
Arbitrary Error Detection in Combinational Circuits by
using Partitioning

Osnat Keren,
Bar-Ilan University,
kereno@eng.biu.ac.il

Ilya Levin,
Tel-Aviv University,
ilia1@post.tau.ac.il

Vladimir Ostrovsky,
Tel-Aviv University,
vladio@post.tau.ac.il

Beni Abramov,
Tel-Aviv University,

abramovbeni@gmail.com

Abstract

The paper presents a new technique for designing a concurrently checking combinational
circuit. The technique is based on partitioning the circuit into two independent sub-circuits.
It does not require any redundant coding variables; instead, it utilizes a sub-set of input
variables. These variables are transferred directly into a checker providing the arbitrary
error detection. The paper develops and studies a method for selecting an optimized sub-set
of such variables. Benchmark results show efficiency of the proposed approach.

1 Introduction

The majority of the known concurrent checking schemes assumes that a set of output
words of the functional circuit to be checked is complete, i.e., any binary vector may occur.
However, it is often reasonable to construct a so-called context-oriented concurrent checking
scheme, where: a) the number M of possible output vectors, is much smaller than 2k, where
k is the width of the output vector, and b) the set of possible outputs is known in advance.
The context-orientation has some advantages in comparison with the universality. Namely,
it allows utilizing the redundancy of the circuit’s output codewords, which is an intrinsic
feature of such circuits. One of the ways of utilizing the redundancy is partitioning the
functional circuit into a number of separate independent sub-circuits. Each of these sub-
circuits implements its own subset of output signals. Since the sub-circuits have no common
elements, any single fault may result in errors only in a subset of the output signals.

The context-orientation was studied in [3], where a Sum-Of-Minterms (SOM) checker was
proposed. The SOM checker tests whether an output word belongs to the set of possible
code-words of the circuit to be checked. Experimental results show that for M < 2k/3, the
system in [3] has smaller implementation cost than a solution based on duplication of the
functional unit. In [4], the authors developed a specific architecture for checking sequential
circuits without introducing any redundant coding variables. This architecture uses signals
of logic products of the functional unit for providing the self-checking property. Signals of
these products form additional inputs of the checker.

Partitioning a functional circuit for mutually checking components was proposed in [5] as
an alternative way for exploring the context-orientation. The authors examined a two-block
partition, minimizing the number of encoded variables in a concurrent checking scheme that
detects any arbitrary errors.

In the present paper, we propose a new technique that allows to detect arbitrary errors in
a combinatorial circuit. That is, all single faults (that may cause any binary vector on the

IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems

15505774/08 $25.00 © 2008 IEEE

DOI 10.1109/DFT.2008.34

361

IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems

15505774/08 $25.00 © 2008 IEEE

DOI 10.1109/DFT.2008.34

361

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

circuit’s output) are detectable by the suggested scheme. Similarly with [4], we don’t use
any redundant coding for the output vectors. We propose to transfer the input variables
(and not the products) into the checker. Actually, these input variables are used instead
of the coding variables. A method for designing such a circuit is the main contribution
of the paper. We show that the partitioning of the initial circuit into independent sub-
circuits followed by choosing an optimized set of input variables is efficient for detecting
both unidirectional and arbitrary errors. The proposed partitioning algorithm is heuristic
and does not provide the optimal partition. Nevertheless, it is simple and provides good
solutions.

The paper is organized as follows: Section 2 includes basic definitions, and recalls related
work on on-line testing for arbitrary errors. Section 3 presents the suggested structure, and
Section 4 contains experimental results. Section 5 concludes the paper.

