
Designing FPGA based Self-Testing Checkers for m-out-of-n Codes

A. Matrosova

Tomsk State

University, Russia

mau@fpmk.tsu.ru

V. Ostrovsky

Tel Aviv

University, Israel

vios@post.tau.ac.il

I. Levin

Tel Aviv

 University, Israel

)(X
m
nD)(

5
10 XD

)(X
m
nD

)
*

()
1

()(X
j

kn
DX

i
kDX

m
nD

)
*

(),
1

(X
j

kn
DX

i
k

D and

},...,1{
1

kxxX },...,1{
*

nxkxX

)
*

(X
j

kn
D

kkn

i.levin@ieee.org

K. Nikitin

Tomsk State

University, Russia

nikitin@ fpmk.tsu.ru

Abstract

The paper describes a specific method for designing self-
checking checkers for m-out-of-n codes. The method is

oriented to the Field Programmable Gate Arrays

technology and is based on decomposing the sum-of-
minterms corresponding to an m-out-of-n code. The self-

testing property of the proposed checker is proven for a

set of multiple stuck-at faults at input and output poles of
a Logic Cell. An estimated complexity of obtained m-out-

of-n checker demonstrates high efficiency of the proposed

method.

1. Introduction

This paper considers the problem of designing self-

testing m-out-of-n code checkers on the base of Field

Programmable Gate Array (FPGA). In most of the works

related to the field, methods of designing self-checking

schemes are based on the two following principal

assumptions associated with fault models [1]:

Only one fault may occur in the scheme at a time. In

other words, before a next fault occurs, the previous

fault will be eliminated.

A distortion caused by a fault can only be

unidirectional, i.e. only low or only high positions of

output codewords switch their values to the opposite

due to the fault.

It is known, however, that the above assumptions are

non-applicable for some types of the schemes. For

example, CMOS-based schemes are known as such where

not a single element, but an area forming a number of

elements might be damaged. Another example is a LUT-

based FPGA scheme, where the assumption of

unidirectional distortion of output codewords is incorrect.

In light of the above, the fault model requires to be

changed. The present paper proposes a new model for

describing faults in LUT-based FPGAs. According to the

proposed model, we assume that any number of signals at

inputs or outputs of a single logic cell (LC) may be

distorted simultaneously. We consider only constant

distortions and assume that both input and output poles

cannot be stuck-at simultaneously. We will call a set of

those distortions F-set. We assume that a fault is detected

on a set of input codewords, if that set comprises at least

one input codeword, which leads to an output codeword

differing from any of the correct ones. LC may have one

output or two outputs.

In the paper, the above fault model is assumed in the

proposed method for synthesis self-checking checkers of

m-out-of-n code. The self-testing checker design, as a rule,

is based on determining the weight of input codewords of

a checker. For this aim either threshold circuits [2-7] or

circuits based on parallel counters [8-11] can be applied.

All these checkers are oriented to gate implementation.

In this paper we propose a universal decomposition

method to design any m-out-of-n codes checkers by

FPGAs. It is proven that the checker is self-testing for the

set F of faults that covers considerably more realistic

failures of a circuit in comparison with traditional single

stuck-at faults.

Section 2 of the paper describes a decomposition

method for a self-testing m-out-of-n codes checker.

Section 3 discusses design of a self-testing m-out-of-n

codes checker. The self-testing property of the proposed

checker is discussed in Section 4. Evaluation of results

presented in Section 5.

2. Decomposition Formula

Let us put a certain minterm into correspondence to

each of m-out-of-n codeword. Denote sum of such

minterms (SOM) as . For example,

consists of 252 minterms of rank 10 and contains 2520

literals. This expression cannot be minimized since any

two minterms of are at least bi-directional [12].

For a compact description of all m-out-of-n codewords,

a specific formula (1) is proposed below.

(1)

Here symbol between is

omitted. Set X is divided into two

subsets: and .

Call as a decomposition coefficient. If

, then execute the next step of the

decomposition (1) for each , and so on. As a

result, we obtain the formula (1) in which for any

 the condition

)
*

(X
j

knD

)(
r

X
q
pD kp takes place.

Consider an example. Obtain decomposition formula

for ,
3
6D 2k .

