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Abstract

The paper describes a specific method for designing self-
checking checkers for m-out-of-n codes. The method is 

oriented to the Field Programmable Gate Arrays 

technology and is based on decomposing the sum-of-
minterms corresponding to an m-out-of-n code.  The self-

testing property of the proposed checker is proven for a 

set of multiple stuck-at faults at input and output poles of 
a Logic Cell. An estimated complexity of obtained m-out-

of-n checker demonstrates high efficiency of the proposed 

method.

1. Introduction 

This paper considers the problem of designing self-

testing m-out-of-n code checkers on the base of Field 

Programmable Gate Array (FPGA). In most of the works 

related to the field, methods of designing self-checking 

schemes are based on the two following principal 

assumptions associated with fault models [1]: 

Only one fault may occur in the scheme at a time. In 

other words, before a next fault occurs, the previous 

fault will be eliminated.   

A distortion caused by a fault can only be 

unidirectional, i.e. only low or only high positions of 

output codewords switch their values to the opposite 

due to the fault. 

It is known, however, that the above assumptions are 

non-applicable for some types of the schemes. For 

example, CMOS-based schemes are known as such where 

not a single element, but an area forming a number of 

elements might be damaged. Another example is a LUT-

based FPGA scheme, where the assumption of 

unidirectional distortion of output codewords is incorrect.  

In light of the above, the fault model requires to be 

changed. The present paper proposes a new model for 

describing faults in LUT-based FPGAs. According to the 

proposed model, we assume that any number of signals at 

inputs or outputs of a single logic cell (LC) may be 

distorted simultaneously. We consider only constant 

distortions and assume that both input and output poles 

cannot be stuck-at simultaneously. We will call a set of 

those distortions F-set. We assume that a fault is detected 

on a set of input codewords, if that set comprises at least 

one input codeword, which leads to an output codeword 

differing from any of the correct ones. LC may have one 

output or two outputs.

In the paper, the above fault model is assumed in the 

proposed method for synthesis self-checking checkers of 

m-out-of-n code. The self-testing checker design, as a rule, 

is based on determining the weight of input codewords of 

a checker. For this aim either threshold circuits [2-7] or 

circuits based on parallel counters [8-11] can be applied. 

All these checkers are oriented to gate implementation.  

In this paper we propose a universal decomposition 

method to design any m-out-of-n codes checkers by 

FPGAs. It is proven that the checker is self-testing for the 

set F of faults that covers considerably more realistic 

failures of a circuit in comparison with traditional single 

stuck-at faults. 

Section 2 of the paper describes a decomposition 

method for a self-testing m-out-of-n codes checker. 

Section 3 discusses design of a self-testing m-out-of-n

codes checker. The self-testing property of the proposed 

checker is discussed in Section 4. Evaluation of results 

presented in Section 5. 

2. Decomposition Formula 

Let us put a certain minterm into correspondence to 

each of m-out-of-n codeword. Denote sum of such 

minterms (SOM) as . For example, 

consists of 252 minterms of rank 10 and contains 2520 

literals. This expression cannot be minimized since any 

two minterms of  are at least bi-directional [12]. 

For a compact description of all m-out-of-n codewords, 

a specific formula (1) is proposed below.  

(1) 

Here symbol  between  is 

omitted. Set X is divided into two 

subsets: and .

Call  as a decomposition coefficient. If 

, then execute the next step of the 

decomposition (1) for each , and so on. As a 

result, we obtain the formula (1) in which for any 
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step of decomposition (1) for 

. We arrive at the following: 
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Let  be the number of subsets  on which a

set X  of variables of is divided with deriving

the formula (1),  and

( -1) is the number of the decomposition steps. In our

example, and we have two decomposition steps.
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Architecture of the checker corresponding to formula

(1) is discussed below in Section 3.

3. Implementation of self-testing checker

Divide whole set of m-out-of-n codewords  into two

subsets ( ). For example, A

represents the codewords resulted from the product

and  the codewords resulted from

two products: .