2 Preliminaries

Consider a functional unit that has m inputs and k outputs. The logic unit can be
represented as a multi-output function Y = f(X) where X = (xm−1, . . . , x0) and Y =
(yk−1, . . . , y0). In this paper, the binary output vectors are referred to as information words.
Assume that the logic unit can produce only M distinct information words out of the 2k

possible combinations, that is, M < 2k.
In order to detect a single fault in the system, conventional methods encode the informa-

tion words by adding redundancy bits. Namely, each information word Yi = (y(i)
k−1, . . . , y

(i)
0)

is encoded to a codeword Zi = (z(i)
n−1, . . . , z

(i)
0) of length n ≥ k. The set of codewords {Zi}M

i=1
forms a code.

Definition 1 A code is called systematic , if there are k fixed positions {js}k−1
s=0 such that

z(i)
js

= y(i)
s for all 1 ≤ i ≤ M and 0 ≤ s < k. The remaining r = n − k position carry the

redundancy.

Clearly, systematic codes are preferable since they allow extracting an information word Yi

out of a codeword Zi without additional processing.
The assumption that a fault causes unidirectional errors allows to implement the func-

tional unit as a single circuit. However, in cases where a fault may cause an arbitrary error
(that is, not necessarily unidirectional), the fault may not be detected in functional units
that are implemented as a single circuit. In order to detect any fault the functional unit
should be implemented by at least two independent circuits [6].

Coding schemes for such a case, were discussed in [1, 6, 7, 8]. In this paper we assume that
the functional unit is implemented as two independent circuits. Without loss of generality,
we assume that the first circuit realizes the first n1 bits of Z, that is, c1 = (zn1−1, . . . , z0),
and the second circuit realizes the remaining n2 = n − n1 bits, c2 = (zn−1, . . . , zn1). The
output of the functional unit is denoted by Ŷ = (c2, c1). Obviously, there is a one-to-one
mapping between each Yi and Ŷi.

The overall system is fault-secure in respect to a single fault in one of the circuits, if
either, a fault maps a codeword on itself, or it maps a codeword to a non codeword [2]. In
[6] it was shown, that iff c2 = f1(c1), and, c1 = f2(c2), then the functional unit is fault
secure in respect to arbitrary errors in one of the two circuits.

362362

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

There are several ways to partition the set of information bits {yj}k−1
j=0 into two sets. In

this paper, we follow the approach introduced in [6], where partitioning is done with the
aim to minimize the number of y’s in c1 that completely specify the information words;
namely,

Y = f̂(yjk1−1, . . . , yj0) = f̂(c1). (1)

The remaining information bits (if any) form c2. Note that this partition may not be the
optimal in terms of the implementation cost.

Definition 2 (Distance) The distance d(Ŷi, Ŷj) between two words Ŷi = (c(i)
2 , c(i)

1) and
Ŷj = (c(j)

2 , c(j)
1) is d(Ŷi, Ŷj) = |{k|c(i)

k $= c(j)
k), k = 1, 2}|.

Definition 3 (Minimum distance) The minimum distance between the words in the set
Y = {Ŷi}M

i=1 is dmin = minŶi,Ŷj∈Y , i#=jd(Ŷi, Ŷj).

Clearly, any fault in one of the circuits implementing c1 or c2 is detectable if and only if all
codewords are of distance two from each other. Nevertheless, in some cases, it is impossible
to find a partition that leads to a dmin that equals two (dmin = 2). The following example
illustrates such a case.

Example 1 Consider a functional unit that has five inputs X = (x4, . . . x0) and five out-
puts Y = (y4, . . . y0). Assume that the system produces only M = 6 information words
{Yi}6

i=1 out of the possible 25 combinations:

Y1 = (01011), Y2 = (00001), Y3 = (00101), Y4 = (10111), Y5 = (11010), Y6 = (11111).

The functionality of the unit is given in Figure 1(a) in a Karnaugh-like map.
Let c1 = (y4, y3, y2) and c2 = (y1, y0). The location of the information words as points

in the c1 × c2 plane is shown in Figure 1(b). A fault in c1 (or c2) is equivalent to moving
a word to an arbitrary position on the c1 (or c2) axis without changing its position on the
other axis. It is clear from the figure, that each word has its own location on the c1 axis.
Therefore, a fault in c2 cannot shift one information word onto another. This is not the
case with a fault in c1; A fault in c1 may shift the point corresponding to Y6 onto the point
representing Y1.

