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In behavior genetics, behavioral patterns of mouse genotypes,
such as inbred strains, crosses, and knockouts, are characterized
and compared to associate them with particular gene loci. Such
genotype differences, however, are usually established in single-
laboratory experiments, and questions have been raised regarding
the replicability of the results in other laboratories. A recent
multilaboratory experiment found significant laboratory effects
and genotype X laboratory interactions even after rigorous stan-
dardization, raising the concern that results are idiosyncratic to a
particular laboratory. This finding may be regarded by some critics
as a serious shortcoming in behavior genetics. A different strategy
is offered here: (i) recognize that even after investing much effort
in identifying and eliminating causes for laboratory differences,
genotype x laboratory interaction is an unavoidable fact of life. (ii)
Incorporate this understanding into the statistical analysis of
multilaboratory experiments using the mixed model. Such a sta-
tistical approach sets a higher benchmark for finding significant
genotype differences. (iii) Develop behavioral assays and end-
points that are able to discriminate genetic differences even over
the background of the interaction. (iv) Use the publicly available
multilaboratory results in single-laboratory experiments. We use
software-based strategy for exploring exploration (see) to analyze
the open-field behavior in eight genotypes across three laborato-
ries. Our results demonstrate that replicable behavioral measures
can be practically established. Even though we address the
replicability problem in behavioral genetics, our strategy is also
applicable in other areas where concern about replicability has
been raised.

across-laboratory replicability | mixed-model ANOVA | open-field behavior

I n behavior genetics, behavior patterns of standardized mouse
genotypes, such as inbred strains or knockouts, are character-
ized to associate them with particular gene loci. The need for
such characterization, referred to as behavioral phenotyping, has
prompted the design of behavioral test batteries for mice (1-3).
A practical problem well known to most experimenters in the
field, however, is that it can be difficult to replicate behavioral
phenotyping results in a different laboratory. This replicability
problem was largely ignored until brought to light in 1999 by
Crabbe, Wahlsten, and Dudek (3). In this pioneering study they
conducted an experiment concurrently in three laboratories,
comparing eight genotypes by using seven standard behavioral
characteristics (endpoints) in a well coordinated study closely
following identical protocols. Their main positive finding was
that large genotype differences were demonstrated in all studied
endpoints. On the negative side they found significant differ-
ences between laboratories across all genotypes in many end-
points. Although the difficulties raised by such significant lab-
oratory effects can be overcome by running a common genotype
as a local control, they reported yet another critical problem:
even the genotype differences frequently did not remain con-
stant across laboratories. As a typical example of this phenom-
enon in our data (to be discussed below), the measured distance
traveled by the BALB/cByJ strain of mice is higher than that of
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the A/J strain in two laboratories, whereas it is lower in the third
(see Fig. 2). Such a genotype X laboratory interaction (GxL)
might arise if a particular genotype reacts differently than
another genotype, for no identifiable cause, to the peculiarities
of a specific laboratory, and therefore cannot be eliminated by
using a common genotype as a local control. Crabbe et al. (3)
thus concluded: “experiments characterizing mutants may yield
results that are idiosyncratic to a particular laboratory.” The lack
of across-laboratory replicability demonstrated in their study
might be interpreted by some critics as a serious shortcoming in
behavior genetics at large (4) because currently almost all
experiments are conducted within a single laboratory.

When analysis reveals a substantial GxL effect, this effect
might be caused by some methodological artifact in the test or
the laboratory environment, which is in no way edifying and in
every way misleading. It would be seen as bad science, once the
artifact is traced to its origins. Successful correction of this
artifact will be reflected by a great reduction in the size of the
interaction.

