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a b s t r a c t

The demand for replicability of behavioral results across laboratories is viewed as a burden in behav-
ior genetics. We demonstrate how it can become an asset offering a quantitative criterion that guides
the design of better ways to describe behavior. Passing the high benchmark dictated by the replicabil-
ity demand requires less stressful and less restraining experimental setups, less noisy data, individually
customized cutoff points between the building blocks of movement, and less variable yet discriminative
dynamic representations that would capture more faithfully the nature of the behavior, unmasking sim-
ilarities and differences and revealing novel animal-centered measures. Here we review ten tools that
enhance replicability without compromising discrimination. While we demonstrate the usefulness of
these tools in the context of inbred mouse exploratory behavior they can readily be used in any study
involving a high-resolution analysis of spatial behavior. Viewing replicability as a design concept and
using the ten methodological improvements may prove useful in many fields not necessarily related to
spatial behavior.
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What is a good description? The suggestion that a “good” descrip-
tion of behavior is what a good ethologist considers to be a good
description highlights a necessary but nonetheless insufficient con-
dition for high-quality descriptions. This is because even good
ethologists can err. How, then, if not on the basis of a claim to
authority (Beer, 1980), is one to tell the difference between high
and low quality descriptions?

The demand for replicability of results can help: One help comes
from behavior genetics, where the genetic aspects underlying dif-
ferences in behaviors are investigated. An example of an important
tool in this endeavor is Quantitative Trait Loci (QTL) analysis, where
particular regions on the chromosome are associated with quan-
titative traits that measure behavior in order to identify genes
responsible for the change (Flint, 2003; Lewis, 2003). Using this
method depends critically on the quality of the measurements of
behavior. If, under the same standard conditions and for the same
measure, in laboratory A one inbred mouse strain is found to be sig-
nificantly higher than another inbred mouse, and in laboratory B the
result is the opposite, then the locations found in laboratory A will
not be replicated by laboratory B, making the results of both stud-
ies useless for gene localization studies. Such opposing results can
mean that in at least one of the laboratories there may be an envi-
ronmental factor, perhaps unknown to the experimenter, which is
interacting with each of the strains in a different way. For example,
the experimenter may not know that one of the strains is blind and
that the lights are brighter in one of the laboratories, thus affecting
only the sighted strain. This so-called interaction between labora-
tory and strain makes any comparison between the behavioral trait
of the two strains questionable: if, for example, the aggressiveness
of Bull Terrier dogs would be scored significantly higher than poo-
dles in Stranger-directed Aggression in one clinic (as indeed they
were; Blackshaw, 1991) and lower than poodles in another, then
something would have been either wrong with (i) the experimental
setup (inappropriate experimental setup and/or protocol), or with
(ii) the way aggression was measured (a deficient measurement
methodology), or, if we stick with the measure and protocol, there
is something wrong with (iii) the way the significance was assessed
(a deficient statistical methodology).

Standardization is necessary but not sufficient. A well accepted and
widely discussed way to improve replicability is through standard-
ization of the experimental protocol and measurement process. It
is no wonder, therefore, that the Crabbe et al. multi-laboratory
experiment (1999) had at the time a substantial impact on the
behavior genetics community. In spite of their serious efforts to
assure a high level of standardization, their study found signifi-
cant genotype/laboratory interactions, thereby showing that some
behavioral results were indeed idiosyncratic to a particular labora-
tory!

One response to this was a demand for ever more rigorous stan-
dardization (e.g., Beynen et al., 2001; van der Staay and Steckler,
2002). Our own group, advocating an ethological perspective, has
suggested that while standardization is needed, it cannot com-
pletely solve the problem because it addresses the known factors,
while interaction is often caused by unknown ones. We argue that
variability across laboratories, like individual variability, is a fact of
life and one that cannot be entirely eradicated. Therefore, improve-
ment should be made in measurement technology. If we take this
approach, the lack of replicability as measured by the Lab by Strain
interaction can become a useful yardstick for guiding us to success-
ful and therefore higher quality measures.

The need for a revised methodology of description: We argued that
the essential inability to construct identical experimental setups,
which was reflected in the Crabbe et al. (1999) results, can and
should be used to filter out non-robust strain differences. Con-
versely, the magnitude of such non-robust differences can guide
us in a revision of the way in which behavior is measured and in

the way differences in behavior across laboratories are estimated.
To demonstrate the practicality of our methodology we applied it
to a comparison of exploratory behavior in eight mouse genotypes
across three laboratories, and showed that replicable measures can
in fact be established, even though the analysis that takes into
considerations the different behavior of strains across laboratories
requires larger observed strain differences for establishing signif-
icance. The statistical details are not important; most important
from the standpoint of the present review is that the benchmark
that the observed strain differences should pass in order to uncover
significant genotype differences is set higher than usual when tak-
ing into consideration replicability across laboratories. Since this
higher benchmark limits the power of discrimination of the system,
a revision in the methodology of the measurement of behavior is
implied: the higher benchmark requires measures that would be
able to discriminate genetic differences even over the background
of the interaction.

An improved measurement methodology would clearly not
eliminate environmental influences, nor would it change the way
laboratory variables interact with genetic factors. It can, however,
reduce the effect of both on the measured behavior by taking into
account some of the intrinsic properties of the specific animal,
strain or laboratory. The development of an adequate measurement
methodology is, therefore, not a luxury but a requirement dictated
by the need for replicability of results across laboratories (Kafkafi
et al., 2005).

