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Abstract

We present a model of inductive inference that includes, as
special cases, Bayesian reasoning, case-based reasoning, and rule-
based reasoning. This unified framework allows us to examine
how the various modes of inductive inference can be combined and
how their relative weights change endogenously. For example, we
establish conditions under which an agent who does not know the
structure of the data generating process will decrease, over the
course of her reasoning, the weight of credence put on Bayesian vs.
non-Bayesian reasoning. We illustrate circumstances under which
probabilistic models are used until an unexpected event occurs,
whereupon the agent resorts to more basic reasoning techniques,
such as case-based and rule-based reasoning, until enough data
are gathered to formulate a new probabilistic model.
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1 Introduction

Economic theory typically assumes that agents reason about uncertainty in
a Bayesian way: they formulate prior probabilities over a state space and
update them in response to new information according to Bayes’ rule. This
model is powerful, but does not always reflect the way that people think
about uncertainty. In particular, when completely unexpected events occur,
people question their probabilistic models, relying on alternative reasoning
techniques until perhaps developing a new probabilistic model.

For example, the New York Stock Exchange was closed for five days
following the September 11, 2001 terrorist attacks on the United States. On
the following Sunday, September 16, a leading economist was asked to predict
the behavior of the Dow Jones Industrial Average on Monday. He did not
respond by reasoning that “I used to attach (the quite small) probability
ε to such attacks, and now I need only update this probability, and then
apply my usual model of the stock market.” Instead, there was a sense that
the probabilistic model he would have used under normal circumstances was
inappropriate for the present situation, and that he had to start from basics
in reasoning about the future. He responded by invoking analogies to past
cases in which the United States had been surprised by attack, most notably
Pearl Harbor. (As it turned out, his prediction was quite accurate.)

Similarly, following the collapse of Lehman Brothers in September 2008,
the head of a major investment firm confronted clients anxious to sell their
assets, even assets that had already lost 90% of their value. Again, the ana-
lyst did not apply Bayes rule to a prior that had taken into account a possible
failure of Lehman Brothers. Instead, he argued that something totally un-
expected had happened, and that “obviously, the models do not work.” The
analyst convinced his clients to hold such assets, invoking the simple rule
that “an asset that has lost 90% of its value cannot lose much more.” (His
clients were convinced, and subsequently appreciated the advice.)

In both examples, one could, post-hoc, construct a prior probability dis-
tribution that allows the experts’ reasoning to follow from Bayesian updating.
However, such a description would say very little about the actual reasoning
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process of the agents involved, and (more importantly) would not be of much
help in predicting their reasoning in the future. Our interest in this paper is
in modeling the agents’ actual reasoning processes, in the hope of better un-
derstanding when these processes generate probabilistic beliefs, which beliefs
are likely to be formed by the agents, and how the agent might form beliefs
when driven away from familiar probabilistic models. To do so, we need a
model that can simultaneously describe probabilistic and non-probabilistic
reasoning, as well as the dynamics by which weights shift between modes of
reasoning.

We take it for granted that when statistical analysis is possible, rational
agents will perform such analysis correctly. In contrast, our interest is in
the way economists model agents who face problems that do not naturally
lend themselves to statistical analysis. Predicting financial crises, economic
growth, the outcome of elections, or the eruptions of wars and revolutions,
are examples where it is difficult to define iid random variables and, more
generally, where the assumptions of statistical models do not seem to be good
approximations.

To set the context for our model, consider an agent who each year is
called upon to predict the price of oil over the subsequent year. To keep this
illustrating example simple, suppose the agent need only predict whether the
average price will be higher or lower than the previous year’s price. We can
imagine the agent working for a hedge fund that is interested in whether it
should bet for or against an increasing price.

To support her decision, the agent’s research staff regularly compiles a
list of data potentially relevant to the price of oil, as well as data identifying
past values of the relevant variables and past oil prices. For our example, let
us assume that the data include just two variables: a measure of the change
in the demand for oil and a measure of the change in the severity of conflict
in the Middle East. Each is assumed to take two values, indicating whether
there has been an increase or decrease. Each year the agent receives the
current changes in demand and in conflict, examines the data from previous
years, and then predicts whether the price will increase or decrease. How do
and how should agents reason about such problems?

Our model captures three types of reasoning.1 The most common in

1In personal conversation, a hedge fund principal indicated that his fund used all three
methods of reasoning introduced in this section in predicting the likelihood of mortgage
defaults.
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economic modeling is Bayesian. The agent first formulates the set of pos-
sible states of the world, where a state identifies the strength of demand,
the measure of conflict, and the price of oil, in each year over the course
of her horizon. The agent then formulates a prior probability distribution
over this state space. This prior distribution will reflect models and theories
of the market for oil that the agent finds helpful, her analysis of past data
and past events in this market, and any other prior information she has at
her command. Once this prior has been formulated, the agent’s predictions
are a relatively straightforward matter of applying Bayes’s rule, as new ob-
servations allow her to rule out some states and condition her probability
distribution on the surviving states.

An alternative mode of reasoning is case-based. The agent considers past
observations and predicts the outcome that appeared more often in those past
cases that are considered similar. For example, predicting that following
the September 11 attacks, the DJIA would change in a similar way to its
change following Pearl Harbor would be considered case-based reasoning. If
all past observations are considered equally similar, the case-based prediction
is simply the mode, that is, the outcome that is most frequent in the database.
If the agent uses a similarity function that puts all its weight on the most
recent outcome, her prediction will simply be that outcome.2 If the agent
views the current state of conflict in the Middle East as a repetition of affairs
in 1991 or in 2003, the agent will predict that there will soon be a war and
an increase in the price of oil.

Finally, rule-based reasoning calls for the agent to base her predictions on
regularities that she believes characterize the market for oil. For example,
the agent may adopt a rule that any increase in the level of demand leads to
an increase in the price of oil. Based on this and her expectation that the
Chinese economy will continue to grow, the agent might reasonably predict
that the price is about to rise.

The boundaries between the three modes of reasoning are not always
sharp. Our focus is on the Bayesian approach. By “Bayesian reasoning”
we refer to the common approach in economic theory, according to which
all reasoning is Bayesian. Any source of uncertainty is modeled in the state
space, and all reasoning about uncertainty takes the form of updating a prior
probability via Bayes’ rule.

2Indeed, Alquist and Kilian (2010) find that the best prediction of the future price of
oil is the current price.

3



This paper presents (in Sections 2–3) a framework that unifies these three
modes of reasoning (and potentially others), allowing us to view them as spe-
cial cases of a general learning process. The agent attaches weights to con-
jectures. Each conjecture is a set of states of the world, capturing a way of
thinking about how events in the world will develop. The associated weights
capture the relative influence that the agent attaches to the various conjec-
tures. To generate a prediction, the agent sums the weight of all nontrivial
conjectures consistent with each possible outcome, and then ranks outcomes
according to their associated total weights. In the special case where each
conjecture consists of a single state of the world, our framework is the stan-
dard Bayesian model, and the learning algorithm is equivalent to Bayesian
updating. Employing other conjectures, which include more than a single
state each, we can capture other modes of reasoning, as illustrated by simple
examples of case-based and of rule-based reasoning.

Our model could be used to address either positive or normative ques-
tions. In this paper, we focus on positive ones. Within the class of such
questions, our model could be used to capture a variety of psychological bi-
ases and errors, but the focus of this paper is on the reasoning of an agent
who makes no obvious errors in her reasoning. Such an agent may well be
surprised by circumstances that she has deemed unlikely, that is, by “black
swans,” but will never be surprised by a careful analysis of her own reasoning.

Our main results concern the dynamics of the weight put on Bayesian
vs. non-Bayesian reasoning. In Section 4.1 we suggest conditions under
which Bayesian reasoning will give way to other modes of reasoning, and
alternative conditions under which the opposite conclusion holds. Section 4.3
briefly discusses how probabilistic reasoning may emerge periodically, with
other modes of reasoning used between the regimes of different probabilistic
models. Section 5 concludes.