A
21

AA and
21

AAA
1

)(
3
4)

10
2 XDD

2
A

),(
2
4)

1
(

1
2 XDXD )(

1
4)

1
(

2
2 XDXD

1

Let’s obtain a two-output self-testing circuit C (m-out-

of-n code checker) that implements A  and  formulae

on its outputs. Since each couple of codewords is

orthogonal, an output vector of the scheme C can be equal

either 10 or 01. Let different variables

 correspond to different

decomposition functions and decomposition coefficients 

of the expression (1).

2
A

lylyy 2,12,,1

lylyyyyyx 2124321

k 4

We have: 

 . (2)

Now cover expression (2) with logic cells (LC). Any 

LC has k  inputs. Let  be an even number, . We 

assume here that the number of products l . If the

number of products in the expression (2) is less or equal to

, then is realized by one LC. If l , execute the

following steps. 

k

1

k5.0 k5.0

k5.

65431 yyyyyy 4k

431 yyyy

1. Separate the first 0  minterms of expression (2).

Let LC1 implements these codewords. For providing the 

self-testing property, transform all products of expression

(2) to a form that includes all input variables of LC1. For

that purpose, include into the expression all missing

variables in their negative form. Such a transformation is 

acceptable since any m-out-of-n codeword does not

activate more then one product of expression (2). For

example, let we have an expression

. If , then the expression 

 has to be replaced

by . Such transformations will be 

performed for all functions implemented on the logic cell 

outputs.

2. Three cases can be considered:

43214321 yyyyyyyy

15.

a) The number of remaining products of expression (2) is 

equal to 0 . Then we use one output LC2 to 

implement the next  products from (2). Assign

variables  to outputs of the LC1, LC2,

correspondingly. Logic cells LC3 and LC4 implement the 

following products (Table 1).

k

k5.0

21, zz

1z 2z 12ly ly2

Table 1. Products implemented by LC3 and LC4

for l=k+1

1 0 0 0

0 1 0 0

0 0 1 1
This table lists all products on which the LC function

tales value “1”. All products are presented as Boolean

vectors. LC3, LC4 implement two functions corresponding

to outputs of the circuit . One of these functions is 

presented by the two first lines (for LC

C

C

3) of Table 1, the

second function  by the last line (for LC4). A subcircuit

of  implementing such expressions is shown in Fig. 1.

ky ky

ly 2

LC3

LC1

1y 1

LC2

ky 2

12 ly

LC4

Figure 1. Implementation of (2) for l=k+1

b) The number of remaining products of the expression (2)

is equal to 0 . We use LC2 to implement sum of these

products. Table 2 represents the following products

implemented by LC3, LC4 similar to Table 1. 

Corresponding subcircuit of C is shown in Fig 2.

k5.

Table 2. Products implemented by LC3 and LC4
for l=k

1Z 2Z

1 0

0 1

LC3 LC4

LC1

1y ky 1ky

LC2

y2l

Figure 2. Implementation of (2) for l=k

)  The number of remaining products of expression (2) is 

less then . Table 3 and Figure 3 illustrate this case. k5.0
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Table 3. Products implemented by LC2 and LC3

for l<k 

1z

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 0 0 1 1

)1(ky )2(ky )12( ly )2( ly

LC2

LC1

1y ky 1ky ly 2

LC3

Figure 3. Implementation of (2) for l<k

Thus, we need no more than four LCs to implement

expression (2).

Notice, that:

any product of the LC function is activated at least

once during occurrence of all m-out-of-n
codewords.

any product of the decomposition function which

implements LC is activated at least once during 

arriving all m-out-of-n codewords.

A subcircuit implementing decomposition functions of

the i-th level is shown in Fig. 4. The subcircuit has  (or

less) inputs and l  outputs, which correspond to the

different decomposition functions at the i -th level. The

total number of LCs is this implementation is equal 

to .
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Figure 4. Implementation of i-th level
decomposition functions

To design the two-outputs m-out-of-n -checker C by

LCs, we first need to implement all decomposition

functions. Then we have to implement all expressions (2)

corresponding to (1) and, finally, to combine all of them

into checker C.