What issues should a revised methodology of measurement
address? One set of issues pertains to the use of behavior patterns
versus the use of continuous variables: what features of movement
justify scoring of discrete patterns and what features indicate a
representation in terms of continuous kinematic variables? Should
the continuous data time-series be compressed into a sequence of
discrete whole-animal patterns? What type of patterns? At what
stage of the analysis? Can compression be accomplished with-
out recourse to subjective judgment, and without turning these
patterns into black boxes whose kinematic content will become
inaccessible? How can one select, or even design, variables that are
more relevant than others in the face of a large number of candidate
kinematic variables?

The second set of issues pertains to data preparation for analy-
sis: to what extent does the output of a tracking system represent
reality? What, if at all, should the criteria for segmentation of the
flow be? Are there any costs to the segmentation process? How
reversible should the segmentation be? How compatible are vari-
ous segmentations of the same data time-series?

In the following review we describe ten ways to address these
issues, focusing on how the degree of replicability and discrim-
inability of results can be used as a beacon that would guide us
toward better descriptions of behavior. The aim of this review is
thus not to provide a review of better ways to describe behav-
ior, but to show how better ways can be developed by assessing
the quality of a description using objective criteria of replicabil-
ity and discriminability. To achieve this aim we took the liberty
of using examples from our own work and presented the material
in a reader-friendly way, avoiding as much as possible technical
aspects. This was accomplished by the use of multiple visualiza-
tions and graphs, and by attending to the statistical aspects of the
replicability issue in a minimal way only where absolutely required.

1. Starting with the measurement of kinematic variables

1.1. Problems with the use of ad hoc whole-animal behavior
patterns

A methodology of measurement that commences from a list of
ad hoc whole-animal behavior patterns, such as the ethogram, is
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Fig. 1. (a) A selection of postures illustrating various forms of head raising behavior ‘b–e’ as well as no head raising ‘a’. All (except ‘a’) could be scored as “rearing”.
(b) Successive stages of a single rearing activity (a–g; from: A. Neuman, M.Sc. thesis, Department of zoology, Tel Aviv University, 1990).

problematic. Such patterns could only be identified at the onset
of a study and then used as the elementary building blocks of
behavior, had they been composed of a fixed content. In the major-
ity of cases, however, the content of these patterns is variable.
Stopping episodes in mice, for example, typically consist of a vari-
ety of staying-in-place behaviors such as stepping in place, and
horizontal and vertical scans that have variable durations, speed
profiles and spatial spreads (Kafkafi et al., 2003a). These are not
insignificant details; the scans disclose the direction of attention
of the mouse, the extent of feet contact with the ground discloses
the extent of the mouse’s familiarity with the environment, etc.
Similarly, even as straightforward a pattern as rearing behavior
in rodents (Fig. 1a–e) is a hodge-podge category, encompassing
versatile kinematic features such as the extent of hind feet con-
tact with the substrate (e.g., plantigrade (c), versus digitigrade (b
and e)), orientation of lower torso (e.g., horizontal (b), diagonal up
(d), and vertical (c and e)), orientation of upper torso (e.g., hor-
izontal (a–c), diagonal up (d), and vertical (e)), and orientation of
head (e.g., horizontal (b–d) and diagonal up (e)). These features dis-
close information that could be critical with regard to the animal’s
momentary emotional state, the direction of the animal’s attention
and its intention.

In addition, premature categorization ignores the dynamics
of movement taking place within the “pattern”: pharmacological
interventions, for example, may not affect the frequency of rearing
yet alter the speed or sequence of postures involved in different
rearing episodes (Fig. 1b). All this information is irrevocably lost
once the behavior has been encapsulated in an ad hoc black box
labeled “rearing”. Neither inter-observer reliability nor a computa-
tional follow-up of this classification process by a neural network
trained by a skilled human observer (e.g., Steele et al., 2007), can
compensate for this information loss.

1.2. Advantages of the measurement of continuous variables

A methodology of measurement should thus commence with
raw kinematic quantities (variables) of the movement material
collected by tracking systems. This includes variables such as the
location time-series and its derivatives (path scale), and the rela-
tions and changes of relation between the parts of the body (joints
scale). Analysis has revealed that these variables can sometimes
be divided into discrete segments. For example, segmentation of
the speed time-series of individual mice and individual fruit flies

(Drosophila melanogaster) may yield stopping episodes and pro-
gression segments (Drai et al., 2000; Valente et al., 2007; Branson
et al., 2009). Similarly, recording the instantaneous position, speed,
and turning rate of single worms (Caenorhabditis elegans) as a func-
tion of time in gradients of a chemical attractant, and subsequent
analysis of turning rate yields segments of smooth swimming (runs)
and episodes of frequent turning (pirouettes; Pierce-Shimomura et
al., 1999). Discrete patterns like stopping and pirouetting thus con-
stitute the results of the study, not its beginning. Both stopping and
pirouetting are defined on the basis of a single kinematic variable,
be it maximal speed or turning frequency. In this sense they consti-
tute segment types rather than classical multidimensional behavior
patterns.