2 The Framework

2.1 The Environment

At each period t ∈ {0, 1, . . .} there is a characteristic xt ∈ X and an outcome
yt ∈ Y . The sets X and Y are assumed to be finite and non-empty, with Y
containing at least two possible outcomes.3

3The extension to infinite sets X and Y can be carried out with no major difficulties.
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In predicting the price of oil, the characteristic xt might identify the type
of political regime and the state of political unrest in various oil-producing
countries, describe the extent of armed conflict in the Middle East, indicate
whether new nuclear power plants have come on line or existing ones been
disabled by accidents, describe the economic conditions of the major oil im-
porters, summarize climate conditions, and so on. In our simplified example,
Y has only two elements, {0, 1}, and each x = (x1, x2) ∈ X has two compo-
nents, each also taking values in {0, 1}, with a 1 in each case indicating an
increase in the relevant variable.

We make no assumptions about independence or conditional indepen-
dence of the variables across periods. In fact, for most of our analysis we
do not assume any probability on the state space, so that independence of
the variables cannot even be defined. The model can be augmented by as-
sumptions about the underlying probability measure that drives the process,
allowing one to state results about learning the “true” state of the world.
While some of our examples below are of this nature, the general framework
is silent on the actual data generating process.

A state of the world ω identifies the characteristic and outcome that
appear in each period t, i.e., ω : {0, 1, ...} → X × Y . We let (ωX(t), ωY (t))
denote the element (xt, yt) of X×Y appearing in period t given state ω, and
let

Ω = (X × Y )∞

denote the set of states of the world. In our example, a state identifies the
sign of changes in the strength of demand, the level of conflict, and the price
of oil in each period.

A period-t history

ht(ω) = (ω(0), . . . , ω(t− 1), ωX(t))

identifies the characteristics (e.g., changes in the levels of demand and of
conflict) and outcomes (e.g., changes in the price of oil) that have appeared
in periods 0 through t−1, as well as the period-t characteristic, given state ω.
We let Ht denote all possible histories at period t, i.e., Ht = {ht(ω) |ω ∈ Ω}.
For a history ht we define the corresponding event

[ht] = {ω ∈ Ω | (ω(0), . . . , ω(t− 1), ωX(t)) = ht}

consisting of all states that are compatible with the history ht. In other
words, [ht] is the set of states whose period-t history matches ht, with different
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states in this set corresponding to different possible future developments. We
define, for ht ∈ Ht and Y ′ ⊂ Y , the event

[ht, Y
′] = {ω ∈ [ht] |ωY (t) ∈ Y ′}

consisting of all states that are compatible with the history ht and with the
next outcome being in the set Y ′.

In each period t the agent observes a history ht and makes a prediction
about the period-t outcome, ωY (t) ∈ Y . A prediction is a ranking of subsets
in Y given ht. Hence, for ht ∈ Ht there is a binary relation %ht⊂ 2Y × 2Y

that ranks subsets of outcomes according to their plausibility.

2.2 Predictions

Predictions are made with the help of conjectures. Each conjecture is a subset
A ⊂ Ω. A conjecture can represent a specific scenario, that is, a single state
of the world, in which case A = {ω}, and such conjectures will suffice to
capture Bayesian reasoning. However, conjectures can contain more than
one state, and thereby capture rules and analogies. In general, any reasoning
aid one may employ in predicting yt can be described by the set of states
that are compatible with it.

In principle, a conjecture could be any subset of Ω, but the set of all
subsets of Ω is rather large and unwieldy. Nothing is lost by taking the set
of conjectures to be the σ-algebra A generated by the events {[ht]}t≥0,ht∈Ht

.4

To make predictions in period t, the agent first identifies, for any subset
of outcomes Y ′ ⊂ Y , the set of conjectures that have not been refuted by the
history ht and that predict an outcome in Y ′. A conjecture A ∈ A has not
been refuted by history ht if A ∩ [ht] 6= ∅. The set of conjectures that have
not been refuted by history ht and predict an outcome in Y ′ is5

A(ht, Y
′) = {A ∈ A |∅ 6= A ∩ [ht] ⊂ [ht, Y

′]} . (1)

The agent evaluates the relative likelihoods of outcomes Y ′ and Y ′′, at
history ht, by comparing the sets A(ht, Y

′) and A(ht, Y
′′). The agent makes

4Note that this is the same σ-algebra generated by {[ht, Y ′]}t≥0,ht∈Ht,Y ′⊂Y and that it
contains all singletons, i.e., {ω} ∈ A for every ω ∈ Ω.

5Observe that the conjectures ∅ and Ω are never included in A(ht, Y
′) for any Y ′ ( Y .

The impossible conjecture ∅ is not compatible with any history ht, whereas the certain
conjecture Ω is tautological at every history ht.
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this comparison by using a “credence function” ϕht . Formally, ϕht is a finite,
σ-additive measure on the sigma-algebra E ⊂ 2A to be defined shortly.6

We interpret ϕht(A(ht, Y
′)) as the weight the agent attaches to conjectures

consistent with the outcomes Y ′, and ϕht(A(ht, Y
′′)) as the weight the agent

attaches to conjectures consistent with the outcomes Y ′′.7 The agent ranks
Y ′ as “at least as likely as” Y ′′, denoted Y ′ %ht Y

′′, iff

ϕht(A(ht, Y
′)) ≥ ϕht(A(ht, Y

′′
)). (2)

Intuitively, one may think of each conjecture A as an expert, who argues
that the state of the world has to be in the event A. The weight ϕht({A}) is a
measure of the expert’s reliability in the eyes of the agent. The agent listens
to the forecasts of all experts and, when comparing two possible predictions
Y ′ and Y ′′, chooses the prediction that commands higher total support from
the experts. When an expert is proven wrong, he is asked to leave the room
and his future forecasts are ignored.

To complete this definition, we need to specify the σ-algebra E ⊂ 2A over
which the measures ϕht are defined.8 For convenience, the domain of the
function ϕht will be the same σ-algebra E for each history ht, even though
only a subset of conjectures, namely ∪Y ′(YA(ht, Y

′), is relevant for prediction
at ht, and the definition of ϕht outside this set is irrelevant.

First, for each conjecture A ∈ A, it will be useful to be able to refer to its
weight of credence as ϕht({A}), which requires that {A} be a measurable set.
Let E0 be the σ-algebra generated by all such sets. Next, since predictions will
be made by comparing the ϕht values of subsets of the typeA(ht, Y

′), we need
to make sure that these are measurable. Let E1 be the σ-algebra generated
by all such sets. Finally, the set of singletons contained in a conjecture will
also be of interest, and we let E2 be the σ-algebra generated by all such sets.9

6There is no loss of generality in taking ϕht
to be a probability measure, but it econ-

omizes on notation to refrain from imposing this normalization. For example, we thereby
avoid the need to constantly make special provision for cases in which denominators are
zero.

7The weighting function ϕht
is equivalent to a belief function in the Dempster-Shafer

theory of evidence (Dempster [10], Shafer [38]).
8Recall that a conjecture A is an element of the σ-algebra A over the set of states Ω.

An element of E is a set of conjectures, and hence is an element of a σ-algebra over the
set 2A of sets of states.

9The collection E0 contains every set of the form {ω}, but {{ω} |ω ∈ A} may be un-
countable, and so must be explicitly included in the definition of the sigma-algebra E .
Doing so ensures, for example, that the set of Bayesian conjectures is measurable.
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Summarizing:

σ-algebra Generating sets
E0 {A} for A ∈ A
E1 A(ht, Y

′) for t ≥ 0, ht ∈ Ht, Y
′ ⊂ Y

E2 {{ω} |ω ∈ A} for A ∈ A
.

We then define E as the σ-algebra that is generated by E0∪E1∪E2. A credence
function ϕht is a (σ-additive) measure on E .

Using states of the world to represent possible outcomes is standard in
decision theory, as is the summation of a function such as ϕht to capture
beliefs, and the elimination of conjectures that have been proven wrong.
The most obvious departure we have taken from the familiar framework of
Bayesian updating is to allow conjectures that consist of more than one
state.10 To confirm this, Section 3.1 shows that if we restrict attention to
singe-state conjectures, then we have the familiar framework of Bayesian
reasoning. Expanding the framework to encompass multi-state conjectures
is necessary if we are to capture case-based and rule-based reasoning (cf.
Sections 3.2 and 3.3).