Let us consider an example of a self-testing checker

design using 4-input LCs. The checker is 6-out-of-12 code

checker.

Let us partition  into 3 subsets: 

,,1{ xx

,,9{x }12

We have the following decomposition expressions: 
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decomposition functions of the first level. Their

implementation demands 2 two-output LCs and 1 one-

output LC. Thus, the subcircuit that realizes these

functions consists of 3 LCs.

 the 

decomposition functions of the second level. The

subcircuit that realizes these functions is similar to that

mentioned above.

)
3

(
4
4),

3
(

3
4),

3
(

2
4),

3
(

1
4), XDXDXDXD

22

 the 

decomposition functions of the third level. They all are 

implemented with a subcircuit similar to those mentioned

above. We need 9 LCs to implement all decomposition

functions of the checker considered.

To implement expression (2) for  we

need 2 LCs,  3 LCs,  3 

LCs,  3 LCs, at least  2 

LCs.

2
(

5
X
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Moreover, we need 4 LCs to implement the 

expression (2) for .)(
6
12 XD

It is enough to have 17 LCs to realize all expressions

(2) of the self-testing checker. Consequently, for the

checkers as a whole, we need 26 LCs.

4. Self-testing property of the checker 

Recall that we deal with a set F consisting of multiple

stuck-at faults at the LC input poles and multiple stuck-at

faults at the LC output poles for each LC. We use both

one output and two outputs LCs. Input and output poles of

the same LC cannot have stuck-at faults simultaneously.

Any LC implementing formula (1) represents each its 

function f as a sum of minterms. Hereafter we will identify 

the minterms and representing them Boolean vectors.

We will describe multiple stuck-at faults on input 

poles by a ternary vector  as follows. If stuck-at input 

has the 1(0) value then the corresponding component of

 takes also the 1(0) value. Call all such components as

determined ones. The remaining components of  take a 

“don’t care” value. Call them as undetermined

components of . If undetermined components are

absent, vector  turns into a Boolean vector.

(0 f

)( f

Consider a certain LC function f and the corresponding

output. Let’s say that we deliver different Boolean vectors

of the length k to the LC inputs, and observe the

associated LC output. Now we investigate the condition 

on which the Boolean vector is a test pattern for the fault

represented with . divides all minterms of f into two 

subsets  and . Subset  includes 

minterms (Boolean vectors) absorbed with , and the 

subset  - minterms that are orthogonal to .

Having excluded determinate variables of  from the

Boolean vectors of and , we obtain the

set , , respectively. 

)( fM )M )( fM

)(0 fM

M )(0 fM

) 0M

2
4D

( fM )( f

For example, let us LC implements a function

represented in Table 4 and let us vector  is equal to (- 1

- 0). It means that the input represented as  is stuck-at 

1 and the input represented as is stuck-at 0. The rest of

the LC inputs  are fault free. 

2x

4x

3,1 xx

Then: {(0110 ), (1100)}, {(0011),

(0101 ), (1001), (1010)}.

After excluding determined variables from , we 

obtain  {(01), (10)} and M  { (01), 

(00), (10), (11)}.

2
4' DM 0'

2
4D

Call the number of the 1-value components of  its

weight, represented by . In our example: .1

Take into account that a Boolean vector

delivered to the LC inputs is changed by the fault for the

Boolean vector  where  resulted 

from the corresponding . Here  means the

determined components of  are added to the 

components of . If  then  is not 

changed by the fault.

0M

)(0, fM

)( fM

}{

In the above-mentioned example

for (0011) ,  , we have (01) and

  (0110), for (0101) , we 

have (00) and (0100).

)
2
4(0 DM

, M )
2
4(0 D

Theorem 1. If  from M  is orthogonal to each 

vector from  then the Boolean vector

corresponding to  is a test pattern for the 

fault represented by .1

)(0 f

)( fM

)(0 fM

(

2
4' DM

2
40

2
4 DMD

pq
q
pD 0,

q
pD

In the example the vector (0101) results in

00), and  is orthogonal to vectors 01, 10 from

, (0100). The latter vector is missed in

the expression M . Consequently,

(0101) is the test pattern for the fault. 