First , ,}2,1{
1

xxX }6,5,4,3{
*

xxxxX

).
*

(
1
4)

1
(

2
2)

*
(

2
4)

1
(

1
2)

*
(

3
4)

1
(

0
2

3
6 XDXDXDXDXDXDD

}4,3{
2

xxX }6,5{
3

xxX

)
*

(
1
4),

*
(

2
4),

*
(

3
4 XDXDXD

Then , . Execute the next

step of decomposition (1) for

. We arrive at the following:

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

)).
30

2
21

2
31

2
20

2
12

2

30
2

22
2

31
2

21
2

32
2

20
2

11
2

31
2

22
2

32
2

21
2

10
2

3
6

(X)D(XD)(X)D(X)(D(XD

))(X)D(XD)(X)D(XD

)(X)D(X)(D(XD))(X)D(XD

)(X)D(X)(D(XDD

Let be the number of subsets on which a

set X of variables of is divided with deriving

the formula (1), and

(-1) is the number of the decomposition steps. In our

example, and we have two decomposition steps.

(X

y ,2

m
nD

2

2

XX ,,
1

)(X
m
nD

kXkXX ,
11

3

Architecture of the checker corresponding to formula

(1) is discussed below in Section 3.

3. Implementation of self-testing checker

Divide whole set of m-out-of-n codewords into two

subsets (). For example, A

represents the codewords resulted from the product

and the codewords resulted from

two products: .

A
21

AA and
21

AAA
1

)(
3
4)

10
2 XDD

2
A

),(
2
4)

1
(

1
2 XDXD)(

1
4)

1
(

2
2 XDXD

1

Let’s obtain a two-output self-testing circuit C (m-out-

of-n code checker) that implements A and formulae

on its outputs. Since each couple of codewords is

orthogonal, an output vector of the scheme C can be equal

either 10 or 01. Let different variables

 correspond to different

decomposition functions and decomposition coefficients

of the expression (1).

2
A

lylyy 2,12,,1

lylyyyyyx 2124321

k 4

We have:

 . (2)

Now cover expression (2) with logic cells (LC). Any

LC has k inputs. Let be an even number, . We

assume here that the number of products l . If the

number of products in the expression (2) is less or equal to

, then is realized by one LC. If l , execute the

following steps.

k

1

k5.0 k5.0

k5.

65431 yyyyyy 4k

431 yyyy

1. Separate the first 0 minterms of expression (2).

Let LC1 implements these codewords. For providing the

self-testing property, transform all products of expression

(2) to a form that includes all input variables of LC1. For

that purpose, include into the expression all missing

variables in their negative form. Such a transformation is

acceptable since any m-out-of-n codeword does not

activate more then one product of expression (2). For

example, let we have an expression

. If , then the expression

 has to be replaced

by . Such transformations will be

performed for all functions implemented on the logic cell

outputs.

2. Three cases can be considered:

43214321 yyyyyyyy

15.

a) The number of remaining products of expression (2) is

equal to 0 . Then we use one output LC2 to

implement the next products from (2). Assign

variables to outputs of the LC1, LC2,

correspondingly. Logic cells LC3 and LC4 implement the

following products (Table 1).

k

k5.0

21, zz

1z 2z 12ly ly2

Table 1. Products implemented by LC3 and LC4

for l=k+1

1 0 0 0

0 1 0 0

0 0 1 1
This table lists all products on which the LC function

tales value “1”. All products are presented as Boolean

vectors. LC3, LC4 implement two functions corresponding

to outputs of the circuit . One of these functions is

presented by the two first lines (for LC

C

C

3) of Table 1, the

second function by the last line (for LC4). A subcircuit

of implementing such expressions is shown in Fig. 1.

ky ky

ly 2

LC3

LC1

1y 1

LC2

ky 2

12 ly

LC4

Figure 1. Implementation of (2) for l=k+1

b) The number of remaining products of the expression (2)

is equal to 0 . We use LC2 to implement sum of these

products. Table 2 represents the following products

implemented by LC3, LC4 similar to Table 1.

Corresponding subcircuit of C is shown in Fig 2.

k5.

Table 2. Products implemented by LC3 and LC4
for l=k

1Z 2Z

1 0

0 1

LC3 LC4

LC1

1y ky 1ky

LC2

y2l

Figure 2. Implementation of (2) for l=k

) The number of remaining products of expression (2) is

less then . Table 3 and Figure 3 illustrate this case. k5.0

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

Table 3. Products implemented by LC2 and LC3

for l<k

1z

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 0 0 1 1

)1(ky)2(ky)12(ly)2(ly

LC2

LC1

1y ky 1ky ly 2

LC3

Figure 3. Implementation of (2) for l<k

Thus, we need no more than four LCs to implement

expression (2).

Notice, that:

any product of the LC function is activated at least

once during occurrence of all m-out-of-n
codewords.

any product of the decomposition function which

implements LC is activated at least once during

arriving all m-out-of-n codewords.