We have restricted attention to deterministic conjectures. One sees this
in (1), where conjectures are either clearly compatible or clearly incompatible
with a given history. This is obviously restrictive, as we are often interested
in drawing inferences about theories that do not make sharp predictions.
However, a framework in which the implications of the evidence for various
conjectures is dichotomous simplifies the analysis by eliminating assessments
as to which theories are more or less likely for a given history, in the process
allowing us to focus attention on the resulting induction. Section 5.2 sketches
the beginnings of a generalization to non-deterministic conjectures.

2.3 Updating

How does the agent learn in this model? We have already identified one
avenue for learning, namely that refuted conjectures are thereafter excluded
from consideration. If this were the only avenue for learning in our model,

10In the process, the notion of compatibility needs to be adapted: whereas a single
state ω is compatible with history ht if ω ∈ [ht], a (possibly multistate) conjecture A is
compatible with history ht if A ∩ [ht] 6= ∅.
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then the updating would precisely mimic Bayesian updating, and the only
generalization from a standard Bayesian model would be the introduction of
multi-state conjectures.

Our generalized model allows a second avenue for learning—the credence
function ϕht can vary with the history ht. Collecting information allows the
agent not only to exclude falsified conjectures, but to modify the weights she
attaches to her surviving conjectures. This contrasts with Bayesian updating
in a standard probability model, where unrefuted states retain their original
relative weights, as well as with the notion of a likelihood function, which
can only decrease in value as data are gathered.

We can obviously expect ϕht to vary with ht if the agent is initially un-
aware of some conjectures. Such a conjecture will be assigned a zero weight
at the outset, but a positive weight at a history ht that brings the conjecture
to mind. For example, it is possible that prior to September 11, 2001 the
agent had not imagined that terrorists might fly commercial airliners into
buildings. This unawareness is naturally captured by setting ϕ∅ of related
conjectures to zero. However, given a history ht that includes this event, con-
jectures that involve similar events in the future may have a positive weight
in ϕht .

Even without unawareness, ϕht may depend on the history ht. The com-
peting conjectures in our model have different domains of application. Some
conjectures make predictions at each period, while others only rarely hazard
a prediction. Once we reach a history ht, shouldn’t conjectures that have
made many correct predictions along the way be upgraded in comparison to
those who have hitherto said little or nothing? In effect, shouldn’t the value
ϕht({A}) increase as A passes more prediction tests?

For example, suppose that there are two possible outcomes (|Y | = 2) and
that conjecture A makes predictions at each of the periods t = 0, ..., 100,
while conjecture A′ makes a prediction only at t = 100. Conjecture A may
be a market analyst who arrives at time t = 100 having pegged the market
correctly in every period, while conjecture A′ may be a competing analyst
who thus far has said nothing other than “can’t tell.” It seems that the weight
we attach to A at time t = 100 should be higher than that of A′, even if at
the outset the two analysts seemed equally reliable.

Rewarding conjectures (or experts) for passing more prediction tests does
not require that ϕht depend on ht. Instead, these rewards can be built into
a function ϕ that is independent of ht. In the example above, at time t = 0
the agent already knows that conjecture A′ will be irrelevant for the first
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100 observations, and will join the game only at period t = 100. The agent
can then build this comparison into the function ϕ∅, perhaps by assigning
weights ϕ∅(A) = 100ϕ∅(A′), and can then simply use ϕ∅ throughout. Thus,
if at time t = 100 conjecture A is still in the game, it will have a much
higher weight than would A′, without any alteration in ϕ.11 In effect, if we
know that conjecture A′ will take no chances until period 100 and so will
then be allocated a small weight relative to whatever conjecture has in the
meantime passed many prediction tests, we might as well downgrade A′ at
the beginning.

Consider a somewhat more involved example in which conjecture A again
makes predictions at every period, and A′ now makes predictions at periods
t = 0 and t = 100, but remains silent in between. We may then want to assign
the two conjectures equal weights at time t = 0, but adjust ϕh100 in order to
give A credit for having made the intervening string of correct predictions,
should both still be relevant at time t = 100. It seems as if simply adjusting
ϕ∅ and thereafter holding ϕ fixed will not accomplish both goals. However,
we can indeed incorporate all of these considerations without allowing ϕ to
depend on ht. The key is to note that the conjectures A and A′ can both
be relevant at time t = 100 only if they make identical predictions at time
t = 0. But if they make the same prediction at time t = 0, only the sum of
their weights (and not their relative weighting) has any effect on predictions
at t = 0. We can thus freely adjust ϕ∅(A) and ϕ∅(A′) in such a way that
would not change predictions until time t = 0, but will give A more weight
at time t = 100.

The more general point is that {ϕht}t≥0,ht∈Ht is under-identified by the
rankings

{
%ht⊂ 2Y × 2Y

}
t≥0,ht∈Ht

. Many different credence functions {ϕht}t≥0,ht∈Ht

give rise to the same ranking of subsets (at each and every history). Indeed
it turns out that any ranking that can be obtained by a history-dependent
{ϕht}t≥0,ht∈Ht can also be represented by a history-independent ϕ:

Proposition 1 Let {ϕht}t≥0,ht∈Ht be a collection of finite measures on (Ω,A}.
Then there exists a measure ϕ on (Ω,A} such that, at each ht and for every
Y ′, Y ′′ ⊂ Y ,

ϕ(A(ht, Y
′)) ≥ ϕ(A(ht, Y

′)) ⇐⇒ ϕht(A(ht, Y
′)) ≥ ϕht(A(ht, Y

′′)).

11Alternatively, if A predicts incorrectly during some of the first 100 periods, it will
subsequently be excluded and hence this choice of ϕ∅ will not interfere with further pre-
dictions.
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It thus sacrifices no generality to work with a function ϕ that is unchanged
as history unfolds. We accordingly hereafter drop the ht subscript on ϕ and
work with an unchanging ϕ.

When ϕ is independent of history, the updating rule inherent in (1)–(2) is
equivalent to the Dempster-Shafer (cf. Dempster [10], Shafer [38]) updating
of the belief function defined by ϕ, in face of the evidence [ht]. This updating
rule has been axiomatized by Gilboa and Schmeidler [16] in the context of
Choquet expected utility maximization.12

3 Special Cases

The unified framework is sufficiently general as to capture several standard
models of inductive reasoning.

3.1 Bayesian Reasoning

We first show that our framework reduces to Bayesian reasoning if one re-
stricts attention to conjectures that consist of one state each.

Bayesian reasoning has been studied in many ways in many fields.13 The
various manifestations of the Bayesian approach differ in several ways, such
as the scope of the state space and the degree to which Bayesian beliefs are
related to decision making, but they share two common ingredients: (i) un-
certainty is always quantified probabilistically; and (ii) when new information
is obtained, probabilistic beliefs are updated according to Bayes’s rule.

12This updating is a special case of Dempster’s rule of combination, in which the belief
function defined by ϕ is combined with the belief function that attaches weight 1 to the
events that contain the conjecture [ht] (and zero to all other events). This special case of
Dempster’s rule of combination does not suffer from common criticisms of the Dempster-
Shafer theory, such as those leveled by Voorbraak [41].

13Bayesian reasoning appeared explicitly in the writings of Bayes [3], with precursors
from the early days of probability theory such as Bernoulli [4]. Beginning with the work
of de Finetti and his followers, it has given rise to the Bayesian approach to statistics
(see, for example, Lindley [26]). Relying on the axiomatic approach of Ramsey [32], de
Finetti [8, 9], and Savage [35], it has grown to become the dominant approach in economic
theory and in game theory. The Bayesian approach has also made significant headways in
computer science and artificial intelligence, as in the context of Bayesian networks (Pearl
[31]). Within the philosophy of science, notable proponents of the Bayesian approach
include Carnap [5] and Jeffrey [22].
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To embed Bayesian reasoning in our framework, define the set of Bayesian
conjectures to be

B = {{ω} |ω ∈ Ω} ⊂ A. (3)

Notice that B is an element of E . Moreover, for every history ht, the set of
surviving or unfalsified Bayesian conjectures B(ht) is given by

B(ht) = {{ω} |ω ∈ [ht]} ,

and it is in E as well.
A credence function ϕ is Bayesian if only Bayesian hypotheses matter in

determining the weights of credence attached to a set of conjectures, i.e., if
for any set E ∈ E , we have

ϕ(E) = ϕ(E ∩ B). (4)

In particular, among the conjectures contained in A, only those in B are
assigned positive weight by a Bayesian credence function.