The distance between Ŷ1 and Ŷ2 is d((010, 11), (000, 01)) = 2. However, the distance
between Ŷ1 and Ŷ4 is d((010, 11), (101, 11)) = 1. Thus, the minimum distance between the
set of words equals one. Note, that since k = 5 it is not possible to find a partition that
leads to a dmin that equals two. Hence, it is impossible to detect a fault in the circuit that
implements c1 unless ’side-information’ is given to the checker.

(a) K-map (b) The c1 × c2 plane (c) K-map for Y2 and Y3

Figure 1: K-map for the functional unit in Ex. 1 (left), K-map for the characteristic
functions of Y2 and Y3 in Ex. 2 (center), and the location of the information words on the
c1 × c2 plane (right).

363363

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

Figure 2: Proposed architecture of a non redundant functional unit with SOP checker

3 Arbitrary error detecting architecture

3.1 General error detection architecture

In this paper, we suggest a new approach for detecting an arbitrary single fault in the
functional unit. Instead of encoding an information word Yi into a codeword Zi by adding
r redundancy bits, we suggest to use the (output) information bits as they are (uncoded),
and use the x’s as additional inputs to the checker. We will show that this solution is
simpler and has a lower implementation cost than the duplication based solutions.

The suggested architecture is shown in Figure 2. The functional unit is implemented as
two independent circuits. The first circuit realizes k1 bits of Y, that is, c1 = (yjk1−1, . . . , yj0);
The second circuit realizes the remaining k2 = k−k1 bits, that is, c2 = (yjk−1, . . . , yjk1

). The
input variables X together with Ŷ = (c2, c1) enter a (Sum-Of-Products) SOP based checker.
While the conventional SOM checker cannot be minimized (since it comprises minterms of
distance two), the suggested checker comprises: a) products and not minterms, and, b) this
products may further minimized.

3.2 Characteristic functions and SOP checker

In this subsection we present a checker that is based on products rather than on minterms.
We assume that the functional unit is implemented as two independent circuits, and that
the partition to c1 and c2 fulfills Eq. 1. The inputs to the checker are X and the output Ŷ
of the functional unit.

Recall that the input lines are routed directly to the checker. The inputs are used
to provide ’side-information’ on the ’problematic’, that is, information words that are of
distance one from each other. In this paper we consider two cost functions:

• Minimal number of inputs. That is, use of the minimal number of x’s that are sufficient
to provide desired property.

• Minimal density. That is, use of a set of x’s that reduce the number of literals in the
SOP representation of the checker’s function. In other words, the complexity criteria
is the implementation cost of the checker (e.g. two-input AND-OR gates).

We start by defining a Characteristic function in respect to a given partition:

Definition 4 (Characteristic function) Let Y = {Ŷi}M
i=1 be the set of M words produced

by the functional unit. The characteristic function gi(X) of Yi, in respect to Y, is

gi(X) =

1 f(X) = Yi

0 f(X) = Yj and d(Ŷi, Ŷj) = 1
φ otherwise

(2)

364364

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

where φ stands for don’t care.

Note that the characteristic functions are not necessarily pairwise orthogonal (disjoint).
That is,

∑
X gi(X)gj(X) ≥ 0.

Example 2 The codeword Ŷ2 in Example 1 is of distance one from the word Ŷ3, and it is
of distance two from all the remaining words. The Karnaugh-like map given in Figure 1(c)
shows the combination of X’s that produce Y2 and Y3. The empty bins in the map correspond
to the input combinations for which the characteristic functions g2(X) and g3(X) are not
specified. A characteristic function for g2(X) may be g2(x) = x′

4x
′
3x1x0 +x4x′

3. Clearly, the
simplest expressions for the characteristic functions are g2(X) = x′

3 and g3(X) = x3.