The main remedy advocated to date for the GxL problem is
thus a more careful standardization of test protocol, housing
procedures, and laboratory environment (refs. 5-8, but see refs.
9 and 10 for an opposing view). Such standardization, however,
would require a vast coordinated community effort, because
currently each laboratory typically has its own housing condi-
tions, protocols, hardware, and technical limitations (3, 8). The
level of standardization and coordination in the Crabbe et al.
study (3) was much higher than is currently practiced in the field,
yet not enough to render most laboratory and GxL effects
insignificant. Moreover, it has been suggested that although
standardization efforts are important, they can rarely eliminate
all interaction (8, 11-13). We refer to this remaining interaction
variability simply as the GxL variability and propose a dual
approach for handling it: a measurement model where the size
of the interaction can be estimated from multilaboratory exper-
iments (see The Proposed Measurement Model) and an endpoint
design that reduces the interaction size (see The Open-Field Test
with SEE). Note, however, that the two arms of this approach may
be used independently of each other.

The Proposed Measurement Model

The Mixed-Model (MM) Approach. We model the value of a mea-
sured endpoint in a specific mouse as the sum of four effects: a
genotype effect (G), a laboratory effect (L), an effect of the
interaction between the genotype and the laboratory in which it
is measured (GxL), and an individual animal effect (within
group). In behavior genetics G is a precisely replicable factor,

Abbreviations: GxL, genotype X laboratory interaction; MM, mixed model; FM, fixed
model; FDR, false discovery rate.
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because of the availability of inbred strains and genetic moni-
toring. Furthermore, our interest is in the value of an endpoint
for the particular phenotype(s). These reasons allow us to treat
G as a fixed factor across all experiments. A laboratory is a well
defined location with particular measurement procedures, which
might have a typical effect on the measured endpoint for all
genotypes. However, the scientific interest is usually not in the
value at the particular participating laboratory, but ideally in the
“true” value, one that could be derived in principle by measuring
the phenotype at all possible laboratories and averaging out
laboratory variation. Having no access to measured values from
nonparticipating laboratories, we just assume that the effects
vary randomly and independently from one laboratory to the
other, and treat L as a random factor. The GxL effect, which is
the way the specific laboratory affects each measured genotype
differently, is similarly assumed to vary randomly across all
laboratories and genotype combinations. Finally, L and GxL are
assumed to be independent of each other and the within-group
effect.

Although we do not know the values of L and GxL effects at
an additional laboratory, treating them as random allows us at
least to assess their likely size by estimating their variability, o7
and o, respectively, by using multilaboratory experiments.
Such situations are not unique to behavior genetics, and a well
established statistical model is available for the purpose: the MM
(e.g., ref. 14). It is called mixed because one factor is fixed,
whereas the other is random. Procedures for MM ANOVA are
available in most statistical software. However, we make a
unique use of the MM to address the replicability problem in
single-laboratory experiments as well (see below).

The MM in Multilaboratory Experiments. The currently used fixed
model (FM) approach for analyzing multilaboratory experi-
ments considers G, L, and GxL as having fixed effects (3). Only
the individual’s (within group) effect is treated as random. It is
widely accepted that this within-group variability o2 is not likely
to ever be eliminated completely, even though animals within
each group are genetically identical and the experimental con-
ditions are standardized as much as possible within the labora-
tory. FM takes this variability as unavoidable fact of life and uses
it as the yardstick against which genotype differences are tested.
MM merely extends this approach to L and GxL, by treating
them as random, taking their variability as unavoidable as well,
and incorporating of and o7, into the yardstick (see below).

Under both models, the average genotype difference over the
participating laboratories is used to estimate the “ideal” geno-
type difference, that average value “over all possible laborato-
ries” that can never be precisely known. Thus the distinction
between the models lies not in the estimated difference, but in
the estimated variability of the difference. Introducing L and
GxL variabilities, the MM sets a higher benchmark for showing
a significant genotype difference. To decrease the benchmark
both the group size and the number of laboratories has to be
increased.