We can confirm that our model captures Bayesian reasoning:

Lemma 1 Let p be a probability measure on (Ω,A). There exists a Bayesian
credence function such that for every history ht, there is a constant λ > 0
for which, for every Y ′ ⊂ Y

p(yt ∈ Y ′ | [ht]) = λϕ(A(ht, Y
′)).

Proof. Let the credence function be given by

ϕ(E) = p(E ∩ B).

First note that E ∩ B is in A.
Hence, ϕ attaches to each set of Bayesian hypotheses a weight of credence

equal to the prior probability attached to the set, and attaches to a general set
of hypotheses a weight of credence equal to that of the Bayesian hypotheses
it contains. Then ϕ is clearly Bayesian. In addition,

ϕ(A(ht, Y
′)) = p({ω : {ω} ∈ A(ht, Y

′)})

= p(B(ht))
p({ω : {ω} ∈ A(ht, Y

′)})
p(B(ht))

= p(B(ht))p(yt ∈ Y ′ | [ht])
:= λp(yt ∈ Y ′ | [ht]),
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giving the result.

Bayesian reasoning is thus a special case of our framework: every Bayesian
belief can be simulated by a model ϕ, and Bayesian updating is imitated by
our process of excluding refuted conjectures. Apart from the normalization
step, which guarantees that updated probabilities continue to sum up to
1 as conjectures are deleted but has no effect on relative beliefs, Bayesian
updating is nothing more than the exclusion of refuted conjectures from
further prediction.

Our model captures Bayesian reasoning via an assumption that only con-
jectures containing a single state enter the agent’s reasoning. An agent whose
credence function assigns positive weight to non-Bayesian conjectures (e.g.,
ϕ({A}) > 0 for some A ∈ A\B > 0) will not be “Bayesian” by any com-
mon definition of the term. For example, suppose that A = {ω1, ω2} and
ϕ({A}) = δ > 0. Such an agent can be viewed as arguing, “I think that one
of ω1 or ω2 might occur, and I put a weight δ > 0 on this conjecture, but I
cannot divide this weight between the two states.” Intuitively, this abandons
the Bayesian tenet of quantifying all uncertainty in terms of probabilities.
Formally, the corresponding rankings of subsets of outcomes, %ht , will not
satisfy de Finetti’s [8, 9] cancellation axiom: it can be the case that, for two
events, B,C, B %ht C but not B\C %ht C\B. In addition, if we use the
weight function to make decisions by maximization of the Choquet integral
of a utility function, the maximization will fail to satisfy Savage’s [35] “sure-
thing principle”(axiom P2). As a result, upon adding decisions to our model
of beliefs (cf. Section 5.4), we have a converse to Lemma 1: the decision
maker will be Bayesian if and only if (4) holds.

3.2 Case-Based Reasoning

Case-based reasoning is also a special case of our model.14

We first introduce a simple model of case-based reasoning in which case-
based prediction is equivalent to kernel classification.15 The agent has a

14Analogical reasoning was explicitly discussed by Hume [21], and received attention
in the twentieth century in the guise of case-based reasoning (Riesbeck and Schank [34],
Schank [36]), leading to the formal models and axiomatizations of Gilboa and Schmeidler
[17, 18, 19].

15See Akaike [1] and Silverman [39].
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similarity function over the characteristics,

s : X ×X → R+,

and a memory decay factor β ≤ 1. Given history ht = ht(ω), a set of
outcomes Y ′ ( Y is assigned the weight

S(ht, Y
′) =

∑
y∈Y ′

t−1∑
i=0

βt−is(ωX(i), ωX(t))1{ωY (i)=y},

where 1 is the indicator function of the subscripted event. Hence, the agent
may be described as if she considered past cases in the history ht, chose all
those that resulted in some period i with some outcome y ∈ Y ′, and added
to the sum S(ht, Y

′) the similarity of the respective characteristic ωX(i) to
the current characteristic ωX(t). The resulting sums S(ht, Y

′) can then be
used to rank sets of possible outcomes Y ′.

If β = 1 and in addition the similarity function is constant, the resulting
number S(ht, {y}) is proportional to the relative empirical frequency of y’s
in the history ht. If, on the other hand, β → 0, the maximizer of S(ht, ·)
will be the most recent observation, ωY (t − 1). Thus, when the similarity
function is constant, case-based reasoning can be viewed as a simultaneous
(and smooth) generalization of prediction by empirical frequencies on the one
hand, and of prediction by recency on the other hand.

More interesting generalizations are possible when the similarity function
isn’t constant, and uses the information given in X to make more informed
judgments.

The next observation states that the general framework presented in Sec-
tion 2 can accommodate case-based reasoning:

Lemma 2 Let there be given s : X × X → R+ and β ≤ 1. There exists a
model ϕ such that, for every history ht, there is a constant λ > 0 for which,
for every y ∈ Y ,

ϕ(A(ht, {y})) = λS(ht, y).

To prove this observation, we first define case-based conjectures. For
every i < t ≤ T − 1, x, z ∈ X, let

Ai,t,x,z = {ω ∈ Ω |ωX(i) = x, ωX(t) = z, ωY (i) = ωY (t)}

14



and observe that it is the union of finitely many sets of the type [ht, Y
′].

Hence Ai,t,x,z ∈ A and {Ai,t,x,z} ∈ E .
We can interpret this conjecture as indicating that, if the input data are

given by x in period i and by z in period t, then periods i and t will produce
the same outcome (value of y). Notice that in contrast to the Bayesian
conjectures, a single case-based conjecture consists of many states: Ai,t,x,z
does not restrict the values of ωX(k) or ωY (k) for k 6= i, t. Let the set of all
conjectures of this type be denoted by

CB = {Ai,t,x,z | i < t ≤ T, x, z ∈ X } ⊂ A. (5)

A credence function ϕ is case-based if, for every set E ∈ E , we have

ϕ(E) = ϕ(E ∩ CB). (6)

Thus, among the conjectures contained in the set A, only those in CB are
assigned positive weight by a case-based credence function.

Once the set of conjectures CB has been defined, the proof of Lemma 2
is straightforward:

Proof. Given a similarity function s and β ≤ 1, let

ϕ({Ai,t,x,z}) = ctβ
(t−i)s(x, z) (7)

where ct > 0 is chosen so that ϕ(CB) is finite, say, ct = t−2. Let, for E ∈ E ,

ϕ(E) =
∑

{Ai,t,x,z}∈E

ϕ({Ai,t,x,z}).

Consider a history ht = ht(ω) and a prediction y ∈ Y . To calculate ϕ(A(ht, {y}))
observe first that, at ht, only the conjectures

{
Ai,t,ωX(i),ωX(t) | i < t

}
are un-

refuted and yield predictions that are included in the singleton {y}. Hence,
only t conjectures will affect the prediction {y}, corresponding to the t possi-
ble case-based conjectures of the form Ai,t,ωX(i),ωX(t) (with i = 0, 1, ..., t− 1).
It is then immediate that ϕ(A(ht, {y})) = ctS(ht, y).

In general, we could define similarity relations based not only on single
observations but also on sequences, or on other more general patterns of
observations. Such higher-level analogies can also be captured as conjectures
in our framework. For instance, the agent might find history ht similar to
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history hi for i < t, because in both of them the last k periods had the same
observations. This can be reflected by conjectures including states in which
observations (i − k + 1), ..., i are identical to observations (t − k + 1), ..., t,
and so forth.