Continuous kinematic measurements provide a quantitative
detailed assessment of the changes taking place within segments.
The details of how an animal performs a behavior (e.g., Fig. 1b)
can be objectively quantified, highlighting the difference in the
performance of the “same” segment type. The speed profile of
a progression segment tells us whether a rat (Rattus norvegicus)
“thinks” it is progressing away or toward its home base, or how
familiar the immediate environment is. In an unfamiliar environ-
ment outbound speeds are higher than inbound speeds, while on a
beaten path the speed ratio is reversed (Tchernichovski and Golani,
1995; Tchernichovski et al., 1998). Whishaw and colleagues used
the speed profile in a well-trodden arena to show that unlike intact
rats, hippocampal rats do not “know” where their home base is
located (Wallace et al., 2002, 2008; Whishaw et al., 2001). Con-
tinuous simultaneous recording of location, of body orientation
in reference to the wall and of speed reveals that mice speed up
upon finding themselves at a distance from the wall and parallel
to it, thus disclosing the fact that they use the wall as a guidance
(Fig. 10), in some strains even when presumably blind (Horev et al.,
2007). Finally, for many years, birdsong studies commenced from
the developmental stage where syllables and songs could be iden-
tified and labeled in the sonagram. The preceding (subsong) stage,
where syllable types could not be recognized by visual inspec-
tion, was mostly ignored. More recently, starting with a continuous
recording of song development, and computing continuous fea-
tures such as pitch, frequency modulation and entropy, it became
possible to trace syllables back into the very beginning of the sub-
song developmental stage, where the morphogenesis of syllables
and songs could be followed and deciphered (Tchernichovski et al.,
2001; Tchernichovski and Mitra, 2002).”
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The measurement of continuous variables has further advan-
tages for segmentation, as detailed in Sections 4 and 6 below
(Figs. 3 and 8).

2. Unfettering behavior from the constraints imposed by a
small cage, short session and coercion

The larger the experimental environment and the longer the
session the more stretched out the behavior is and the finer the
spatial and temporal resolutions. This applies to location and its
derivatives—speed, acceleration, curvature, heading direction, and
higher level constructs such as the spatial spread of segments of
behavior, preferred locations, and separation between edge and
centre behavior. Discrimination between slow and fast strains,
straight-path and curved-path walkers, wall-huggers and centre-
dwellers improves in a large environment.

Finally, a large open space, combined with a free access to the
arena from the animal’s own home-cage has an extraordinary facil-
itating influence on the richness of the behavioral repertoire, which
unfolds gradually, in a stable sequence, revealing the organization
of this behavior (Fonio et al., 2009; see Section 8).

3. Robust data analysis at the preparatory stage

The use of kinematic variables implies an extensive prepara-
tion of the data for analysis, including robust (outliers resistant)
smoothing. Noise and tracking artifacts are inherent to all tracking
systems and critically affect the results. Even as straightforward a
measure as Distance Traveled can be misleading. Whereas with-
out proper smoothing an anaesthetized (and therefore still) mouse
was found by us to “travel” in 15 min, 94 m with an average speed
of 10 cm/s, after smoothing Distance Traveled was reduced to 6 m!
The reason for this is that if the boundaries of the tracked ani-
mal do not fall exactly on one pixel, they might vacillate between
two neighboring pixels, so that the “centre of gravity” (by what-
ever method it is calculated) will waver between discrete values
even if the animal is stationary. The discretization of the measure-
ment process affects not only a stationary, but also a moving mouse
(see Fig. 1 in Hen et al., 2004). This example demonstrates how the
smoothed data are better estimates of the trajectory of the mouse
than the actual time-series of its recorded locations.

Since speed and acceleration disclose the “forces” acting on
the animal, it is extremely important to obtain faithful records of
these quantities in order to understand the interaction between
the animal and its environment. While smoothing is a necessity,
smoothing methods can have grave consequences on the outcome
of a study: for example by eliminating short stops and thereby erro-
neously joining two movement segments into a single longer one;
by shortening long stops; by flattening peak velocities; and by being
influenced by outlier artifacts. In addition, the smoothing require-
ments of staying-in-place behavior differ from those of progression
from one place to another. The magnitudes of the above-listed
shortcomings are reduced by using robust nonparametric meth-
ods that are not affected by outlier artifacts, while the above-listed
requirements are fulfilled by using a distinct smoothing method
for each of the locomotor modes (Hen et al., 2004; Fig. 2a). The
smoothing yields time-series of location data, speeds, heading
directions, and, most important, it identifies arrests (Fig. 2b), which
are subsequently used for the segmentation of the time-series
into discrete behavioral units with proven ethological relevance
(http://www.tau.ac.il/∼ilan99/see/help/).

Noisy kinematic variables mask real similarities and real dif-
ferences wherever they exist. Robust smoothing improves both
replicability and discrimination by unmasking these similarities
and differences.

4. Segmentation based on intrinsic geometrical and
statistical properties of the kinematic material

In most open field studies cutoff points are established ad hoc:
a stop, for example, is defined as staying in place for at least 0.5 s.
It is, however, preferable to use “intrinsic” criteria for (i) finding
out whether progressing and stopping do not lie on a continuum,
and (ii) defining the cutoff point between them: “intrinsic” is not
used here as a hand-wave. It rather means that the researcher
does not impose on the data a predefined rule of what consti-
tutes, e.g., a stop. To obtain an intrinsic measure an algorithm that
processes jointly the entire time-series of the individual animal’s
measurements is defined. Cutoff points are then calculated based
on statistical properties such as humps in the density or clusters
in the joint distribution of measurements. In this way the cutoff
reflects the individual animal’s behavior, while still being algorith-
mically defined in an identical way in all animals under study. Not
only does each strain define, by its own behavior, its own distinction
between progression and staying in place—the cutoff point is cus-
tomized for each individual, allowing one to determine how fixed
this cutoff point is across animals, strains, and preparations (Drai
et al., 2000). The individually customized cutoff points are used
to establish a strain-specific measure that characterizes the strain
(Kafkafi et al., 2005). Using individually customized cutoff points
increases replicability by reducing the apparent variability brought
about by ad hoc segmentation (Lipkind et al., 2004).