A SOP checker is based on dividing the set Y into two non-empty and disjoint sets Π0

and Π1. The SOP checker consists of two independent circuits. Each circuit implements
the function

Ri = ∨Ŷj∈Πi
m(Yj)gj(X) , i = 0, 1,

where m(Yj) is the minterm in the variables y0, . . . yk−1 that represents the word Ŷj. Indeed
m(Yj) can be written as a product of two minterms m(c(j)

1) and m(c(j)
2) that represent the

sub-words c(j)
1 and c(j)

2 which compose the word Ŷj, m(Yj) = m(c(j)
1)m(c(j)

2).

3.3 Characteristic functions construction

In this subsection we present two greedy approaches for generating the characteristic
function in respect to the complexity criteria mentioned above.

Let G = {0, 1, ∗}, and, p ∈ G. Let a be a Boolean variable. We define ap as

ap =

a if p = 1
ā if p = 0
1 if p = ∗

.

Definition 5 (cube) A cube P = (pm−1, . . . , p0) ∈ Gm, of order r is a coset comprising
the 2r assignments of X = (xm−1, . . . , x0) ∈ {0, 1}m, for which the corresponding Boolean
product fP (X) = Πm−1

i=0 xpi
i equals ”1”. The value of r equals to the number of ∗’s in p.

An intersection between two cubes Pi and Pj comprises elements in the intersection of
the cosets, or equivalently, the assignments of X for which fPi(X) · fPj(X) = 1. Two cubes
are called disjoint if their intersection is empty.

Let Fi be the set of cubes {P (i)
j }Ni

j=1 that are associated with the information word Yi.
Each element X in the union of the cosets defined by Fi satisfies: f(X) = Yi. Clearly,
Fi ∩ Fj = Φ for i $= j.

Example 3 The set of cubes associated with the information words in Example 1 is the
following:

F1 = {(001 ∗ 0), (1 ∗ 001)}, F2 = {(10000), (00 ∗ 11), (10110)},
F3 = {(11 ∗ 00)}, F4 = {(00000)},
F6 = {(1111∗), (01000), (0 ∗ 101)}.

All the remaining combinations are associated with the information word Y5 :

F5 =
{

(011 ∗ 0), (0 ∗ 001), (1010∗), (1 ∗ 101), (10 ∗ 11), (∗ ∗ 010), (01 ∗ 1∗), (∗101∗)
}

.

365365

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

Let hi(X) be the Boolean function defined by Fi, that is, hi(X) = ∨jfP (i)
j

(X). The

characteristic function gi(X) covers hi(X), gi(X) ≥ hi(X).

3.4 Characteristic functions minimizing the number of literals

In order to reduce the number of literals, each original set of cubes Fi has to be covered
by a new set of cubes F̂i, that are of larger order than the original cubes. Namely, let
P = (pm−1, . . . , p0) = P (i)

j ∈ Fi be a cube in the set associated with the information word
Yi. Changing one symbol of P from 0 (or 1) to ∗ defines a cube P̂ that has larger order
and covers P. The w’th symbol of P , symbol pw, 0 ≤ w ≤ m − 1, can be changed to ∗ if
after the change the modified cube P̂ and the set Ai = ∪s|d(Ŷi,Ŷs)=1Fs remain disjoint, that
is P̂ ∩ A = Φ.

