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Introduction                           
Two current key issues in behavioral phenotyping are discrimination across strains 
and replicability across laboratories. The Crabbe Wahlsten & Dudek paper appearing  
in Science (1999) showed that in spite of a detailed experimental protocol equated 
across laboratories, phenotyping results are often idiosyncratic to particular 
laboratories. This conclusion presents a challenge not only to the field of behavior 
genetics but also to the field of ethology! How is it that locomotor behavior, for 
example, a par excellence innate pattern is not replicable across laboratories?  
       Our response to this challenge has both ethological (part I, presented by Golani) 
and statistical (part II, presented by Benjamini) aspects.    
  
SEE: To obtain both discriminative and replicable results we use SEE (a software 
supported Strategy for the Exploration of Exploration, Drai & Golani, 2001). Main 
features of this strategy are: 
1. Using a large (2.5m diameter) circular arena. Fast strains should clearly have the 
opportunity to manifest their speed and acceleration potentials, thus providing a better 
differentiation from their slower counterparts.   
2. Using long (1/2h) sessions. Some strains (e.g., Balb) show a build up in activity 
whereas others (e.g., C57) show a shut down  (Drai et al., submitted). The mice need 
time to manifest this and other differences in across-the-session-dynamics.  
3. Using an appropriate resolution of the phenomenon (25-30 Hertz). As in histology, 
structure should be examined under appropriate microscope magnification. A low 
sampling rate implies losing stops whose duration is as short as 0.2s. Because strains 
differ substantially in stopping behavior (and in the form and duration of scanning 
during stopping), discrimination and replicability are improved by capturing these 
stops.   
4. Like anatomists we carefully cleave the complex structure into  naturally distinct 
"tissues". Locomotor behavior consists of an agglomeration of patterns. Therefore we 
first separate the behavior into distinct classes of patterns.  
5. Only then do we compute the endpoints for each class of patterns separately (as in 
neurochemistry, where neurotransmitter levels are established in distinct tissues rather 
than in a homogenate of the whole brain).     
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Cleaving the structure into distinct tissues: Consider the example presented in figure 
1, of a path traced by a DBA mouse in the course of half a minute: 
 
 

 
Figure 1. 
 
All you can get from the raw path traced by a mouse in the arena (figure 1) is the 
distance traveled, the proportion of this distance traveled along the wall and away 
from it, and the amount of winding of the path. Note that the trace is also quite noisy. 
To compute the speed of the animal along this path we calculate the first derivative of 
the time series of the location data, and because each value in the computed speed 
time series is obtained from two (noisy) location data points, the graph is several folds 
more noisy (figure 2):  
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Figure 2. 
   
We thus must smooth the path, and we do so by using SEE Path Smoother (SPSM; 
Benjamini et al., 2001), a stand alone, user friendly publicly available software 
developed by us for this purpose. This software combines the use of a running median 
smoother that captures even the shortest stops, and a subsequent smoothing method 
called Lowess which assures a robust smoothing (Hen et al., in preparation; see figure 
3) 

 
 
 
Figure 3. 
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After smoothing, the speed time series presented in figure 2 takes the following form 
(figure 4): 
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figure 4:   
 
On a background of arrests (segments of zero speed), one gets the impression that 
there are, in the time series presented above, two distinct classes of motion segments – 
those with high speed, and those with low speed. 
 
To examine this impression we obtain, for each movement episode, the peak speed 
reached in it, and plot a density graph (a sliding window histogram) of the frequency 
distribution of peak speeds in these movement episodes. As illustrated in the density 
graph of our mouse-session (figure 5), there are indeed two distinct populations: low 
speed segments (which we call lingering or stopping episodes) and high speed 
segments (which we call progression segments). 
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Figure 5 
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The segmentation is accomplished with SEE Path Segmentor (SPSG) (for rationale 
beyond this software see Drai et al., 2000). This stand alone, user- friendly, publicly 
available software was also developed by us for obtaining the threshold that 
distinguishes between the two types of segments (figure 6). The input for this 
software is the output of SPSM. 

