (2011) notes that ‘‘Although continuum physics is always an approximation to the
underlying discrete atomic level, this is not the end of the story. At a deeper level it turns out that
matter is best described by another continuum formalism, relativistic quantum field theory, in
which the discrete particles—electrons, protons, neutrons, nuclei, atoms and everything else—
arise as quantum excitations in the fields. […] It appears that we do not know, and perhaps will
never know, whether matter at its deepest level is truly continuous or truly discrete.’’ (p. 10).
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Using a simulation to explore a model’s behavior implies a ‘‘suspension of
disbelief’’ that is akin to our understanding of literature, theater, and cinema,
because one must temporarily suspend judgment as to the simulation’s plausibility,
and experience it as if it were real thereby. When compared to artistic fiction,
however, simulation involves the further epistemic step of comparing events in the
simulated world with those of the real world.

The main risk involved in designing simulations is that of simulation ‘‘opacity,’’
that is, not rendering the simulation’s hypotheses and underlying rules explicit. For
example, a simulation game can represent thousands of scenarios and situations,
but may not show the ‘‘rules’’ that were originally built into the game by those who
created it. Then, when game players observe events that occur as a consequence of
their choices, they tend to attribute the system with rules that may coincide with
those that are actually present, but may also be only the result of their own mental
models: They can therefore reach partial conclusions, which they assume, how-
ever, to be irrefutable truths.
From Simulation to Model (The model revision process)

Observing and analyzing the results of a simulation allows its creators to
critically reflect on the underlying model and to modify it accordingly. The
modeling and simulation, in fact, provides many verification and validation
methods to test a model’s structure and behavior.20 This approach yields infor-
mation on how the model can be improved and rendered more credible, and it can
then be used to draw valid inferences about the system under investigation.

This model revision process is a form of hypothesis testing, because the con-
ceptual model underlying a simulation is essentially a collection of hypotheses
concerning its related system. In this view, therefore, hypotheses are not merely
linguistic statements to be corroborated or falsified by a test on observable data,
but make up the components of an explanatory model.

The construction and revision of a simulation model also mirrors the cyclic
process of mental model construction and revision as described in the model-based
reasoning and model-based learning and teaching (Sects. 5.3, 5.4) of the present
book. In particular, modeling software can shorten the construction-revision cycle
by allowing us to rapidly modify a computational model and to observe the
consequences of these changes, in real time.

Moreover, simulations frequently yield unexpected results when they represent
complex systems, potentially producing cognitive dissonance in students thereby.
This phenomenon facilitates cognitive schema accommodation—a process that is
essential for learning scientific concepts.
From Model to System (The system comprehension process)

Using the above-described procedures to improve a model makes it possible to
achieve an ever deeper understanding of the structure and functioning mechanism
of the originally examined system. Specifically, comprehending a system can

20 Schwaninger and Groesser (2009) conducted a review of these methods. See also Robinson
(2004).
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mean different things—for example, explaining observed phenomena, measuring
some property of the system, and gaining insights into the system’s potential future
behavior. One type of comprehension that is particularly amenable to simulation is
to deconstruct a system into its component parts and operations and then
re-assemble it by using the variables of a computational model.21

A key aspect of the comprehension process is that it can lead to a new view
of the system itself. In fact, if a model does not turn out to be sufficiently credible
for the purposes intended, it will be necessary to re-examine some specific feature
of the system and/or to introduce new features not previously considered. For
example, a physical system may have been initially considered only in terms of
local interactions between its composing particles, but simulation may fail to
reproduce phenomena that also depend on field effects. New models, however, can
include these effects. Similarly, a social system might be considered only in terms
of the local interactions of autonomous agents, but this view may fail to generate
social phenomena that depend on macroscopic properties, such as norms, roles,
and cultures. Models based on second-order emergent properties (Sect. 4.10) can
directly map the connection between macro- and micro-levels of description.

Significantly, system-level conceptualization changes frequently require that
different scientific or philosophical positions be considered (e.g., atomism/holism,
subjectivism/structuralism). These are ways, in and of themselves, to conceptu-
alize the world in terms of systems.
From System to Reality (The action on reality process)

By returning from system to reality, we close the epistemic cycle. A better
understanding of the system makes it possible to return to reality by observing it
from a new and fresh perspective. It also allows it to be modified in function of a
specific goal. Overlooking this last step leads to the risk of dropping Arianna’s
thread, when returning to the real world, and remaining confined in the circularity
of the relation between model and simulation. Moreover, a new perspective of the
system itself could also be the starting point of a new modeling and simulation
process, in which—as with all cyclic models—the end is also the beginning.