The MM in Single-Laboratory Experiments. It is possible to use the
MM to analyze results from a single-laboratory experiment, but
first the variabilities of L and GxL must be estimated from some
multilaboratory experiment using MM analysis. Consider a
single-laboratory experiment in which a group of n same-
genotype mice are phenotyped. The expected variance of their
mean according to the usual FM is the within-group variability
divided by the group size, i.e., 6%/n. According to the MM,
however, one needs to add the previously reported laboratory
and interaction variances to get o + oi. + o2/n. Ignoring
them, as is currently done in single-laboratory analysis, involves
the hidden assumption that they are 0. Suppose that one further
phenotypes in the same laboratory an independent group of m
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“knockouts” derived from the above genotype. The difference
between the knockout and the original genotype is estimated by
the difference between the two group means. Laboratory effect
is identical for both genotypes, and hence drops out (as it also
does in the multilaboratory analysis). In contrast, the interaction
effects of the two genotypes with the laboratory are not identical
but vary independently, so their difference does not disappear.
Because the variance of the difference is the sum of the
variances, the benchmark for reporting a significant knockout
difference is 207, + 0%(1/m + 1/n), which is larger than the
usual (FM) benchmark ¢%(1/m + 1/n). Moreover, increasing m
and n, while useful for reducing the contribution from within-
group variability, cannot decrease the interaction variability.

Thus, for both types of experiment, MM analysis is more
conservative, and weak genotype differences, which are less
likely to stand the scrutiny of replicability in additional labora-
tories, will be weeded out (see Supporting Text, which is pub-
lished as supporting information on the PNAS web site). The
negative side of this protection is that fewer endpoints will show
genotype differences. Hence an obvious concern is that students
of quantitative behavior will be left with few phenotyping
measures to use. We have focused on one commonly used
behavioral test, the open-field test, to demonstrate an approach
for developing a behavioral assay and endpoints that are able to
discriminate genetic differences even over the higher yardstick of
the MM.

The Open-Field Test with See

We demonstrate the premise of our thesis by using SEE (soft-
ware-backed strategy for exploring exploration, ref. 15, available
at www.tau.ac.il/~ilan99/see/help) in eight genotypes across
three laboratories.

The SEE open-field test (Fig. 1) is based on ethological-
oriented studies of rats and mice exploration of an unfamiliar
environment (15-20). These studies found that, in contrast to a
common view of this behavior as an essentially stochastic
phenomenon, it is structured and consists of typical behavior
patterns: progression segments separated by lingering episodes,
which in turn may be further grouped into excursions from a
preferred place (home base) established by the animal. Quan-
titative properties of these behavior patterns can be measured,
and we report here the results for 17 previously established
endpoints (13). Moreover, SEE has an open-ended approach, so
new endpoints can be designed by using its visualization, explor-
atory data analysis, and programming capabilities to analyze the
dynamic properties of the animal’s path (15). Identifying aspects
of behavior that are more replicable across laboratories than
others can guide the design of such endpoints (21-23). Although
our statistical approach and behavioral approach are in principle
independent, we show in Discussion how they complement each
other to create a powerful and robust strategy of phenotyping.

Methods

Animals, Testing, and Path Analysis. The eight genotypes were the
inbred strains A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, DBA/
2J, FVB/NJ, SJL/J, and 129S1/SvImJ, all included in the first
priority group recommended for phenotyping by the Mouse
Phenome Database (a community repository for strain charac-
teristics data and protocols, www.jax.org/phenome) of The
Jackson Laboratory. The experiment was conducted in three
laboratories: the National Institute of Drug Abuse—Intramural
Research Program in Baltimore, the Maryland Psychiatric Re-
search Center, and the Department of Zoology at Tel Aviv
University. In each laboratory two batches of mice were desig-
nated, each including six animals from each strain (see Table 1,
which is published as supporting information on the PNAS web
site). The batches were shipped and tested 1 month apart.
Mice were 65- to 75-day-old males transported from The
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Fig. 1. Principles of see analysis: the time series of the animal’s location in the arena is automatically tracked and smoothed. (A) The path in a 3D representation
of X, Y, and time (in data points) is shown. (B) The distribution of speed peaks (dark line) is used to parse the data into segments: slow local movements (lingering,
L, inred) and progression (P, in green). (C) The data can be treated as a string of these discrete units. (D and E) The path plot and speed profile of two progression
segments (P1 and P2) are separated by one lingering episode (L1). The typical properties of these units are used to quantify the behavior. For example, the
segment acceleration endpoint (Fig. 2 Lower) is estimated by dividing the segment’s speed peak by its duration, i.e., the aspect ratio of a segment in the speed

profile.