3.3 Rule-Based Reasoning

The model can accommodate many other forms of reasoning, often referred to
as “rule-based reasoning.”16 These other modes of reasoning are again char-
acterized by conjectures or “rules” to which they attach weights of credence.
This section provides some examples.

The rule “the price of oil always rises” corresponds to the conjecture

A = {ω ∈ Ω |ωY (t) = 1 ∀t} .

There are many states in this conjecture, featuring different sequences of
changes in the values of the level of demand and conflict.

Our framework can also encompass association rules, or rules that can be
expressed as conditional statements. For example, consider the rule “if the
level of conflict has risen, so will the price of oil.” This rule can be described
by

A = {ω ∈ Ω |ωX2(t) = 0 or ωY (t) = 1 ∀t} . (8)

(Recall that ωX2(t) indicates whether there was an increase in the index of
conflict, and ωY (t) an increase in the price of oil.) The rule “an increase in
conflict implies an increase in the price of oil” is then read as “either there
will be less conflict, or more expensive oil, or possibly both.”17

16We draw the name “rule-based” from earliest models of reasoning, dating back to
Greek philosophy and its study of logic, focusing on the rules of deduction and the con-
cept of proof. The rise of analytical philosophy, the philosophy of mathematics, and
artificial intelligence greatly extended the scope of rule-based reasoning, including its use
for modeling human thinking, as in the introduction of non-monotonic (McCarthy [28],
McDermott and Doyle [29], Reiter [33]), probabilistic (Nilsson [30]), and a variety of other
new logics.

17Holland’s [20] genetic algorithms address classification problem where the value of y
is to be determined by the values of x = (x1, ..., xm), based on past observations of x and
y. The algorithm maintains a list of association rules, each of which predicts the value of
y according to values of some of the xj ’s. For instance, one rule might read “if x2 is 1 then
y is 1” and another, “if x3 is 1 and x7 is 0 then y is 0.” In each period, each rule has a
weight that depends on its success in the past, its specificity (the number of xj variables
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An association rule will be excluded from the summation defining ϕ(A(ht))
as soon as a single counter-example is observed. Thus, if history ht is such
that for some i < t we observed an increase in the level of conflict that was
not followed by a rise in the price of oil, the conjecture (8) will not be used
for further analysis. When an association rule is unrefuted, it may or may
not affect predictions, depending on whether its antecedent holds. If the an-
tecedent of a rule is false, the rule becomes vacuously true and does not affect
prediction. However, if (in this example) we do observe a rise in the level of
conflict, ωX2(t) = 1, the rule has bite (retaining the assumption that it is as
yet unrefuted). Its weight of credence ϕ will be added to the prediction that
the price of oil will rise, ωY (t) = 1, but not to the prediction that it will not,
ωY (t) = 0.

Our framework also allows one to capture functional rules, stating that
the value of y is a certain function f of the value of x, such as

A = {ω ∈ Ω |ωY (t) = f(ωX(t)) ∀t} .

3.4 Combined Models

The previous subsections illustrate how our framework can capture each of
the modes of reasoning separately. Its main strength, however, is in being
able to smoothly combine such modes of reasoning, simply by considering
models ϕ that assign positive weights to sets of conjectures of different types.

For example, consider an agent who attempts to reason about the world
in a Bayesian way. The agent has a prior probability p over the states of
the world, Ω. However, she also carries with her some general rules and
analogies. Assume that she employs a model ϕ such that

ϕ (B) = 1− ε

(where ε > 0) with weight allocated among the Bayesian conjectures accord-
ing to

ϕ ({{ω} |ω ∈ A}) = (1− ε) p (A)

it involves) and so forth. The algorithm chooses a prediction y that is a maximizer of
the total weight of the rules that predict this y and that apply to the case at hand. The
prediction part of genetic algorithms is therefore a special case of our framework, where
the conjectures are the association rules involved. However, in a genetic algorithm the set
of rules does not remain constant, with rules instead being generated by a partly-random
process, including crossover between “parent genes,” mutations, and so forth.
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(for all A ∈ A) and the remaining weight ε is split among case-based and
rule-based conjectures.

If ε is small, the non-Bayesian conjectures will play a relatively minor
role is determining predictions, as long as history proceeds along a path
that had a high a-priori probability. However, suppose that the reasoner
faces a surprising event, such as the September 11 attacks or the Lehman
Brothers’ collapse. If the agent had assigned the event zero probability,
Bayesian updating will not be well-defined. In this case, the non-Bayesian
conjectures may determine the agent’s predictions. For example, in the face
of the September 11 attack, the agent might discard Bayesian reasoning
and resort to the general rule that “at the onset of war, the stock market
plunges.” Alternatively, the agent may resort to analogies, and predict the
stock market’s behavior based on past cases such as the attack on Pearl
Harbor.

Even if the event in question had a nonzero but very small prior proba-
bility, non-Bayesian reasoning will again be relatively more important. Once
the event has occurred, conditional probabilities are well-defined and can
be used, but the formerly negligible non-Bayesian conjectures will now be
much more prominent. This can be interpreted as if the reasoner has a cer-
tain degree of doubt about her own probabilistic assessments, captured by
the weight ε > 0 put on non-Bayesian conjectures. When a small probability
event occurs, it is as if the agent tells herself, “I do have my updated Bayesian
beliefs, but I start doubting my probability assessments; after all, according
to these very same assessment, it used to be very unlikely to find ourselves
where we are. Hence, it might be a good idea to consider other modes of
reasoning as well.”

3.5 How Would We Know and Why Would We Care?

We have noted in Section 3.1 that an agent who attaches weight to non-
Bayesian conjectures will generate rankings %ht that are observably non-
Bayesian. However, Proposition 1 also notes that the agent’s predictions
may be consistent with many credence functions ϕ. Indeed, it is easy to
see that, if the agent is asked simply to identify the most likely singleton
in Y after each history, then any given sequence of such predictions can be
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explained by either Bayesian or other methods of reasoning.18 Why should
we care, then, about the mode of reasoning the agent employs?

The answer is that different modes of reasoning might explain a given
dataset of predictions ex post, yet provide different predictions ex ante. For
example, if we knew that the agent were Bayesian, we would try to use her
past predictions to estimate her prior, and use it to forecast her posterior.19

By contrast, if the agent were known to be a case-based reasoner, her past
predictions would be used to estimate her similarity function. Thus, the same
dataset of observations might be compatible with both assumptions about
the mode reasoning, but it might lead to different predictions under these
assumptions.

This is a manifestation of a more general point: when comparing differ-
ent paradigms, one often cannot expect to have a simple experiment that
identifies the correct one. Within each paradigm many theories may be de-
veloped, which can, post hoc, explain given data. However, the simplest
theory within one paradigm might lead to rather different predictions than
the corresponding theory within another paradigm. In other words, if we
augment paradigms with a method for selecting theories within them (say,
the simplest theory that fits the data), the choice of a paradigm will have
observable implications.

4 Dynamics of Reasoning Methods

4.1 When is Bayesian Reasoning Fragile?

Under what conditions will Bayesian reasoning survive as evidence accumu-
lates, and when will the agent turn to other modes of reasoning? Our answer
is that Bayesian reasoning will wither away if the agent’s prior is not suffi-
ciently informative.

4.1.1 Assumptions

We start by assuming that at least some weight is placed on both Bayesian
and case-based reasoning:

18Relatedly, Matsui [27] demonstrated that expected utility maximization and case-
based decision theory lead to equivalent sets of feasible outcomes.

19Naturally, such a task requires additional assumptions on the structure of the prior
probability.
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Assumption 1
ϕ(B), ϕ(CB) > 0.

There can be many other types of conjectures that get non-zero weight ac-
cording to ϕ. The specific inclusion of case-based reasoning is a matter of
convenience, born out of familiarity. We explain in Section 4.1.2 how this
assumption could be reformulated to make no reference to case-based con-
jectures.