A subcircuit implementing decomposition functions of

the i-th level is shown in Fig. 4. The subcircuit has (or

less) inputs and l outputs, which correspond to the

different decomposition functions at the i -th level. The

total number of LCs is this implementation is equal

to .

k

i

i
il5.0

LC 1 LC 2

0

iXD
1

iXD
2

iXD
3

iXD

iX

}12,1{ xxX

},8,,5{
2

},4
1

xxXX

3
xX

),
3

,
2

),
23

8)
1

(
3
4

)
3

,
2

(
4
8)

1
(

2
4)

3
,

2
(

5
8)

1
(

1
4

)
3

,
2

(
6
8)

1
(

0
4)(

6
12

XDDXD

XXDXDXXDXD

XXDXDXD

),
3

(
0
4)

2
(

2
4)

3
(

1
4)

2
(

1
4

)
3

(
2
4)

2
(

0
4)

3
,

2
(

2
8

XDXDXDXD

XDXDXXD

),
3

(
0
4)

2
(

3
4

)
3

(
1
4)

2
(

2
4)

3
(

2
4)

2
(

1
4

)
3

(
3
4)

2
(

0
4)

3
,

2
(

3
8

XDXD

XDXDXDXD

XDXDXXD

)
3

()
2

(
0
4)

3
,

24

D

D

D

XXDXXD

),
3

(
1
4)

2
(

4
4

(
5
8

XDXD

D

D

).
3

(
2
4)

2
(

4
4)

3
(

3
4)

2
(

3
4

)
3

(
4
4)

2
(

2
4,

2
(

6
8

XDXDXDXD

XDXDXD

)
1

(
4
4),

1
(

3
4),

1
(

2
4),

1
(

1
4),

1
(

0
4 XDXDXDXDXD

)
2

(
4
4),

2
(

3
4),

2
(

2
4),

2
(

1
4),

2
(

0
4 XDXDXDXDXD

3
(

0
4 XD

)
3

,(8 XXD

)
3

,
2

(
3
8 XXD)

3
,

2
(

4
8 XXD

)
3

,8 XD)
3

,
2

(
6
8 XXD

Figure 4. Implementation of i-th level
decomposition functions

To design the two-outputs m-out-of-n -checker C by

LCs, we first need to implement all decomposition

functions. Then we have to implement all expressions (2)

corresponding to (1) and, finally, to combine all of them

into checker C.

Let us consider an example of a self-testing checker

design using 4-input LCs. The checker is 6-out-of-12 code

checker.

Let us partition into 3 subsets:

,,1{ xx

,,9{x }12

We have the following decomposition expressions:

(
2
8 X

1
(

4
4 XD)

3
X(X

),
3

(
0
4)

2
(

4
4

)
3

(
1
4)

2
(

3
4

)
3

(
2
4)

2
(

2
4)

3
(

3
4)

2
(

1
4

XDX

XDX

XDXDXDX

)
3

(
2
4)

2
(

3
4)

3
(

3
4)

2
(

2
4

)
3

(
4
4)

2
(

1
4)

3
,

2

XDXDXDX

XDXDXX

4
4D(8

)
3

X

 the

decomposition functions of the first level. Their

implementation demands 2 two-output LCs and 1 one-

output LC. Thus, the subcircuit that realizes these

functions consists of 3 LCs.

 the

decomposition functions of the second level. The

subcircuit that realizes these functions is similar to that

mentioned above.

)
3

(
4
4),

3
(

3
4),

3
(

2
4),

3
(

1
4), XDXDXDXD

22

 the

decomposition functions of the third level. They all are

implemented with a subcircuit similar to those mentioned

above. We need 9 LCs to implement all decomposition

functions of the checker considered.

To implement expression (2) for we

need 2 LCs, 3 LCs, 3

LCs, 3 LCs, at least 2

LCs.

2
(

5
X

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

Moreover, we need 4 LCs to implement the

expression (2) for .)(
6
12 XD

It is enough to have 17 LCs to realize all expressions

(2) of the self-testing checker. Consequently, for the

checkers as a whole, we need 26 LCs.

4. Self-testing property of the checker

Recall that we deal with a set F consisting of multiple

stuck-at faults at the LC input poles and multiple stuck-at

faults at the LC output poles for each LC. We use both

one output and two outputs LCs. Input and output poles of

the same LC cannot have stuck-at faults simultaneously.

Any LC implementing formula (1) represents each its

function f as a sum of minterms. Hereafter we will identify

the minterms and representing them Boolean vectors.