Jackson Laboratory and housed in the specific laboratory for at
least 14 days before being tested. They were kept in standard
conditions of 12:12 light cycle, 22°C room temperature, with
water and food ad libitum, and housed two to four per cage
except for the SJL/J mice that were singly housed because of
their aggressiveness. The experimental protocols followed the
Principles of Laboratory Animal Care (National Institutes of
Health publication no. 86-23, 1996). The animals were main-
tained in facilities fully accredited by the American Association
for the Accreditation of Laboratory Animal Care at the Mary-
land Psychiatric Research Center and the National Institute of
Drug Abuse or by National Institutes of Health Animal Welfare
Assurance no. A5010-01 at Tel Aviv University. Open-field
testing, tracking procedures, and path analysis with SEE (Fig. 1)
were conducted as detailed (13) with some slight changes that
were needed because of the different behavior displayed by some
of the new strains (Table 2, which is published as supporting
information on the PNAS web site). Behavior was quantified
with 17 endpoints (see Fig. 3), most of them simple properties
of lingering or progression segments, such as their number,
length, maximal speed, etc. (see Table 2 and ref. 13).

Kafkafi et al.

Statistical Analysis. For all endpoints the appropriate transfor-
mations were chosen so that the residuals distribution is close to
normal, and the variances were homogeneous across genotypes
and laboratories.

The formal MM: let Y, be the value of an endpoint for
laboratory / and genotype g Index i represents the repetition
within each group, u, is the genotype effect which is considered
fixed, a; is the laboratory random effect, which is assumed to have
N (0,0'iab) distribution, and cgy is the interaction random effect,
which is assumed to have N(0,05, ). Finally, €1gi is the individual
noise, assumed to have N(0,02). With these notations the model
is Ylgi = Mg T At Cor T i

The restricted maximum likelihood (REML) approach was
used to estimate the MM variabilities (see Supporting Text).
When the data are balanced, with an equal number of mice from
each genotype at each laboratory, REML is equivalent to the
regular mixed ANOVA F test, where the mean square error
(MSE) between genotypes is divided by the MSE of interaction
in the ANOVA table and compared with the appropriate
quantile of the F distribution. In such a case the expected value
of the MSE of the interaction is a weighted sum of ¢? and iy

To investigate whether within-laboratory replications could be
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Fig. 2. Group means of distance traveled (Upper in ¢cm) and segment
acceleration (Lower, in cm/s per s, log-transformed). Each genotype was
measured in three laboratories: National Institute of Drug Abuse (NIDA),
Maryland Psychiatric Research Center (MPRC), and Tel Aviv University (TAU).
Small vertical bars on the right represent the SD of GxL interaction and the
within-group (individual animal) variability.

used as a surrogate for across-laboratory replications the exper-
iment was split within each laboratory into two separately tested
batches. For all but one endpoint the batch effect was not
significant when using false discovery rate (FDR) (see Table 3,
which is published as supporting information on the PNAS web
site). For relative activity decrease, the SD of the batch within-
laboratory was small relative to the individual noise. Hence
batch effect was ignored throughout. For comparison, the ordi-
nary FM ANOVA was fitted, with both laboratory and genotype
as fixed factors (see Table 4, which is published as supporting
information on the PNAS web site).

Tests of significance increase type I error when conducted on
many endpoints, as is the case here. We address this multiplicity
problem by using the FDR, the expected proportion of the falsely
rejected hypotheses among the rejected ones (24), which we
control at level 5% as in ref. 13.