 
 
 
 
Figure 6:
 
 
 
 
 
A Video clip of a mouse performing the 1/2min behavior slab presented in figures 1,2, 
and 4 can be viewed at http//www.tau.ac.il/~ilan99. It reveals the richness of patterns 
underlying the path: the mouse lingers, performs a progression segment in a 
clockwise direction, stops, crawls slowly clockwise for two steps, grooms, performs a 
vertical scan, another progression segment, a short lingering episode, and finally a 
progression segment terminating with a lingering episode away from the wall. All 
these patterns are indirectly represented in the spatial spreads and durations of the 
segments automatically computed and traced in figure 7. In particular, note the long 
spatial spread of the second lingering episode (from left) which included stepping, 
grooming and scanning.  
 
 



6

6

 
Figure 7. 
 
The same segmented path with its corresponding speed trajectory (figure 8) changes 
the sequence into an information-rich sequence on which, not unlike a protein or 
DNA sequence, a large number of measurements can be performed. This sequence is, 
furthermore, stored on the web for future measurements of newly defined endpoints 
and for future comparisons with newly generated preparations and strains. 
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Figure 8: The yellow- to- red lines represent progression segments and the respective 
color transition designates the direction in which they are performed. Azure lines 
designate speed trajectories, and empty spaces between segments designate the spatial 
spread of lingering episodes. 
Having obtained this articulated representation, all kinds of measurements can be 
performed. In particular, we can now compute the various endpoints for lingering 
(figure 9, right, red) and progression segments (figure 9, left, blue) separately, 
increasing thereby the likelihood of yielding more discriminative and replicable 
results. 
 

 
Figure 9 
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The advantages of working simultaneously in multiple laboratories  
 
Rather than designing a behavioral endpoint in one laboratory and only then 
proceeding to challenge its replicability and power of discrimination across other 
laboratories, the multiple laboratories setup provides an opportunity to build this setup 
into the design of endpoints right from the start. 
 
First example: Computation of maximal speed in near -wall progression segments 
(Dina Lipkind, Tel Aviv University)  
In our first example, taken from the work of Dina Lipkind of Tel Aviv University 
(Lipkind et al., in preparation), the goal was to compare between strains the Maximal 
Speed obtained within progression segments. As with the design of other endpoints, 
we first want to make sure that the comparison will be performed on the right classes 
of segments, not mixing, as it were, “apples and oranges”. 
The PathPlots of a DBA mouse (henceforth left in all figures) and a C57 mouse 
(right) represent the data before their partitioning into distinct classes of patterns 
(figure 10):  

 
Figure 10 
 
Figure 11 presents the Tel Aviv results of this comparison for 10 mice in each group: 
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Figure 11: The white bars in the boxplot summaries of the results designate the group 
medians, the box below this bar represents the second quartile, and the box above, the 
third quartile. The vibrisae represent the group’s maximum and minimum. Overlap of 
the turquoise colored areas (range of standard error) of the two boxplots implies 
absence of significant differences.  
 
As shown, the difference between the strains was not significant. Having the 
impression that there is a substantial difference in the speed of progression of the two 
strains along the wall, but not necessarily in the center, Lipkind proceeded to classify 
progression segments according to their radial speed component (progression along 
wall being characterized by near-zero radial speeds).  
Density graphs of log radial speed during progression indeed cleave into two sub-
classes of segments: those with radial speed ~ 0 (Gaussian on left side of deep in each 
of the density graphs), and those with radial speed ~ > 0 (Gaussians on right of 
deeps). 
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Figure 12.  Log of radial speed on the x-axis enhances the deep between the two 
Gaussians.    
 
Using the minima of the deeps as the thresholds for distinguishing between the two 
classes (and subsequently adding to the right-hand group of segments those that  
proceed in parallel to the wall but away from it), Lipkind was indeed successful in 
peeling off, as it were, wall segments from center segments (figure 13). 
 

 
Figure 13 



10

10

 
In computing the maximal (absolute) speed endpoint for each sub-population 
separately, she now got, across strains, highly significant differences for the wall 
segments (figure 14), and no difference for the center segments (not presented here).  
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 Figure 14 
 
Had the study been performed only in Tel Aviv then that would have been the happy 
end of the study. However, as illustrated in figure 15, density graphs of radial speeds 
from NIDA and MPRC did not show a similar bimodality.  
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Figure 15: Density graph of log radial speeds from a NIDA Baltimore DBA mouse. 
 