Next, we think of the agent as allocating the overall weight of credence
in a top-down approach, first allocating weights to modes of reasoning, and
then to specific conjectures within each mode of reasoning. First consider
the weight of the Bayesian conjectures, ϕ(B). We are interested in an agent
who knows relatively little about the process she is observing. An extreme
case of such ignorance is modeled by a uniform prior:

ϕ (B(ht))

ϕ (B(h′t))
= 1, (9)

for any pair of histories of the same length, ht and h′t. We can relax this
assumption, requiring only that the probability assigned to any particular
event cannot be too much smaller than that assigned to another event at the
same period t. Thus, one may assume that there exists M > 1 such that, for
every t and every ht, h

′
t ∈ Ht,

ϕ (B(ht))

ϕ (B(h′t))
< M. (10)

We weaken this condition still further, allowing M to depend on t, and
assume only that the ratio between the probabilities of two events cannot go
to infinity (or zero) too fast as we consider ever-larger values of t. Formally,

Assumption 2 There exists a polynomial P (t) such that, for every t and
every two histories ht, h

′
t ∈ Ht,

ϕ(B(ht))

ϕ(B(h′t))
≤ P (t).

Assumption 2 is still strong—it will be violated if, as is often assumed
in Bayesian models, the agent believes she faces successive iid draws, say,
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ωY (t) = 1 in each period with probability p > 0.5.20 In this case the agent
knows a great deal about the data generating process, being able to identify
the process up to the specification of a single parameter. In contrast, our
message is that Bayesian reasoning will fade when the agent knows relatively
little about the data generating process. However, sub-section 4.1.4 shows
that a similar (but somewhat more cumbersome) result holds in the iid case
as well.

We make an analogous assumption regarding the way that the weight of
credence is distributed among the various case-based conjectures. It would
suffice for our result to impose a precise analog of Assumption 2, namely that
there is a polynomial Q(t) such that, for any t and any pair of case-based
conjectures Ai,t,x,z and Ai′,t′,x′z′ , we have

ϕ({Ai,t,x,z})
ϕ({Ai′,t,x′,z′})

≤ Q(t). (11)

However, suppose (analogously to (7)) that there exists a similarity function
s : X ×X → R+, a decay factor β ∈ (0, 1], and a constant c > 0 such that,
for every i < t and every x, z ∈ X,

ϕ({Ai,t,x,z}) = cβt−is(x, z). (12)

In this case, the characteristics x, z ∈ X determine the relative weights placed
on the case-based conjectures involving information of a given vintage (i.e.,
a given value of t− i), with β ≤ 1 ensuring that older information is no more
influential than more recent information. This formulation is rather natural,
but it violates (11) if β < 1, as the relevance of older vintages then declines
exponentially. Fortunately, there is an obvious and easily interpretable gen-
eralization of (11) that allows us to encompass (12).

Assumption 3 There exists a polynomial Q(t) such that, (1) for every i, i′,
t, t′, x, x′ and z, z′ with t− i = t′ − i′, and t′ < t,

ϕ({Ai′,t′,x′,z′})
ϕ({Ai,t,x,z})

≤ Q(t) (13)

20For an easy illustration of this failure, observe that the ratio of the probabilities of a
string of t successive 1’s and a string of t successive 0’s is (p/(1−p))t, and hence exponential
in t.
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and (2) for every t, x, z ∈ X and i < i′ < t,

ϕT ({Ai,t,x,z})
ϕT ({Ai′,t,x,z})

≤ Q(t). (14)

Condition (13) stipulates that within a set of conjectures based on sim-
ilarities across a given time span (i.e., for which t − i = t′ − i′), the agent’s
weights of credence cannot be too different. Condition (14) stipulates that
when comparing similarities at a given period t, based on identical character-
istics but different vintages, the older information cannot be considered too
much more important than more recent information. Typically, we would
expect older information to be less important and hence this constraint will
be trivially satisfied.

4.1.2 Result

The following result establishes that under Assumptions 1–3, in the long run
the agent puts all of her weight on non-Bayesian (rather than on Bayesian)
conjectures.

For the statement of the result we need a notation for the case-based
conjectures that are relevant at history ht:

CB(ht) = CB∩ (∪y∈YA(ht, {y})) .

Proposition 2 Let Assumptions 1–3 hold. Then at each ω ∈ Ω,

lim
t→∞

ϕ (B(ht))

ϕ (CB(ht))
= 0.

Hence, the Bayesian component of the agent’s reasoning will wither away. As
we noted in Section 3.5, the resulting shifting weights of credence can give
rise to predictions that could not be rationalized by a Bayesian model.

The Bayesian part of the agent’s beliefs converges to the truth at an
exponential rate as evidence is accumulated (that is, as t grows): within the
Bayesian class of conjectures, the probability of the true state relative to the
probability of all unrefuted states grows exponentially with t. How is this fast
learning reconciled with Proposition 2? The conditional probability of the
true state increases at an exponential rate not because its numerator (the
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weight attached to the true state) increases, but because its denominator
(the total probability of all unrefuted states) decreases at an exponential
rate. But this is precisely the reason that the weight of the entire class
of Bayesian conjectures tapers off and leaves the stage to others, such as
the case-based conjectures. As t grows, the weight of Bayesian conjectures
that remain unrefuted by history ht, ϕ (B(ht)), becomes an exponentially
small fraction (given Assumption 1) of the original weight of all Bayesian
conjectures, ϕ (B). In contrast, the number of case-based conjectures at
period t is only a polynomial (in t), and hence there is no reason for the
weight of those that make predictions at history ht to decrease exponentially
fast in t. The relative weight placed on Bayesian conjectures thus declines
to zero.

It follows that a similar result would hold if we were to replace the class
of case-based conjectures with any other class of conjectures that grows poly-
nomially in t and that provides some non-tautological prediction for each ht,
provided an assumption similar to Assumption 3 holds. Therefore, we do not
view this result as proving the prevalence of case-based reasoning. Rather,
the result highlights the fragility of Bayesian reasoning. Case-based reason-
ing is simply a familiar example of a mode of reasoning with the requisite
properties.

Recall that case-based prediction can be viewed as generalizing the pre-
diction of the modal outcome in the past, as well as the prediction of the
most recent outcome. While we again emphasize that the role of case-based
reasoning in this argument could be filled by many alternatives, we find it
unsurprising that an agent who does not know much about the data gen-
erating process may use simple statistical techniques, predicting outcomes
that have been observed most often or most recently. Our result describes
a possible mechanism by which this may happen, for reasons unrelated to
bounded rationality or to cognitive or computational limitations.

4.1.3 Weights of Credence

Proposition 2 is driven by the fact that there are fewer case-based conjec-
tures than there are Bayesian ones. In order for a relatively small class of
conjectures to have unrefuted representatives at each history, it must be the
case that many of these conjectures make no predictions at many histories.
In a sense, conjectures from the smaller class may be viewed as saving their
ammunition and picking their fights selectively.
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The obvious question is then: Are the Bayesian conjectures treated fairly
by our assumptions on the function ϕ? Specifically, if, at time t, the agent
compares the Bayesian conjectures to the case-based ones, she will find that
each of the former (that is still in the game) has made t successful pre-
dictions, whereas each of the surviving case-based conjectures has made no
predictions at all. Shouldn’t the tested conjectures get more weight than the
untested ones? Shouldn’t the model ϕ be updated to reflect the fact that
some conjectures have a more impressive track record than others?

Section 2.3 explained that it sacrifices no generality to work with a func-
tion ϕ that is never revised as history unfolds. This simply refocuses the
question in terms of the a priori assignment of weights, in the process direct-
ing attention to Assumption 3. Should we not make the weight of case-based
conjectures of the form Ai,t,x,z decline exponentially fast in t (violating As-
sumption 3), to give the Bayesian ones a fair chance, as it were?