Example 4 The set F1 consists of two cubes, P1 = (001 ∗ 0) and P2 = (1 ∗ 001). The
corresponding set A1 is A1 = F4 ∪ F6. Clearly, P1 ∩ A1 = Φ. However, it is possible to
change the 5’th symbols of P1 to ∗ and still have disjointness, that is, (∗01 ∗ 0) ∩ A1 = Φ.
Similarly, the 2’nd and 5’th symbols of P2 can be changed to ∗ while keeping the disjointness
property. Therefore, the set F̂1 = {(∗01∗0), (∗∗0∗1)} covers F1 and forms a characteristic
function. A new set of cubes which defines characteristic functions that have less literals
is:

F̂1 = {(∗01 ∗ 0), (∗ ∗ 0 ∗ 1)}, F̂2 = {(∗0 ∗ ∗∗)}, F̂3 = {(∗1 ∗ ∗∗)},
F̂4 = {(∗00 ∗ 0)}, F̂5 = {(∗ ∗ ∗ ∗ ∗)}, F̂6 = {(∗1 ∗ 1∗), (∗1 ∗ ∗0), (∗ ∗ 1 ∗ 1)}.

Note that the the word Ŷ5 is of distance two from all the other words. Thus, its correspond-
ing A is empty and the cube F̂5 equals to (∗ ∗ ∗ ∗ ∗). That is, the characteristic function
associated with Y5 is g5(X) = 1.

Let F be the set that comprises all the cubes: F = ∪M
i=1Fi. Denote by |F | the number

of products in F , |F | =
∑M

i=1 Ni. Let W (P) be the number of literals in the product that
corresponds to the cube P = (pm−1, . . . , p0), W (P) = |{w|pw $= ∗, 0 ≤ w < m}|. We define
the density of F as

D(F) =
∑

P∈F W (P)
m|F | .

In Example 3, the density of the original set is D(F) = 73/(5∗18) = 81%, while the density
of the encoded set is D(F̂) = 16/(5 ∗ 9) = 36%. Although the density is not a measure of
the implementation’s complexity, it can be used as an indicator to the simplification that
the suggested approach can provide.

3.5 Characteristic functions with minimized number of inputs

Let hi(X) be the Boolean function defined by a set of cubes Fi, that is associated with
the information word Yi : hi(X) = ∨jfP (i)

j
(X). By its definition, hi(X) is a characteristic

function of Yi. Denote by X̂ a subset of the input variables. Let F̂i be a set of cubes that is
constructed from Fi by assigning ∗ at positions that correspond to x’s that are not in X̂ ,
that is, F̂i = {P̂ (i)

j }Ni
j=1 where P̂ = (p̂m−1, . . . , p̂0) ∈ Gm, and

p̂i =
{

pi xi ∈ X̂
∗ xi /∈ X̂

.

366366

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

Clearly the Boolean function ĥi(X̂) that corresponds to F̂i covers hi(X), that is, ĥi(X̂) ≥
hi(X). Nevertheless, ĥi(X̂) may not be a characteristic function.

Example 5 Consider the function in Example 3. For X̂ = {x1, x0}, we have, F̂3 =
{(∗ ∗ ∗00)}. The corresponding function, ĥ3(X̂) = x′

1x
′
0, is not a characteristic function.

However, for X̂ = {x3, x0}, the function ĥ3(X̂) = x3x′
0 is a characteristic function.

Denote by X̂opt the the minimal subset of x’s for which all the corresponding functions
{ĥi(X̂opt)}M

i=1 are characteristic functions. Then, the functional unit combined with a SOP
checker that uses these characteristic functions is fault secure.

Example 6 The minimal set of inputs for the function in Example 3 is X̂opt = {x3, x2, x0}
and the corresponding set of products is:

F̂1 = {(∗01 ∗ 0), (∗ ∗ 0 ∗ 1)}, F̂2 = {(∗00 ∗ 0), (∗0 ∗ ∗1), (∗01 ∗ 0)},
F̂3 = {(∗1 ∗ ∗0)}, F̂4 = {(∗00 ∗ 0)},

F̂5 =
{

(∗ ∗ 0 ∗ 1), (∗01 ∗ ∗), (∗ ∗ 1 ∗ 1), (∗0 ∗ ∗1),
(∗ ∗ 0 ∗ 0), (∗1 ∗ ∗∗)

}
, F̂6 = {(∗11 ∗ ∗), (∗10 ∗ 0), (∗ ∗ 1 ∗ 1)}.