Fig. 2b presents a schematic illustration of the segmentation
process as we describe below. At the first stage we isolate intervals
of complete arrests, and the inter-arrest intervals in the speed time-
series are defined as motion segments. The population of motion
segments includes long-distance segments that reach high max-
imal speeds, as when a mouse moves from one place to another
and very short-distance segments that attain very low maximal
speed, as when a stationary mouse performs a lateral scan, or one
to few steps, and then arrests. Plotting a frequency distribution of
the maximal speeds of motion segments (Fig. 3) suggests that the
population of motion segments performed by a mouse during a ses-
sion in the open field indeed consists of a mixture of two distinct
locomotor modes: high-speed and low-speed motion segments. At
this stage the cutoff point between the two populations is obtained
by fitting a Gaussian mixture model to the empirical density plot
(Fig. 3). In particular, the Gaussian on the right consists of motion
segments that reach high maximal speed, and carry the mouse from
one place to another. These are the so-called progression segments.
The last index of a progression segment and the first index of the
next progression segment bound a so-called lingering episode (see
Fig. 2b). Lingering episodes are thus packages that consist of at
least one arrest and zero-to- several low-speed motion segments
(e.g., the second lingering episode underlined by the second pur-
ple line in the bottom of Fig. 2b consists of three arrests and two
low speed motion segments). The time-series data points are thus
compressed automatically into a sequence of intrinsically defined
segments. The individually customized cutoff point between lin-
gering and progression segments was indeed found to contribute to
the replicability of results across laboratories (Kafkafi et al., 2005).

4.1. How customized cutoff points increase replicability by
reducing the interaction term

Let us return to the simple example where the experimenter
may not know that one of the strains is blind, and that the lights are
brighter in one of the laboratories, thus affecting only the sighted
strain. Let us assume that this effect results in the sighted mice
keeping closer to the wall, at, say, up to 5 cm, under the brighter-
light situation, while the blind ones are not affected. Suppose that
both strains at both labs spend the same amount of time near-
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Fig. 2. (a) Location (bottom graph) and speed (top graph) out of 6 s time interval of a mouse’s movement, smoothed using several methods. “Raw” speed (gray, top graph) is
calculated as the differences between consecutive raw locations. MA (moving average) speed (top, red) is calculated as the differences between consecutive MA smoothed
locations. LP (Local Polynomial) speed (top, green) is calculated directly by the LP. LOWESS-smoothed locations and velocities were almost identical to those calculated
by LP since there were no outliers. Arrests are computed as zero speed in the RRM (Repeated Running Medians) smoothed series. The time ranges of arrests are denoted
by yellow stripes (from Hen et al., 2004). (b) A schematic illustration of the four stages of the segmentation process: stage 1: the smoothing process yields intervals of
complete arrest (six yellow segments in this illustration). Stage 2: inter-arrest intervals identify motion segments (five gray segments in this illustration). Stage 3: a density
distribution of maximal speeds of motion segments yields a cutoff point (thin horizontal line parallel to the X-axis) that classifies the motion segments into 2 distinct maximal
speed populations: low-speed motion segments that do not cross the cutoff speed, and high speed ones that do cross the cutoff threshold. Stage 4: these high-speed motion
segments are defined as progression segments (three blue segments in this illustration). Stage 5: the intervals between progression segments are defined as lingering episodes
(four purple segments in this illustration). As illustrated, a lingering segment may consist of one-to-several arrests and none to several low-speed motion segments. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 3. (a) A density graph (a sliding window histogram) displaying the distribution of peak speeds of motion segments (black line) reveals two distinct populations: low-
speed segments (lingering or stopping episodes) and high-speed segments (progression segments). Red and blue lines represent the two components of a Gaussian mixture
model fitted by the EM (expectation–maximization) algorithm to the distribution, in order to establish a threshold that distinguishes between the two populations. (b) A
visualization of the two separated populations: lingering episodes (red left) and progression segments (blue right) performed during the analyzed session (from Kafkafi et
al., 2003a,b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

the-wall. Still, if “near-the-wall” is defined ad hoc at, say, 10 cm,
time spent near-the-wall will be higher for the sighted mice in the
lighted lab as it will include also time spent away from wall. This
will result in a lab effect (the average over the two strains will be
higher for the lighted lab), as well as in a lab by strain interaction. If,
instead, the size of the ring “near-the-wall” is allowed to be deter-
mined individually, both strains at both labs will spend equal time
near-the-wall, reducing both lab effect and lab by strain interaction
(Lipkind et al., 2004).

Using individually customized cutoff points between near-wall
and centre segments uncovers a highly replicable and discrim-
inative strain-specific measure characterizing the thickness of
the ring of wall-cursions, which are segments that are per-
formed near-the-wall and in parallel to it (Lipkind et al., 2004;
Fig. 4).

The versatility of strain-specific wall-ring thickness had been
fully masked by the commonly used ad hoc 10 cm threshold for
near-wall behavior. Conversely, a description in terms of cus-

Fig. 4. Plots of the path traced during a 30 min Open field session by mice belonging to eight inbred strains. The path is separated into movement along the arena wall (blue
wall-ring) and movement in the centre (red) using the Wall-Centre-Separation algorithm. Wall-ring width was found to be highly replicable across three laboratories (from
Lipkind et al., 2004). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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tomized strain-specific wall-rings is preferable to a description
based on an ad hoc distinction.