We will describe multiple stuck-at faults on input

poles by a ternary vector as follows. If stuck-at input

has the 1(0) value then the corresponding component of

 takes also the 1(0) value. Call all such components as

determined ones. The remaining components of take a

“don’t care” value. Call them as undetermined

components of . If undetermined components are

absent, vector turns into a Boolean vector.

(0 f

)(f

Consider a certain LC function f and the corresponding

output. Let’s say that we deliver different Boolean vectors

of the length k to the LC inputs, and observe the

associated LC output. Now we investigate the condition

on which the Boolean vector is a test pattern for the fault

represented with . divides all minterms of f into two

subsets and . Subset includes

minterms (Boolean vectors) absorbed with , and the

subset - minterms that are orthogonal to .

Having excluded determinate variables of from the

Boolean vectors of and , we obtain the

set , , respectively.

)(fM)M)(fM

)(0 fM

M)(0 fM

) 0M

2
4D

(fM)(f

For example, let us LC implements a function

represented in Table 4 and let us vector is equal to (- 1

- 0). It means that the input represented as is stuck-at

1 and the input represented as is stuck-at 0. The rest of

the LC inputs are fault free.

2x

4x

3,1 xx

Then: {(0110), (1100)}, {(0011),

(0101), (1001), (1010)}.

After excluding determined variables from , we

obtain {(01), (10)} and M { (01),

(00), (10), (11)}.

2
4' DM 0'

2
4D

Call the number of the 1-value components of its

weight, represented by . In our example: .1

Take into account that a Boolean vector

delivered to the LC inputs is changed by the fault for the

Boolean vector where resulted

from the corresponding . Here means the

determined components of are added to the

components of . If then is not

changed by the fault.

0M

)(0, fM

)(fM

}{

In the above-mentioned example

for (0011) , , we have (01) and

 (0110), for (0101) , we

have (00) and (0100).

)
2
4(0 DM

, M)
2
4(0 D

Theorem 1. If from M is orthogonal to each

vector from then the Boolean vector

corresponding to is a test pattern for the

fault represented by .1

)(0 f

)(fM

)(0 fM

(

2
4' DM

2
40

2
4 DMD

pq
q
pD 0,

q
pD

In the example the vector (0101) results in

00), and is orthogonal to vectors 01, 10 from

, (0100). The latter vector is missed in

the expression M . Consequently,

(0101) is the test pattern for the fault.

Let a certain LC function f be represented

with . Notice that each of the variables of

function f takes both 1 and 0 values for all products

(Boolean vectors) of , which means that f is not unate

on each variable.

Theorem 2. A test pattern exists for any multiple

stuck-at fault at the LC input poles for a LC implementing

two decomposition functions and so that

. This test pattern is a Boolean vector,

representing one product either from or . We

assume that both LC outputs are observable and they are

not outputs of a checker.

1q
pD 2

q

pD

pq10

q 2q
p

2
q

02q q q
q

10,1

1
pD D

Table 4. 2-our-of-4 codewords

0 0 1 1

0 1 0 1

1 0 0 1

0 1 1 0

1 0 1 0

1 1 0 0

Corollary 2.1. Using two outputs LC to implement

decomposition functions we may combine when

or with .

pD

pp2 pD

2
40 DM

2
4DM

1
We don't provide proofs of the theorems in this paper, due to the space

limitations

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

Corollary 2.2. When a multiple stuck-at fault at LC

input poles occurs and input vector does not coincide

with any product of and , it is possible that the

values 10, 01, 11 will appear instead of 00 at the LC

outputs (1 instead of 0 for one output LC).

1q
pD 2q

pD

Corollary 2.3. If Checker C is implemented with two

one output CLs any fault from a set F is detectable.

For one output LC comprises a subcircuit

implementing the expression (2), we will have the

following.

1. For each input variable, only one minterm of the LC

function exists for which this variable takes value 1.

2. No input variable is unate for minterm of the LC

function.

3. LC input variables are divided into two subsets Y

and Z. One of these can be empty. Any minterm of the LC

function has 1-value components only among one of these

subsets.

Theorem 3. For one output LC that comprises a

subcircuit implementing the expression (2), >1, either

there exists a test pattern for multiple stuck-at fault at the

LC input poles or this fault manifests itself as single

stuck-at fault at this LC output.