Results

Means, SD, and Interactions. Group means and SDs for all strains
in all laboratories with the 17 endpoints are given in Table 5,
which is published as supporting information on the PNAS web
site, and were submitted to the Mouse Phenome Database (25).
Fig. 2 displays results in two of the endpoints, distance traveled
and segment acceleration. Some GxL interaction is apparent, as
the laboratory lines are not parallel and sometimes even cross
each other. As noted the MM allows us to estimate the likely size
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of the interaction random effect through its variability. The
square root of the GxL variability, together with that of the
within-group variability, are displayed in Fig. 2. It is evident from
Fig. 2 that many genotype differences are large enough to be
seen over the background of this interaction. The pattern of
genotype differences in segment acceleration is different from
that displayed by the traditional distance traveled endpoint. That
is, the former contributes information about genotype differ-
ences not available in the latter.

Genotypic Differences. The genotype differences in all 17 end-
points were highly statistically significant when using the MM
(see Table 3). They remain significant even after using FDR
(FDR-adjusted P = 0.001).

Proportions of Variance. For each endpoint, the total variance
between the mice in a multilaboratory experiment can be
decomposed into the between-genotype variability, between-
laboratory variability, interaction variability, and within—group
variability. Fig. 3 displays the proportion of variance attributable
to the above four sources in all endpoints by using MM (see
Supporting Text and Table 6, which is published as supporting
information on the PNAS web site). The proportion of variance
attributed to genotype is a relatively conservative estimator of
the broad-sense heritability (13), the latter being the proportion
of total phenotypic variance that can be attributed to the
genotypic variance. In 9 of 17 endpoints it was >50%, which is
considered high broad-sense heritability even in experiments
conducted in a single laboratory (e.g., ref. 26). Although some
endpoints captured genotype-specific properties much better
than others, the contribution of GxL to the overall variance was
consistently small.

The traditional FM analysis sets a lower benchmark for
showing significant genotype effects, so it is no surprise that the
genotype differences were even more significant (FDR adjusted
P < 0.0001). Fig. 3 also demonstrates a disturbing observation
about the FM analysis: most of the best-performing endpoints
(in terms of high broad-sense heritability) also had statistically
significant interaction (asterisks in Fig. 3). That is, according to
the traditional statistical analysis these endpoints should have
been discarded as nonreplicable across laboratories. On the
other hand, most of the low-performing endpoints had, accord-
ing to the FM, nonsignificant interactions. This paradoxical
result is not limited to our data, but stems from the mathematics
of the FM. Because all differences are compared with the
yardstick of within-groups variability, more powerful tests and
endpoints, associated with smaller within-group variability, do
better detecting genotypic differences, but also detecting labo-
ratory differences and GxL. Thus the better the behavioral test
is, the more likely it is to be deemed nonreplicable across
laboratories in FM.

Discussion

We have shown that, although the MM presents a higher
benchmark than the traditionally used FM for showing genotypic
differences, this benchmark is not too high for practical behav-
ioral phenotyping. The MM is a more appropriate model to
assess the replicability of a behavioral test and coincides better
with the intuitive notion of replicability across laboratories.
Notably, within-laboratory repetitions did not differ signifi-
cantly, and thus cannot be used as a substitute for the role of
multilaboratory experiments to estimate the variabilities used in
the MM. The utility of the approach outlined herein and its
implications for behavioral phenotyping was illustrated in the
phenotyping conducted by using SEE. Several SEE endpoints were
found to have high broad-sense heritability and are useful for
high-throughput, replicable phenotyping.

Kafkafi et al.
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to the traditionally used FM at a level of 5%.

The MM approach, together with the results presented here,
suggests a more realistic approach for behavioral phenotyping:
developing endpoints that are able to detect genotypic differ-
ences over the background of the interaction. Such development
may take place at the level of the hardware (e.g., refs. 11-13)
and/or the level of behavioral analysis (e.g., refs. 22 and 23). It
should be the responsibility of developers of new endpoints to
test them in a multilaboratory study and report the estimated SD
of L and GxL. This procedure will require cooperation between
laboratories at a level much easier to achieve than was previously
anticipated, as strict coordination is no longer a critical issue. In
the experiment reported here the protocol was the same, but no
unusual measures were taken to standardize housing and testing
and coordinate timing. This choice perhaps increased the mea-
sured interaction, but it also means our three laboratories better
represent the population of all laboratories in which phenotyping
might take place.