Clearly, the two approaches for reducing the checker’s complexity, reducing the number
of inputs and reducing the density, can be combined.

4 Experimental results

In this section we present results obtained from experiments with a number of ISCAS89
benchmarks; we used the combinatorial part of these sequential circuits which inherently
have the context orientation property. The results of the experiments are presented in
Tables 1 and 2.

Table 1 compares the suggested structures with duplication solutions and with strict
encoding (i.e. coding the information using +log2(M), bits). The comparison is done
in terms of the density measure. The first column of the Table contains the benchmark
name; columns 2, 3, 4 contain the number of inputs m, the number of codewords M, and
the number of information bits k. The number of information bits, k1 and k2, which are
implemented as c1 and c2, are written in the 5’th column. The number rd of x’s in a
checker having minimal number of literals (minimal density) is is given in column 6, and
the minimal number ri of x’s that can be used to construct the checker is given in column
7. The density of the original set D(F) that indicates the complexity of the duplication and
the strict encoding, and the density of the encoded sets are given in columns 8 to 11. The
density of a checker designed for minimal number of literals and the density of a checkers
designed to minimal number of inputs are denoted by D(F̂d) and D(F̂i), respectively. The
density of a checker that combines both properties is denoted by D(F̂c). The last row of
the table refers to normalized values of the parameters. The CPU-time of both encoding
procedures is given in the two last columns.

Notice that in some cases (e.g. s420), no partitioning is possible; in such cases k2 = 0.
On average, the encoding scheme that is based on minimizing the number of literals,

improves the density by a factor of 0.54 and about 66% of the AND matrix of the PLA
that specifiys the characteristic functions contains don’t care values.

The simulation results show that the number of inputs ri cannot be reduces significantly
in respect to rd. The overall improvement in the density obtained by combining the two

367367

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

Table 1: Density and CPU-time
m M k (k1, k2) rd ri D(F) D(F̂d) D(F̂i) D(F̂c) secd seci

s27 7 6 4 (3,1) 6 4 81 38 57 34 0.078 0.141
s298 17 332 20 (16,4) 13 13 98 44 76 44 3.078 75.484
s386 13 23 13 (11,2) 13 12 67 27 92 26 0.047 3.312
s420 35 36 18 (18,0) 17 17 55 42 42 42 0.000 0.031
s510 25 73 13 (9,4) 25 - 27 18 - - 0.063 > 5E + 4
s832 23 70 24 (22,2) 22 22 39 30 59 30 0.563 1.192 E+4
s1494 14 168 25 (21,4) 13 13 64 37 93 37 0.297 15.39

average 1 0.5476 1.0371 0.5272

Table 2: Number of LUTs in the overall system
single circuit suggested ref. [6] strict enc.
circuit c1 and c2 scheme + SOM ch. + SOM ch.

s27 12 (7,5) 22 25 27
s298 2410 (2312,253) 3937 5310 5733
s386 63 (56,10) 163 188 194
s420 104 (104,133) 341 430 383
s510 81 (70,11) 303 401 389
s832 346 (345,4) 725 921 1032
s1494 674 (545,135) 1322 1720 1832
total 1 1.08 1.85 2.44 2.60

approaches, is negligible in respect to the density of the checker designed for minimal
number of literals.

Note, that the complexity (in terms of computation time) of constructing a checker
that has minimal number of inputs is much larger than the complexity of obtaining a
checker with minimal number of literals. In light of the small difference between the overall
densities, we find the large computational time consumed for minimizing the number of
inputs, unjustified.