Corollary 3.1.When a multiple stuck-at fault at the LC

input poles occurs, and an input vector does not

coincide with any products of the LC function it is

possible 1 instead of 0 at the LC output

Corollary 3.2. For one output LCs that comprises a

subcircuit implementing the expression (2), =1, so that

their outputs are at the same time outputs of a checker any

fault from F is detectable.

Theorem 4. A checker C is self-testing for a set F of

faults.

This Theorem follows directly from Theorems 1, 2, 3.

5. Evaluation of results

Estimations of completeness of the checker designed

according the proposed method are presented in Table 5.

Table 5. Estimation of checker’s completeness

LC 3 7 7 9 7 10 19 26

LC 8 11 - - 6 15 25 37

2
5D 7D 2

9D 6D 8D 10D D2
6D 2 3 4 5 6

12

The first row of Table 5 illustrates the numbers of

LCs we need for certain checkers when applying the

decomposition method. The second row of this table

illustrates the numbers of LCs we need after covering by

LCs the best gate based checker implementations [6]. The

columns of Table 5 correspond to the different checkers

marked by . As can be seen from Table 5, the

proposed method provides decreasing of the checker’s

complexity for about 30% in comparison with [6, 12].

m
nD

6. Conclusions

In this paper, we presented a new decomposition

method for designing m-out-of-n self-testing checkers.

The method is suitable for implementation of the checkers

by FPGA. The self-testing property is provided for a wide

set of faults, namely multiple stuck-at faults at the LC

input and output poles.

Comparison of overheads performed for the m-out-of-

n checkers implemented according to the proposed

method and m-out-of-n checkers designed using known

methods for synthesis, shows that the proposed approach

leads to a considerable overhead reduction in most cases.

It is important to note that the most significant overhead

reduction can be achieved for large values of m and n.

A new fault model was proposed. This fault model

allows describing faults leading to both unidirectional or

arbitrarily errors.

References

[1] M. Nicolaidis, Y. Zorian. “On-Line Testing for

VLSI—A Compendium of Approaches”, Journal of

Electronic Testing: Theory and Applications 12, 7–20

(1998), Kluwer Academic Publishers, 1998.

[2] D.A. Anderson and G. Metze, ”Design of Totally

Self-Checking Circuits for m-out–of-n Codes,” IEEE

Trans. Computer, Vol. C-22, pp. 263-269, March 1973.

[3] S.J. Piestrak, “The Minimal Test Set for Sorting

Networks and the Use of Sorting Networks in Self-

Testing Checkers for Unordered Codes,” Dig. Pap.
FTCS-20, Newcastle upon Tyne, UK, June 1990, pp.

457-464.

[4] S. J. Piestrak, “Design Method of Totally Self-

Checking Checkers for m-out-of-n Codes”, Dig. Pap.

FTCS-13, Milan, Italy, pp. 162-168, June1983.

[5] S. J. Piestrak, Design of Fast Self-Testing Checkers

for m-out–of-2m and m-out-of- Codes”, Int. J.

Electronics, Vol. 74, pp. 177-199, Feb. 1993.

)12(m

[6] S. J. Piestrak, “Design of Self-Testing Checkers for

Unidirectional Error Detecting Codes”, Scientific Papers
of Inst. of Techn. Cybern. of Techn. Univ. of Wroclaw, No.

92, Ser.: Monographs No. 24, Wroclaw, 1995.

[7] S. J. Piestrak, “Design of Encoders and Self-Testing

Checkers for Some Systematic Unidirectional Error

Detecting Codes”, Proceedings of the 1997 Workshop on

Defect and Fault-Tolerance in VLSI Systems (DFT '97).

[8] V.V. Dimakopoulos et al., “On TSC Checkers for m-

out-of-n Codes,” IEEE Trans. Comput., Vol. 44 pp. 1055-

1059, Aug.1995.

[9] C. Efstathiou and C. Halatsis, “Efficient Modular

Design of m-out–of-2m TSC Checkers, for m=2K-1,

K>2”, Electron. Lett., Vol. 21, pp. 1082-1084, Nov.

1985.

[10] A.M. Paschalis, “Efficient Structured Design of

Totally Self-Checking M-out-of-N Code Checkers with

N>2M and M=2K-1”, Int. J. Electronics, Vol. 77, pp.

251-257, Aug. 1994.

[11] A.M. Paschalis, D. Nicolos, and C. Halatsis,

“Efficient Modular Design of TSC Checkers for m-out-

of-n Codes”, IEEE Trans. Comput, Vol. C-37, pp. 301-

309, March 1988.

[12] P. Lala. Self-Checking and Fault Tolerant Digital

Design. Morgan Kaufman Publishers, 2001.

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