Examination of the PathPlots traced by the mice in these labs suggested that small 
imperfections in the circularity of the arena wall in these labs generated highr-than-
zero radial speeds during travelling along the wall, and this in turn generated large 
enough noise to mask the distinctiveness of the wall segments group in the density 
graphs.  
As illustrated in figure 16, the installation of new, fully circular, walls in these 
laboratories indeed uncovered the bimodality: 
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Figure 16: Density graph of log radial speeds from a NIDA Baltimore DBA mouse 
after fixing wall circularity. 
 
The contribution of this process to the issue of standardization of experimental 
protocols across laboratories (see Crabbe et al., 1999; Wahlsten, 2001; Wurbel, 2000) 
is that a priori across the board standardization should perhaps be replaced by 
analysis-guided standardization. 
 
An alternative solution to the imperfect circularity problem could be the use of  
software to estimate from the mouse path the actual form of the arena when it is not 
perfectly circular, and then smooth and repair the circularity. 
 
A density graph of the radial velocities in the NIDA Baltimore mice after using SEE 
Arena Builder, a software developed by us to repair the circularity, illustrates how 
bimodaliy is uncovered after us ing this software (figure 17): 
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Figure 17 
 
Our take away message from the success of this operation is that obsessive 
standardization may be replaced by carefully designed endpoints. 
 
Having accomplished an intrinsic separation between wall and center segments in all 
3 labs, between-strain comparison of maximal speed yields large strain differences in 
wall segments (figure 18), and no difference in center segments (figure 19):  
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Figure 18 
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Figure 19 
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Second example: Computation of a compound endpoint called jitteriness (Neri 
Kafkafi, NIDA and MPRC Baltimore)  
In our second example, Kafkafi started with a measure akin to segment acceleration 
which did not prove replicable, and ended up with an internally scaled measure he 
termed Jitteriness which proved both discriminative and replicable. 
Figure 20 illustrates a time series of speeds including two progression segments (S1 
and S2), and a lingering episode ( LE), in between. The ratio between the  

 
Figure 20. 
 
maximal speed of a progression segment (red arrow in S1) and the segment’s duration 
(blue arrow in S1) describes a measure akin to segment acceleration (peak speed 
divided by duration). Figure 21 describes the MSDR (Maximal Speed to Duration 
Ratio) values (mean SE) of C57 (black squares), and DBA (open diamonds) in 3 
laboratories. As shown, there are large lab differences between strains for each strain 
separately (large site effects), and the two strains show different differences across 
laboratories (large interaction).  In other words, the results are not replicable across 
laboratories (figure 21). 

  
Figure 21.  
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While average lingering speed (see the red horizontal line in the segment LE in figure 
20) yielded reciprocal results to those of MSDR values, In addition, Kafkafi had the 
impression that mice that show high accelerations also tend to freeze or show low 
lingering speeds. Therefore, he divided the MSDR values by average lingering speed, 
thus obtaining internal scaling for the new endpoint he called jitteriness. Figure 22 
presents the Jitteriness (MSDR/average lingering speed) measure (mean SE) of C57 
(black squares), and DBA (open diamonds) in the 3 labs. This time there are small lab 
differences for each strain separately (small site effects), and similar strain differences 
(similar vertical distance between strain values) across labs. 
 
 

 

Figure 22. 
 
The take away message from Kafkafi’s study is that analysis-guided internal scaling 
might help design discriminative and replicable endpoints. 
 
Multiple endpoints 
We presently have some 32 carefully designed endpoints that are computed by SEE 
Endpoint Manager (SEM; figure 23), a stand alone user friendly publicly available 
software that calculates all these endpoints per data file. This and al the other 
programs can presently be obtained by writing to us at ilan99@post.tau.ac.il The software 
packages will all be placed on the web by April 2001. 
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Figure 23. 
 

 
 

 
Summary  
For discrimination and replicability of locomotor behavior we use large space,  
relatively long time intervals, and high resolution. 
After careful and robust smoothing, so as not to disrupt the fine structure of locomotor 
behavior, we cleave the data into intrinsically distinct classes of patterns and only then 
compute the endpoints for each class of patterns separately.  
 
The demand for replicability while working in 3 laboratories simultaneously forced us 
to design measures of behavior that would not have been designed otherwise. 
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