5. Segmentation at the indexing level leaves the data
time-series transparent for further analysis

Compression of the stream of behavior into discrete patterns at
the indexing level preserves the transparency of the segments so
that their content can be subsequently analyzed, either in refer-
ence to the segments or regardless of them, thus highlighting other
aspects of the organization of behavior. The obtained series of seg-
ments does not replace the original time-series of the kinematic
variables. The original time-series are deposited along with their
summaries in publically available data bases of behavior so that
they can be used repeatedly for analysis from a variety of vantage
points.

In our own work kinematic properties of segments are used
to establish a variety of higher level behavioral constructs: the
frequency and topographical distribution of lingering are used to
define preferred places (Golani et al., 2005) while the probabil-
ity of their performance at particular locations is used to define
locational memory (Dvorkin et al., 2008). On the other hand, the
speed profile within lingering episodes is used to calculate aver-
age lingering speed—a quantity characterizing the level of activity
during staying-in-place behavior that was found to be highly heri-
table and discriminative across inbred strains (Kafkafi et al., 2003a).
A segmentation based on the maximal speed attained within seg-
ments yields, for example, the sequence of progression segments
and lingering episodes illustrated in Fig. 5a; and zooming into the
content of the same segments in Fig. 5b provides access to the
speed profile of these segments. It also provides access to other
kinematic parameters including their acceleration-related proper-
ties (Fig. 5c) and their rate of turn (a measure akin to curvature), at

one-to-several scales (Kafkafi and Elmer, 2005; Kafkafi et al., 2003b;
Fig. 5d).

The multiplicity of measures gained by the time-series trans-
parency, and therefore the accessibility of the data, increases the
likelihood that at least some of the measures will pass the higher
benchmark for replicability set by the incorporation of the inter-
action term into the statistical yardstick establishing significant
differences between strains across laboratories. Conversely, the
measures that passed the benchmark are better descriptors of the
behavior.

6. Alternative complementary segmentations

The segmentation of the flow into progression segments and lin-
gering episodes does not prevent alternative and complementary
segmentations: such as into excursions performed from a home
base (Fig. 6) – sequences of progression segments and lingering
episodes that can in turn be divided into outbound and inbound
portions (Tchernichovski et al., 1998): and incursions – forays into
the centre that start and end at the wall (Fig. 7), which are in turn
separated into discrete classes on the basis of their maximal dis-
tance from the wall, by fitting a Gaussian mixture model to an
empirical density function (Fig. 8, Lipkind et al., 2004).

Once again, the multiplicity of segment types increases the like-
lihood that at least some of the measures derived from them will
pass the benchmark for replicability and therefore provide better
descriptors of the behavior.

7. Stratified measurement of segment types

When sub-populations vary considerably, it is advantageous to
measure each subpopulation (stratum) independently. Stratifica-

Fig. 5. (a) A portion of a mouse’s path in the arena after smoothing and segmentation into progression segments (blue) and lingering episodes (red). (b) The same path
visualized in a, but with the speed profile of the progression segments presented in the 3rd dimension (in azure). The direction of progression is marked by the color of the
path, starting with yellow and proceeding to red in each progression segment. (c) A time-series of speeds including two progression segments (S1 and S2), and a lingering
episode (LE) in between. The ratio between the maximal speed of a progression segment (vertical arrow in S1) and the segment’s duration (horizontal arrow in S1) describes
“Dart” (Kafkafi et al., 2003b)—a measure akin to segment acceleration (peak speed divided by duration). The horizontal line in LE designates median lingering speed (from
Kafkafi et al., 2003a). (d) Computation of rate of turn: Examples of computing an endpoint related to curvature of the path at one data point, ‘b’, of a progression segment
at two scales: 8-cm scale (left) and 16-cm scale (right). The curvature in degree/cm is defined as Ø/(2 h). The process is repeated at all data points belonging to progression
segments and on several scales (from Kafkafi and Elmer, 2005). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
the article.)
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Fig. 6. Successive excursions (#45–59) in a free exploration setup from the attached home-cage into a 2.5 m diameter arena of a C57BL/6J mouse. Yellow to red signifies
direction of progression (courtesy of Z. Havkin and D. Checkroun, unpublished results). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)

Fig. 7. (a) Plots of 12 successive segments of motion along the wall (blue) and in the centre (red) in a C57BL/6J mouse-session. (b) Plots of three successive incursions in the
same session. Yellow to red coloring indicates the direction of movement in each segment within an incursion. Note that incursion I is composed of three centre segments
(1, 2 and 3 in ‘a’), and incursions II and III are each composed of a single centre segment (7 and 11 in ‘a’, respectively) (from Lipkind et al., 2004). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of the article.)

tion is the process of grouping members of the population into
relatively homogeneous subgroups before measurement.