Table 2 shows the complexity of the overall system in terms of the number of Look-Up-
Tables (LUT s). We used SPARTAN3 xcs200ft256 and LeonardoSpectrum. The number
of LUTs required for implementation of the functional unit as one circuit is written in the
second column of the table; the number of LUTs required to implement the functional unit
as two independent circuits is written in the third column. Columns 4, 5, and 6 show the
number of LUTs required for implementing the overall system, that is, the functional unit
circuits plus a SOM (or SOP) checker: the 4’th column corresponds to the proposed scheme
with reduced density, the 5’th column corresponds to the coding scheme presented in [6]
combined with a SOM checker, and the 6’th column corresponds to a system based on the
strict encoding. The table clearly demonstrates the efficiency of the suggested structure.
On average, the presented scheme allows detection of any arbitrary fault by increasing the
implementation cost by 85%. This is better than the conventional method of duplication
or strict encoding, or the method presented in [6].

5 Conclusions

Known techniques for designing concurrently checking circuits are usually based on in-
troducing a significant redundant portion into the original scheme. Reducing this redun-
dant portion is one the main concerns in designing concurrently checking circuits. In a
case when all possible circuit’s output vectors are known in advance the designing of the
such circuits may be simplified by using so-called context-oriented techniques. One of the

368368

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

context-oriented techniques that is in the focus of our study is based on the partition-
ing of the initial circuit for two independent sub-circuits. The partitioning utilizes the
context-orientation property of the original circuit by using correlation between its output
variables.

In our paper, we proposed a technique that being based on the partitioning avoids the
necessity to introduce any additional redundancy into the initial scheme to be checked. It
uses already existing input variables to achieve the required effect of detecting an arbitrary
fault. Some of the input variables are used as additional inputs entered into a checker, in
addition to the original output variables of the circuit to be checked.

We have formulated theoretical fundamentals of the proposed design method. Based on
the fundamentals, we proposed a solution of the problem of selecting the optimized set of
input variables to be added to the output vector.

The proposed approach has been implemented and investigated. Experimental results,
obtained using a number of standard benchmarks, indicate a significant improvement in
detection of arbitrary errors, in comparison with the conventional methods and in terms of
the required hardware overhead.

References

[1] Kaushik De., Chitra Natarajan, Devi Nair, Prithviraj Banerjee, ”RSYN: A System for
Automated Synthesis of Reliable Multilevel Circuits,” IEEE Transaction on Very Large
Integration (VLSI) Systems,vol. 2, no. 2, pp. 186-195, June 1994.

[2] P. Lala, Self-checking and Fault-Tolerant Digital Design, Morgan Kaufmann Publishers,
San-Francisco / San-Diego / New-York/ Boston/ London/ Sydney/ Tokyo, 2000.

[3] I. Levin, M. Karpovsky, ”On-line Self-Checking of Microprogram Control Units”, The
4-th IEEE International On-line Testing Workshop, Capri, pp. 153 - 159, 1998.

[4] I. Levin and V. Sinelnikov, ” Self-checking of FPGA based Control Units,” Proc. of 9th
Great Lakes Symposium on VLSI, pp. 292-295, 1999.

[5] V. Ostrovsky and I. Levin, ”Implementation of Concurrent Checking Circuits by Inde-
pendent Sub-circuits,” Proceedings of 20th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT’05), pp. 343-351, 2005.

[6] V. Ostrovsky, I. Levin, O. Keren, B. Abramov, ”Designing Concurrent Checking Circuits
by using Partitioning,” accepted for publication in the International Journal of Highly
Reliable Electronic System Design on Aug-2007.

[7] V.V. Saposhnikov, A. Morosov, Vl.V. Saposhnikov, M. Gossel, ”A New Design Method
for Self-Checking Unidirectional Combinational Circuits,” Journal of Electronic Test-
ing: Theory and Applications, vol. 12, pp. 41-53, Feb. 1998.

[8] E.S. Sogomonyan, ”Design of Built-in Self-Checking Monitoring Circuits for Combina-
tional Devices,” Automation and Remote Control, vol. 35, no. 2, pp. 280-289, 1974.

369369

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 14:57 from IEEE Xplore. Restrictions apply.