The MM approach to replicability may seem strange to
statistically oriented researchers because many statistical books
warn not to use MM unless the levels in the experiment are a true
random sample of the possible levels, implying that the labora-
tories participating in a multilaboratory study should be chosen
randomly from the pool of possible phenotyping laboratories.
This is quite impossible to assure, first because the population of
such laboratories is unknown, and more importantly because
laboratories cannot be forced to participate in a study. However,
this difficulty merely means that our estimates of L and GxL
variabilties will not be of the best possible quality. Jones, Lewis,
and Tukey (27), addressing a similar problem, suggest that
experimenters may subjectively decide whether their sample of
convenience is representative enough to use it as is in the MM
analysis. They add that if the available sample is judged to reflect
extreme variation in the prevailing conditions in the levels, or
judged as too similar, the estimates could be shrunk toward the
FM values or expanded. Either way, one should not trash the
MM approach in favor of the FM when having a nonrandom
sample, because the latter is equivalent to making the idealistic
and unreal assumption that L and GxL variabilties are in fact 0.

Kafkafi et al.

It is also possible that certain genes have inherently large
interaction even with extremely small environment variations,
and thus even developing better tests will not decrease this
interaction. In such a case the existence and size of the
interaction might be an interesting topic of research by itself,
even when the average genotype difference across several
laboratories is 0. In behavioral phenotyping, however, inves-
tigators are usually interested in genotype differences that can
be replicated in other laboratories. Many replicable behavioral
endpoints already exist outside of the SEE open-field test. For
example, our reanalysis of the eight endpoints studied by
Crabbe et al. (3) reveals that most genotype differences remain
significant even when taking the MM approach (using results
from www.albany.edu/psy/obssr3 collapsed over shipment
and sex). The single endpoint that does not pass MM analysis
is time spent in open arms in the elevated plus maze. More-
over, although we argue that the interaction cannot be com-
pletely eliminated, it can still be decreased by better-designed
tests and endpoints. We believe that the search for more
replicable behavioral endpoints will continue productively by
using a wide array of phenotyping assays, as today’s interaction
is the field of tomorrow’s improvements.

Our call for multilaboratory experiments need not eliminate
single-laboratory experiments. The user of an endpoint that has
been already developed as outlined above can conduct an
experiment, e.g., screening for mutations or quantitative trait
loci analysis, in a single laboratory, as long as the previously
reported variances of laboratory interaction are taken into
account. For a well designed endpoint that enjoys small inter-
action variability, such an extra burden on the proof would not
be harmful. In the few important enough cases where a single-
laboratory experiment did not give a clear answer, resorting to
multilaboratory experiments would help.

As a general scientific strategy, MM analysis is a viable
alternative to traditional analyses when facing replicability prob-
lems. It can be especially efficient when used with public
databases to which many laboratories contribute results on mice
and rats, such as the Mouse Phenome Database (25), because the
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number of laboratories is an important factor in enhancing MM
analysis, while strict coordination is less critical. Using such
databases is also a way for achieving results from samples of
laboratories that are more representative and better approxi-
mate random samples.

Taking this strategy to phenotyping open-field behavior, the
exploratory data analysis capabilities of SEE make it especially
suitable for in silico extraction of behavioral measures with
ever-increasing replicability in this and other spatial behavior
tests (22, 23). This capacity promotes a unique approach to
behavioral phenotyping, where the path traced by the animal
(Fig. 1A4) is considered as a structured and information-rich
string of meaningful units (Fig. 1C) that can be stored in a public
database and reanalyzed (13, 21-22). Although phenotyping
databases (e.g., Mouse Phenome Database) store endpoint
results, from which variances of laboratory interaction can be
calculated as outlined here, the SEE database also stores the
behavior raw data. Researchers from many laboratories can
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