In scientific enterprise, the practice of reflecting on a simulated system has
frequently led to new experiments. Moreover, simulation models can serve as
blueprints for the construction of many real objects (e.g., vehicles, commercial
products, industrial plants, molecular medicines). Indeed, in the future, they will
play the same role in the construction of synthetic organisms. Let us also not forget
that simulation has become a tool to guide policy and management decisions.

Science fiction literature and movies propose future scenarios showing ever
thinner and ‘‘fuzzy’’ lines between the real and virtual worlds (in an ever-
increasing degree of confusion that has been fueled in the recent years by video
game constructors). Not surprisingly then, the epistemological status of simulation

21 Bechtel and Abrahamsen (2010) termed the strategy of modeling a system with ordinary
differential equations dynamic mechanistic explanation. This strategy should not be confused
with the philosophical notion of mechanism, which implies the belief that living things are like
man-made machines or artifacts.
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is evolving from that of imitating reality to being a hyperreality and, therefore,
simulation that tries to make the real coincide with its model.

From an instructional perspective, it is important to underscore here that the
knowledge developed through simulation-based learning is not a substitute for the
experience itself. On a broader scale, it is crucial to remain alert to the environ-
mental, social, and ethical implications of applying a simulation’s outcomes to real
problems involving individuals and communities.

Considering the epistemic cycle in its entirety, we can conclude that simulation
as a knowledge method—reveals to us something, not only about the system being
simulated, but also the epistemic relation between observer and system. Thus, in
ultimate analysis, simulation tells us about our relationship to a reality that still yet
remains beyond the grasp of our models, in the immediateness of its very presence.
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Appendix
Simulation Resources

Equation-Based Modeling

1. Java based applets

PhET (Physics Education Technology)

• http://phet.colorado.edu/

Physlets

• http://webphysics.davidson.edu/Applets/Applets.html

Interactivate

• http://www.shodor.org/interactivate/

Open Source Physics

• http://www.compadre.org/osp/index.cfm

MyPhysicsLab

• http://www.myphysicslab.com

2. Online simulations

ExploreLearning GizmosTM

• http://www.explorelearning.com/

WISE 4

• http://wise4.berkeley.edu/webapp/index.html

Energy2D

• http://energy.concord.org/energy2d/
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3. Modeling software

SimQuest

• http://www.simquest.nl/

Modellus

• http://modellus.fct.unl.pt

Interactive Physics

• http://www.design-simulation.com/ip/index.php

Molecular Dynamics

The Molecular Workbench

• http://mw.concord.org/modeler/

Virtual Molecular Dynamics Laboratory

• http://polymer.bu.edu/vmdl/index.html

Folding@home. Distributed Computing

• http://folding.stanford.edu/English/Main

Epidemiological Modeling

STEM (Spatiotemporal Epidemiological Modeler)

• http://www.eclipse.org/stem/

GLEaMviz Simulator

• http://www.gleamviz.org/

Agent-Based Modeling

NetLogo

• http://ccl.northwestern.edu/netlogo/

The Repast suite

• http://repast.sourceforge.net/
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AnyLogic (XJ Technologies)

• http://www.xjtek.com.com

Cellular automata simulation of the Ising model

• http://physics.ucsc.edu/*peter/ising/ising.html

PercoVIS software

• http://amath.colorado.edu/student/larremore/PercoVIS.html

Percepts and Concepts Laboratory

• http://cognitrn.psych.indiana.edu/

System Dynamics

1. Examples and models

Road Maps. A Guide to Learning System Dynamics

• http://clexchange.org/curriculum/roadmaps.asp

Strategy Dynamics

• http://www.strategydynamics.com/microworlds/

Forio Online Simulations

• http://forio.com/

2. Modeling software

STELLA" and iThink" (isee systems)

• http://www.iseesystems.com

Vensim (Ventana Systems)

• http://www.vensim.com

AnyLogic (XJ Technologies)

• http://www.xjtek.com.com

PowerSim Studio (Powersim Software)

• http://ww.powersim.com

SimulateTM (Forio Online Simulations)

• http://ww.powersim.com
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Cellular Modeling and Simulation

The CellML Project

• http://www.cellml.org/

The E-Cell Projec

• http://www.e-cell.org/ecell/

V-Cell. The Virtual Cell

• http://vcell.org/

PyDSTool. Dynamical systems modeling, simulation and analysis environment

• http://www.ni.gsu.edu/*rclewley/PyDSTool/FrontPage.html

Systems Modeling and Design

VMODEL Software (Qualitative modeling)

• http://www.qrg.northwestern.edu/software/software_index.html

MathWorks Simulink

• http://www.mathworks.com/products/simulink/index.html/

Maplesoft MapleSim

• http://www.maplesoft.com/products/maplesim/

Wolfram SystemModeler

• http://www.wolfram.com/system-modeler/
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