7.1. Stratified measurement of segment types increases
replicability

The dissection of the path into intrinsically defined segment
types, followed by a measurement of the features of each of these
types separately, yields more replicable endpoints than does a mea-

surement of a mélange including some or all of them. A comparison
of the numbers of Incursions performed during a session in, for
example, C57BL/6J and DBA/2J mice shows that the number is
higher in the first strain, but this difference is not statistically sig-
nificant (Fig. 9 top left panel). Scoring of the three incursion types
that are isolated by classifying incursions according to their maxi-
mal distance from wall (Fig. 8) is plotted in Fig. 9 top right and two
bottom panels. The numbers of near-wall incursions are evidently
not replicable across laboratories: although there is a large strain
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Fig. 8. (a) Black: a density graph of the distribution of the maximal distances from wall of centre segments (log transformed) in a single C57BL/6J session. Red: three Gaussians
fitted to the distribution by the EM algorithm. The intersection points between the Gaussians serve as cutoff values for dividing all incursions performed in this session into
three types. (b) Path plots of the incursions belonging to each type (from Lipkind et al., 2004). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

Fig. 9. Comparison of the degree of replicability of the number of incursions performed during a session in DBA/2J (in gray) and C57BL/6J mice (in black) before and
after stratified measurement. Top left: measurement of all incursions pooled together (before stratification). The differences between the strains are not consistent (non-
replicable) across laboratories. Top right and two bottom panels: After stratified measurement the difference between the strains across laboratories becomes more consistent
in intermediate and in arena-crossing incursions. It is the non-replicable difference between near-wall incursions in the 2 strains that masked the highly replicable differences
in the other 2 incursion types (from Lipkind et al., 2004).
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difference in TAU, in the other two laboratories the two strains
have a similar number of near-wall incursions. In contrast, there
is a replicable strain difference in the number of intermediate and
arena-crossing incursions, with C57BL/6J mice making significantly
more incursions of both these types than DBA/2J mice in all three
laboratories. It now becomes evident that the failure to achieve sig-
nificant results in the overall number of incursions (Fig. 9 top left) is
due to inter-laboratory variation in the numbers of a single incur-
sion type: near-wall incursions. The boxplot summaries disclose
how stratified scoring plus a multi-laboratory experiment trans-
form low quality measures into high-quality measures: we start
with non-significant differences in the un-stratified measure (Fig. 9
all incursions; partly overlapping spread of the boxplots of the two
strains in all three laboratories), and continue with filtering out
the segment type that shows a strong interaction (near-wall incur-
sions), and we end up by keeping two new replicable measures,
that of Number of Incursions in intermediate and that of Number of
Incursions in arena-crossing incursions (that show a similar, con-
sistent difference between the two strains’ boxplots in all three
laboratories).

7.2. Stratified analysis of segment types reveals complex
interrelations between kinematic variables

The relatively erratic nature of mouse movement hinders a faith-
ful computation of its heading direction and speed during lingering
episodes. By sifting out the lingering episodes and computing these
quantities only for progression segments, one can, however, obtain
a faithful representation of the quantitative relations between the
mouse’s distance from wall, its heading direction and its speed
(Fig. 10). As illustrated for two selected strains, each strain exhibits
a strain-specific signature of the relationship between these quan-
tities (Horev et al., 2007).

A selective depiction, only within progression segments of this
threefold relationship, thus exposes the two types of influence
exerted by the wall on the mouse’s path: one of guidance and
one of attraction. The guiding influence is expressed by the ten-
dency of mice to progress in parallel to the wall. Although this
tendency wanes with increasing distance from the wall, it can still
be observed at large distances from it. The more parallel the mouse
is to the wall, the higher is its speed, even when distant from the
wall. This association between heading direction and speed shows
that the mouse controls its heading in reference to the wall. This
has also been observed in some blind strains, revealing that wall-
guidance is not based exclusively on vision. The attraction influence
is reflected by movement along the wall and by the asymmetry
between speed during movement toward the wall, and speed dur-
ing movement away from the wall: sighted mice move faster when
moving toward the wall, whereas blind mice use similar speeds for
both directions. Distinct influences of guidance and attraction have
been shown to prevail in five inbred strains, revealing heritable
components that were found to be replicable across three labora-
tories. This improved mode of description of open field behavior
would not have been possible without the culling out for analysis
of the progression segments stratum.

8. Design of animal-centered measures

Unthought-of measures and surprising building blocks of
behavior are exposed by going back-and-forth between the video-
taped behavior and its versatile visualizations. Sometimes the
computational algorithms validate a hypothesis formed by unaided
observation. For example, the distinction between lingering and
progression segments was validated by plotting the density of max-
imal speed reached in motion segments (Fig. 3; Drai et al., 2000), or

the discovery of “knots”, a new type of places marked by the per-
formance of tortuous paths full of twists and turns, was validated
and characterized by the use of specially designed algorithms that
scan the arena for places marked by high path curvature (Dvorkin
et al., 2010). At other times it is the plot that sends the observer to
the video. For example, plotting the number of stops per roundtrip
yielded in rats an unexpected upper bound on that number. Count-
ing on the video the stops made by a rat in the course of a roundtrip
and being aware of this upper bound, an observer can asses the
likelihood that the rat will turn around and rush all the way home
without stopping (Golani et al., 1993). Be it as it may, both initial
hypotheses and final validations are based on observation of the
behavior on the video record.

Studying the moment-to-moment developmental dynamics of
exploratory behavior in mice with our revised methodology yields
12 novel developmental landmarks and a host of mouse-centered
measures characterizing their order of emergence and build up
(Fonio et al., 2009; Fig. 11). The stability of their sequencing
supports their validity as high-quality descriptors of the mice func-
tional world (umwelt; von Uexküll, 1957).

9. Design of measures on the basis of data collected
simultaneously in more than one laboratory

Instead of designing measures in one laboratory and only then
validating them in subsequent studies performed in other labora-
tories, new measures are preferably designed from the outset on
the basis of data obtained in parallel studies performed in several
laboratories. Alternatively, the studies can be performed sequen-
tially in more than one laboratory and final design decisions can be
made in view of the results of all. Implementation of moderate stan-
dardization across laboratories increases the likelihood that the
participating more-or-less similar laboratories represent a realistic
sample of all laboratories (Kafkafi et al., 2005).