We believe there are some obvious circumstances in which the answer is
negative. Suppose that all of the Bayesian conjectures get the same weight,
satisfying an extreme version of Assumption 2. It then cannot help but be
the case that some of them are still unrefuted by history ht: by construction,
there had to be states of the world that are compatible with ht. The agent
knew at time t = 0 that, whatever history materializes at time t, some
Bayesian conjectures will be in the game. In this case, there is no reason
to artificially increase the relative weight of these conjectures upon reaching
history ht, as if they were a priori selected. Adopting the equivalent but a
priori convention of decreasing the weight of the case-based conjectures at
an exponential or even faster rate strikes us as similarly unjustified, being
tantamount to committing to a Bayesian approach that one knows is both
tautologically true and without content.21

21At the other extreme, suppose that only one Bayesian conjecture is given positive
weight by ϕ. In this case, at time t, if this conjecture is still unrefuted, the agent might
indeed wish to put an exponentially high relative weight on it, that is, to shrink the total
weight of the competing case-based conjectures exponentially fast in t. Equivalently, the
agent might arrange at the beginning of the game to cause the weight placed on case-based
conjectures Ai,t,x,z to decrease very quickly in t, allowing the lone Bayesian conjecture to
rule the roost if it survives, while retaining the relative weights on the surviving case-based
conjectures so that their predictions are unaffected in the event the Bayesian hypothesis
is falsified. Notice, however, that this manipulation is unnecessary. If the initial weight
attached to Bayesian hypotheses is large, the weight will remain large, as there are no
falsified Bayesian hypotheses to melt away. In this case, Bayesian reasoning survives even
without help in the form of declining case-based weights.
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Another way to look at this problem is the following. Let the agent ask
herself at time 0, how much weight is given (a priori) to all conjectures of a
given type that will be relevant for prediction at time t. For the Bayesian
conjectures the answer is independent of t: when we sum across all possible
histories, we always get the same number, ϕ (B), because the union of the
relevant conjectures across all histories of length t is the set of all Bayesian
conjectures, B, for all t. For the case-based conjectures the situation is quite
different: when we consider t 6= t′, the set of conjectures that will be relevant
at some history ht is disjoint from the corresponding set for t′. Indeed, we
have observed that the total weight of all conjectures that may be relevant at
time t has to tend to zero, whereas the corresponding weight for the Bayesian
conjectures in a constant. From this viewpoint, the Bayesian conjectures have
an inherent advantage. Thus, it seems reasonable to require that, at the very
least, the vanishing sequence of weights of case-based conjectures not vanish
too fast, and this is what Assumption 3 states.

4.1.4 The iid Case

An obvious case in which Assumption 2 is violated occurs when the agent
believes that she observes an iid process. Suppose, for example, that Y =
{0, 1} and the agent believes the yt are iid Bernoulli random variables, i.e.,
yt ∼ B(p). Then Assumption 2 holds only if p = 0.5, because the ratio of
single states’ probabilities involves exponentials of p and (1−p). Nonetheless,
a conclusion very similar to that of Proposition 2 still holds.

Consider the state space Ω endowed with the σ-algebra Σ defined by the
variables (xt, yt)t≥0. A probability measure µ on Σ is a non-trivial condition-
ally iid measure if, for every x ∈ X there exists λx ∈ ∆(Y ) such that (i) for
every ht = ((x0, y0) , . . . , (xt−1, yt−1) , xt), the conditional distribution of Y
given ht according to µ is λxt ; and (ii) λx is non-degenerate for every x ∈ X.
The next assumption states that the Bayesian part of the agent’s beliefs is
governed by such a measure:

Assumption 4 There exists a non-trivial conditionally iid measure µ such
that, for every A ∈ Σ

ϕ ({{ω} |ω ∈ A}) = µ(A)ϕ(B)

Thus, this assumption states that the weight of the Bayesian conjectures,
ϕ(B), is divided among them in a way that is proportional to the measure
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µ.22

We can now state

Proposition 3 Let Assumptions 1,3, and 4 hold, and let µ be the measure
of Assumption 4. Then

µ

(
lim
t→∞

ϕ (B(ht))

ϕ (CB(ht))
= 0

)
= 1

Proposition 3 states that, µ-almost surely, the weight of the Bayesian
hypotheses relative to that of the case-based ones will converge to zero. Thus,
an agent who has Bayesian beliefs µ, and who puts some weight ε > 0 on the
case-based beliefs in a way that corresponds to Assumption 3, will, according
to her own beliefs, converge to be non-Bayesian. Importantly, even if the
agent were right about the Bayesian part of her beliefs, she would still predict
that her own reasoning will become non-Bayesian.

The proof of Proposition 3 mimics that of Proposition 2. The key obser-
vation is that there are exponentially many histories for any given frequencies
of outcomes, provided that these frequencies are non-trivial. For example, if
|X| = 1, Y = {0, 1} and we consider a history of length t, there is but one
history in which there are 0 y’s that are equal to 1, and O(tk) histories in
which there are k such y’s. But there are exponentially many histories in
which the relative frequency of 1 is close to pt. That is,

(
t
pt

)
is exponential

in t if p 6= 0, 1. More generally, since µ is assumed to be non-trivial condi-
tionally iid (that is, since the conditional distributions λx are assumed to be
non-degenerate), apart from a set of µ measure zero, any history at time t
has exponentially many other histories that are just as likely.

Observe that a similar result would hold in case the agent only believes
that the variables yt, given each value of x, are exchangeable. Indeed, the
very definition of exchangeability, involving all possible permutations, hints
at the dangers of exponential blow-up. To prove such a result, one need only
make sure that sufficiently many permutations result in different histories ht.

Along similar lines, the conclusion of Proposition 2 holds also if Assump-
tion 2 fails but there exists γ < 1 such that, for some polynomial P (t), for

22Observe that µ is defined over subsets of Ω (that are in Σ) whereas ϕ is defined over
subsets of such subsets, and the assumption only deals with the subsets that contain only
singletons {ω}. Observe also that Assumption 4 remains silent about the distribution of
the x’s.
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every t and every ht,
ϕ(Bt(ht)) ≤ γtP (t). (15)

If Assumptions 1 and 3 also hold, then the relative weight on Bayesian con-
jectures will decline to zero.

On the other hand, an agent who is resolutely Bayesian will handle iid
variables just as one would expect.

Example 1 Suppose that X is degenerate, say, X = {0}, Y = {0, 1},
and that ϕ(B) = 1. Suppose this Bayesian’s prior is a nondegenerate mix
of two prior distributions. One of these predicts that each yt is drawn from
the Bernoulli distribution B(p) and one from the Bernoulli distribution B(q).
Then if the observations are indeed iid draws from B(p), the relatively weight
that the agent places on this distribution will almost surely (according to
the true distribution) converge to one. The agent will eventually predict
optimally, predicting yt = 1 in each period if p > .5, and yt = 0 otherwise.

Agents who are convinced they should be Bayesian thus exhibit famil-
iar behavior. In light of this, how will an agent reason who is reasonably
confident that she faces an iid process, but is uncertain about the parame-
ter? Much depends on what is meant by “reasonably confident,” a judgment
manifested in the agent’s credence function.

Example 2 Suppose thatX is degenerate, Y = {0, 1}, and that the weights
of credence the agent attaches to Bayesian conjectures are consistent with
the various yt being drawn iid from a Bernoulli distribution. If the agent is
sufficiently confident of her iid hypothesis as to attach zero weights of cre-
dence to all other conjectures, she will be familiarly and resolutely Bayesian
throughout. If she hedges her bets by attaching some weight to case-based
conjectures, in accordance with Assumption 3, then the weight she attaches
to Bayesian conjectures will decline to zero. Indeed, the agent can be assured
at the beginning of the process that this will happen. In between these two
possibilities, if the the agent attaches credence to case-based hypotheses, but
attaches weights that cause ϕ({Ai,t,x,z}) to decline exponentially (violating
Assumption 3), then the evolution of her reasoning will depend on the rate
at which the ϕ({Ai,t,x,z}) decline and the nature of her Bayesian prior. To
illustrate the latter, suppose again the Bayesian prior is a nondegenerate
mix of two prior distributions, one predicting that each yt is drawn from
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the Bernoulli distribution B(p) and one predicting draws from the Bernoulli
distribution B(q). Then if the weights ϕ({Ai,t,x,z}) decline appropriately, the
weight of Bayesian hypotheses will increase to one if the data are indeed gen-
erated by B(p) of B(q), but in other cases (e.g., data drawn from B(r) for
some r 6= p, q) the Bayesian prior will slip into insignificance and case-based
reasoning will prevail. They agent will thus remain Bayesian if her Bayesian
prior contains the correct date generating process, but will otherwise slip into
case-based reasoning.