Let a certain LC function f be represented

with . Notice that each of the variables of

function f takes both 1 and 0 values for all products

(Boolean vectors) of , which means that f is not unate

on each variable.

Theorem 2. A test pattern exists for any multiple

stuck-at fault at the LC input poles for a LC implementing

two decomposition functions  and  so that

. This test pattern is a Boolean vector,

representing one product either from or . We

assume that both LC outputs are observable and they are

not outputs of a checker.

1q
pD 2

q

pD

pq10

q 2q
p

2
q

02q q q
q

10,1

1
pD D

Table 4. 2-our-of-4 codewords

0 0 1 1

0 1 0 1

1 0 0 1

0 1 1 0

1 0 1 0

1 1 0 0

Corollary 2.1. Using two outputs LC to implement

decomposition functions we may combine when

or  with .

pD

pp2 pD

2
40 DM

2
4DM

1
We don't provide proofs of the theorems in this paper, due to the space 

limitations
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Corollary 2.2. When a multiple stuck-at fault at LC

input poles occurs and input vector  does not coincide

with any product of  and , it is possible that the

values 10, 01, 11 will appear instead of   00 at the LC 

outputs (1 instead of 0 for one output LC).

1q
pD 2q

pD

Corollary 2.3. If Checker C is implemented with two 

one output CLs any fault from a set F is detectable. 

For one output LC comprises a subcircuit

implementing the expression (2), we will have the 

following.

1. For each input variable, only one minterm of the LC

function exists for which this variable takes value 1. 

2. No input variable is unate for minterm of the LC

function.

3. LC input variables are divided into two subsets Y 

and Z. One of these can be empty. Any minterm of the LC

function has 1-value components only among one of these

subsets.

Theorem 3. For one output LC that comprises a 

subcircuit implementing the expression (2), >1, either 

there exists a test pattern for multiple stuck-at fault at the

LC input poles or this fault manifests itself as single 

stuck-at fault at this LC output.

Corollary 3.1.When a multiple stuck-at fault at the LC

input poles occurs, and an input vector  does not

coincide with any products of the LC function it is

possible 1 instead of 0 at the LC output

Corollary 3.2. For one output LCs that comprises a 

subcircuit implementing the expression (2), =1, so that 

their outputs are at the same time outputs of a checker any

fault from F is detectable.

Theorem 4. A checker C is self-testing for a set F of

faults.

This Theorem follows directly from Theorems 1, 2, 3.

5. Evaluation of results

Estimations of completeness of the checker designed

according the proposed method are presented in Table 5.

Table 5. Estimation of checker’s completeness

LC 3 7 7 9 7 10 19 26

LC 8 11 - - 6 15 25 37

2
5D 7D 2

9D 6D 8D 10D D2
6D 2 3 4 5 6

12

The first row of Table 5 illustrates the numbers of 

LCs we need for certain checkers when applying the

decomposition method. The second row of this table 

illustrates the numbers of LCs we need after covering by 

LCs the best gate based checker implementations [6]. The

columns of Table 5 correspond to the different checkers

marked by . As can be seen from Table 5, the

proposed method provides decreasing of the checker’s

complexity for about 30% in comparison with [6, 12]. 

m
nD

6. Conclusions 

In this paper, we presented a new decomposition

method for designing m-out-of-n self-testing checkers.

The method is suitable for implementation of the checkers

by FPGA. The self-testing property is provided for a wide 

set of faults, namely multiple stuck-at faults at the LC 

input and output poles.

Comparison of overheads performed for the m-out-of-

n checkers implemented according to the proposed

method and m-out-of-n checkers designed using known

methods for synthesis, shows that the proposed approach

leads to a considerable overhead reduction in most cases. 

It is important to note that the most significant overhead

reduction can be achieved for large values of m and n.

A new fault model was proposed. This fault model

allows describing faults leading to both unidirectional or

arbitrarily errors. 
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