Our call for multi-laboratory experiments need not eliminate
single-laboratory experiments. The user of a measure that has been
already developed in more than one laboratory can conduct an
experiment in a single laboratory, as long as the reported variances
of laboratory interaction (see Section 10) are taken into account.

10. Set a higher yardstick using the Mixed-Model

Incorporation of the laboratory by strain interaction into the
yardstick that determines the benchmark for replicability secures
that the newly designed measures are indeed replicable.

Ten improvements. (i) Tracking of continuous kinematic vari-
ables, (ii) using ethological setups, (iii) robust smoothing, (iv)
segmentation based on intrinsic properties of the kinematic data,
(v) data transparency, (vi) alternative segmentations, (vii) stratified
estimation of segment types, (viii) use of animal-centered mea-
sures that portray the animal’s own functional world, and are (ix)
designed and tested from the start across more than one laboratory
and (x) incorporating into the statistical yardstick for replicability
the strain/laboratory interaction, all contribute to the quality of a
description.

The quality of a description is reflected in both the replicability
and discriminability of the results. Extensive encapsulation of behav-
ior into discrete “patterns” might increase the replicability of that
behavior by concealing the variability of the kinematic content that
is packed within the patterns. It would, however, also reduce the
information content of that description, cutting in this way down
its discriminative power. Conversely, a very detailed description of
a behavior will contain a lot of information, yet a large proportion of
that information might not be replicable. A good description would
clearly optimize both replicability and discriminability.
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Fig. 10. Speed (Z-axis) plotted against heading (X-axis) and distance from wall (Y-axis) in representative sessions of C57BL/6J and SJL mice illustrate the threefold strain-
specific relationship between these variables. (a) The three-dimensional landscape of the session of a selected C57BL/6J mouse is shown in black and its projection on the
XY plane and the XZ plane are shown in gray. Heading values vary between −90◦ (outbound movement) and 90◦ (inbound movement) with 0◦ representing movement in
parallel to the wall. The gradual increase of speed values depicted in the projection on the speed–distance plane shows the effect that distance has on speed. The gradual
increase in heading ranges depicted in the projection on the heading–distance plane shows the effect that distance has on heading. The speed peaks at heading 0◦ , which form
the central ridge in the three-dimensional graph, indicate the effect that heading has on speed. Note also that ridge steepness decreases with the increase in distance. This
decrease points toward a second effect that distance has on speed, an effect that is mediated by heading. (b) Selected plots of 3 mouse-sessions of C57BL/6J mice illustrate the
strain-specific signature of the speed–heading–distance relationship. The three-dimensional landscape is shown in red and its projection on the distance–heading plane and
the distance–speed plane are shown in black. Note in all mouse-sessions the slight increase in speed values depicted in the projection on the distance–speed plane, the gradual
increase in heading ranges depicted in the projection on the heading–distance plane, the speed peaks at heading 0◦ , which form the central ridge in the three-dimensional
graph, and the decrease in ridge steepness with increasing distance. (c) Selected plots of 3 mouse-sessions of SJL mice illustrate their strain-specific signature. Note that the
distance axis mostly extends over a much smaller distance-range compared to that in the C57BL/6J graphs. This is because each graph line represents an equal number of data
points, and the SJL mice moved mostly near-the-wall. Note too the absence of speed augmentation with increasing distance from wall and the abrupt increase in heading
ranges, as opposed to the gradual increase in heading ranges in C57BL/6J mice. Finally, note that the central ridge disappears in these strongly visually impaired mice at a
distance of 6–7 cm from wall, as opposed to a distance of up to 50 cm in C57BL/6J mice (from Horev et al., 2007).
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Fig. 11. The moment-to-moment developmental sequence of free exploration. The developmental landmarks in a specific BALB/c mouse-session performed across a 3 h
period. The spiral proceeding from top to bottom, first in the left and then in the right column, presents the time-series of 2D locations on the path traced by the mouse. The
enumerated figure-inserts show the 12 novel landmark motions exposed in this study, traced in red within the arena, and on the spiral. Blue dots indicate instances in which
the mouse approached the cage doorway and did not enter the cage (cage-skips), or stopped short of returning all the way home during a return (home-related shuttle).
Absence of a blue dot implies departure into home-cage. Yellow path stands for the return portion within a home-related shuttle (from Fonio et al., 2009).

(i) Replicability: Having implemented the ten improvements in
the analysis of open-field behavior of eight genotypes across three
laboratories using SEE (http://www.tau.ac.il/∼ilan99/see/help/) it
was demonstrated that replicable behavioral measures can indeed
be practically established (Kafkafi et al., 2005).

The genotypic differences in all seventeen measures presented
in Fig. 12 were highly significant when using the Mixed-Model
ANOVA that incorporates the interaction into its statistical yard-
stick. These differences remained significant even after correcting
for multiple comparisons (FDR-adjusted; Benjamini and Hochberg,
1995; Benjamini et al., 2001). Note, that according to the tradition-
ally used Fixed-Model, more than half of the measures (marked
by an asterisk in Fig. 12) would not have been found replicable. In
contrast, use of the Mixed-Model reveals that the interaction term
can be large, and yet discrimination would be good relative to that
interaction. The revised methodology thus substantially increases
replicability without compromising discriminability. Furthermore,
the addition of many new mouse-centered measures increases the
dimensionality of the space of behavioral traits, thereby increasing
discriminability.

(ii) Discriminability: A SEE based comparison of 11 mouse strains,
including two wild-derived inbred strains and first-generation-
in-captivity wild mice, further demonstrates the contribution of
the revised methodology to discriminability. Fig. 13 presents a
visualization of the median values of twenty-seven calculated
measures, by using a polygon-plot (a variation on the star-plot)
for each of the strains. In this type of icon plot, the distance
from the centre of the icon to consecutive corners of the poly-
gon represents relative values of selected variables. Data points

plotted in the centermost part represent low measure values,
and data points plotted in the outermost part represent high val-
ues. The polygon thus highlights the unique multidimensional
value characterizing a strain within the multidimensional space
of open field behavior that is displayed by all strains; it also
sensitizes the observer to the versatility of strain-specific pro-
files.

The thickness of the wall-ring traced by C57BL/6J mice (mea-
sure #1) contrasts with the thin wall-ring in DBA mice who actually
brush the wall while progressing along it (see illustration in Fig. 4);
the limited spatial spread of lingering episodes (measure #15)
in Wild and wild-derived strains (Czechii and CAST), who hardly
move around when staying in place, contrasts with the wide spa-
tial spread brought about by stepping and scanning-around during
lingering in DBA and SJL strains; and the apparently unexpected
moderateness of all the values in the Wild mice contrasts with the
extreme and often exaggerated values found in the domesticated
mus laboratorius strains (Fonio et al., 2005).

The multiplicity of measures reflects the genuine complexity of loco-
motor and exploratory behavior. The multiple measures presented in
Figs. 12 and 13 could be redundant. In particular, the two commonly
used measures, Distance Traveled and Centre Time could explain
most of the observed inter-strain variability, making the use of all
the other measures excessive or even unnecessary. To examine the
relative contribution of these two measures, Lipkind performed a
Principal Component Analysis on 31 measures including these two,
derived from movement material characterizing wall versus centre
behavior in 8 inbred strains in the open field. In that study Distance
Traveled and Centre Time explained only 9.6% of path variability
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Fig. 12. The proportion of variance attributed to each of the factors—genotype, individual, laboratory, and interaction is shown by using the Mixed-Model. Measures are
sorted by their proportion of genotypic variance. Genotypic differences for all endpoints are significant when using the Mixed-Model. Asterisks indicate interaction effects
that were found to be significant according to the traditionally used Fixed-Model at a level of 5% (from Kafkafi et al., 2005).

Fig. 13. Median values of 27 behavioral measures are visualized using a polygon-plot for each of 11 mouse strains (for list of measures see Appendix Table 1). A separate
Polygon icon is plotted for each strain; relative values of the selected variables for each strain are represented by the distance from the Centre of the icon to consecutive corners
of the polygon, with minimal values in the centre and maximal values on the perimeter. Variables are numbered, and presented in a clockwise order, in correspondence with
the various measures (from Fonio et al., 2005).

across strains. The additional 29 variables were thus responsible for
90.4% of the overall variability, implying that the vast majority of
information about path structure is not conveyed by the commonly
used measures but by the newly developed ones (Lipkind, PhD the-
sis). Similarly, Horev, having demonstrated that the wall exerts
both attraction and guidance influences on a mouse exploring an
open field arena (Fig. 10) showed that these two influences, man-
ifested by distinct measures, are independent of Centre Time (and
therefore provide additional information). Guidance and attraction

were furthermore shown to be relatively independent of each other
(implying that they are mediated by different mechanisms; Horev
et al., 2007).

It should furthermore be noted that when a measure is, for
example, highly correlated with Distance Traveled in all but one
strain, then using that measure is justified because it discrimi-
nates this strain from all the others and it highlights this measure
as a distinct parameter shaping locomotor behavior. Furthermore,
given a genetic difference or a pharmacological intervention, if it
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affects directly one particular aspect of locomotor behavior that
is somewhat correlated with, e.g., Distance Traveled, then this in
itself would justify the separate monitoring of that aspect, because
the effect would be smaller, more difficult to detect, and more
difficult to interpret through its indirect influence on Distance
Traveled. In summary, while a correlation between the multiple
measures computed in SEE (Drai and Golani, 2001) would not
obviate their separate measurement, we failed to establish such
correlation. The revised methodology reviewed in this study reveals
that locomotor behavior has a complex, highly heritable multi-
dimensional structure that cannot be reduced to two or three
dimensions without loosing most of the information contained
in it.

Implications. Most or all of the ten recommendations can readily
be applied to any study involving a high-resolution analysis of spa-
tial behavior, be it the Elevated Plus Maze (Pellow et al., 1985), other
types of mazes (e.g., the radial arm maze, Olton and Samuelson,
1976) including task related mazes such as the Morris water maze
(Morris, 1984), and GPS monitored spatial behavior of wild ani-
mals in the field. The studied path may be traced by any organism,
be it a fly (Branson et al., 2009; Valente et al., 2007), a human baby
(Vitelson, 2005) or the eyes of a human subject exploring a land-
scape (Hayhoe and Ballard, 2005). All studies of spatial behavior will
benefit from dynamic representations of location and its deriva-
tives, from appropriate segmentation procedures based on intrinsic
properties of the movement material, and from organism-centred
variables and data transparency.

Generally speaking, viewing replicability as a design concept
rather than a hurdle will prove useful in many other areas not nec-
essarily related to spatial behavior; using intrinsic features of the
data for classification, segmentation, stratification and establish-
ment of organism-centred variables will yield individually adapted
yet well-defined measurements in many fields; and even the find-
ing of discrete patterns will be accompanied by retaining the
quantitative properties of each pattern, when performed, allowing
the dynamic study of its unfolding.
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