Example 3 This example illustrates another case in which not all weight it
attached to Byesian conjectures, so it is not obvious that Bayesian reasoning
will survive, but Assumption 3 does not hold, so it is also not obvious that
Bayesian reasoning will disappear.

Consider again the simplest case of X = {0}, Y = {0, 1}. Assume that
yt are iid, where yt = 1 with probability p.

Consider the set of states

Bi,y = {ω ∈ Ω |ωY (t) = y ∀t ≥ i}

for i ≥ 0 and y ∈ Y . Hence, each collection of states Bi,y is identified by
a given period i and outcome y, and predicts that from period i on, only
outcome y will be observed.

The agent attaches weights to all of the Bayesian conjectures in the set⋃
i≥0,y∈Y

Bi,y.

The weight attached to the states in Bi,0 ∪ Bi,1 is given by ξ2−i, evenly
distributed among such states. (The factor ξ is a normalization, to ensure
weights sum to unity.) There are 2i such hypotheses, so that the weight of
a single such hypothesis is 2−2i. Notice that (15) holds, so that the weights
attached to Bayesian hypotheses are consistent with Bayesian reasoning with-
ering away.

Because there are no x values to consider, the case-based conjectures are
simply

Ai,t = {ω ∈ Ω |ωY (i) = ωY (t)} ,
and the set of all case-based conjectures is

CB = {Ai,t | i < t} .
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The weight attached to the case-based hypothesis in Ai,t is given by ξ2−2t

(obviating Assumption 3).
Now consider a history ht ending with a run of either y = 0 of y = 1

of length `. The total weight of case-based hypotheses is 2−2t. Among the
Bayesian hypotheses, there survives a hypothesis from the B(t− `, 0)∪B(t−
`, 1), with weight 2−(t−`). The weight placed on Bayesian hypotheses is thus
at least 2−(t−`), and the weight of Bayesian hypotheses relative to case-based
hypotheses is at east 2`. As the history unfolds, with probability one there
will occur arbitrarily long strings of identical values of y, at which point
the relative weight of Bayesian hypotheses will be arbitrarily large. At the
same time, strings will periodically be broken, restoring the Bayesian and
case-based hypotheses to an equal footing. Hence, from time to time there
will emerge a Bayesian hypotheses that is accepted, only to collapse at some
subsequent point. In other words, even if the data are completely random, it
should be expected that theories would rise and fall every so often, with case-
based reasoning being more prominent between regimes of different theories.

Observe that the balance of weights between the two modes of reasoning
is driven by the success of Bayesian reasoning. This reflects the intuition
that people would like to understand the process they observe, and that such
“understanding” means a simple, concise theory that explains the data. If
such a theory exists, agents will tend to prefer it over case-based reasoning.
But when all simple theories are refuted, agents will resort to case-based
reasoning.

4.2 When will Bayesianism Prevail?

If we had worked with the stronger version of Assumption 2 given by (9), we
would have the expected (though perhaps reassuring) result that Bayesian
reasoning disappears when the Bayesian prior is so diffuse that a Bayesian
could not possibly learn anything. However, Assumption 2 allows Bayesian
priors that will in turn allow learning, and yet still give way to other sorts
of reasoning. Section 4.1.4 shows that Assumption 2 can be weakened yet
further. When will Bayesian reasoning remain useful in the long run, or even
dominate other reasoning methods?

Example 4 Suppose the agent believes that she nearly knows the true state
of the world. We capture this by letting there be some ω, ϕ({ω}) = 1 − ε
(and hence allowing Assumption 2 to fail). If, on top of this, the agent is also
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correct in her focus on state ω, then (that is, at state ω) the weight attached
to Bayesian conjectures will never dip below 1 − ε. In other words, if the
agent believes she knows the truth, and happens to be right, her Bayesian
beliefs will remain dominant.

Example 5 A slightly less trivial example is the following. Suppose the
agent believes she faces a cyclical process, but is uncertain of its period. To
capture these beliefs in a simple model, let us consider only Bayesian and
case-based reasoning. In addition, let X = {0} and Y = {0, 1}, so that all
periods have the same observable features, and they only differ in the binary
variable the agent is trying to predict. For k ≥ 1, let ωk ∈ Ω be defined by

ωkY (t) =

{
0 2mk ≤ t < (2m+ 1)k m = 0, 1, 2, ...
1 (2m+ 1)k ≤ t < (2m+ 2)k m = 0, 1, 2, ...

.

Thus, for k = 1 the process is 01010101..., for k = 2 it is 001100110011... and
so forth.

Let the agent’s beliefs satisfy

ϕ(
{
{ωk}

}
) =

1− ε
2k

and
ϕT (
{
{ω}|ω /∈

{
ωk |1 ≤ k

}}
) = 0.

Thus, the agent splits all the weight of the Bayesian conjectures among the
conjectures

{
ωk
}

and leaves no weight to the other Bayesian beliefs.23 Once
again, Assumption 2 fails. The remaining weight, ε, is split among the case-
based conjectures.

Next suppose that the agent is right in her belief that the process is indeed
cyclical (starting with a sequence of 0’s). Thus, the data generating process
chooses one of the states ωk. At this state, once we get to period t = k,
all the Bayesian conjectures

{
ωk

′}
for k′ 6= k are refuted. In contrast, the

conjecture
{
ωk
}

is not refuted at any t. Consequently, at ωk, for every t ≥ k,
the total weight of the Bayesian conjectures remains 1−ε

2k
. The total weight

of the case-based conjectures converges to 0, resulting in the Bayesian mode

23Observe that these Bayesian beliefs can also be readily described as rule-based beliefs.
We suspect that this is not a coincidence. When Bayesian beliefs violate Assumption 2, it
is likely to be the case that they reflect some knowledge about the data generating process,
which can also be viewed as believing in a class of rules.

30



of reasoning remaining the dominant one (for large t). Clearly, this will only
be true at the states

{
ωk
}

. At other states the converse result holds, because
all Bayesian conjectures will be refuted and case-based reasoning will be the
only remaining mode of reasoning.

Example 6 Considering the same set-up, X = {0} and Y = {0, 1}, let us
limit attention to the first T periods. Consider a Bayesian agent who has a
uniform belief over the average

ȳT =
1

T

T−1∑
t=0

ωY (t)

and, given ȳT , a uniform distribution over all the corresponding states. Thus,
the agent puts a weight of 1

T+1
on the sequence 1, 1, ..., 1, but only a weight

of 1
T (T+1)

on each sequences with (T − 1) 1’s and a single 0, and a weight

o(T−3) on each sequence with two 0’s, and so forth.
The total weight of all case-based conjectures is a convergent series. This

implies that the weight of all the case-based conjectures that are relevant at
T has to decline to zero at a rate that is faster than 1

T
. Hence, if the agent

observes the sequence 1, 1, ..., 1, she will put more weight on the Bayesian
conjecture that can be described also by the rule “ωY (t) = 1 for every t.”
However, if the agent observes one exception to this rule, the Bayesian con-
jecture that predicts only 1’s will have a weight that is o(T−2). The more
exceptions one observes, the lower is the weight of the Bayesian conjectures.

If the rate of decline of the weight of case-based conjectures in polynomial
in T , say, o(T−k) for k > 1, then finitely many exceptions to the rule “y is
always 1” will suffice to switch to case-based reasoning. (Observe, however,
that this reasoning is likely to make similar predictions: if all but k times
one has observed yt = 1, the modal prediction will still be yT = 1.) If, by
contrast, the weight of case-based conjectures decreases exponentially fast in
T , even very spotty patterns will keep the Bayesian conjectures on par with
the case-based ones.

In summary, for Bayesian reasoning to prevail, the reasoner’s Bayesian
beliefs must be sufficiently informative (i.e., must contain the truth and must
not be too diffuse), and the reasoner must have sufficient confidence in those
Bayesian beliefs (e.g., build quickly declining weights of credence into the
case-based conjectures relevant to successive periods). Economic models
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typically ensure this confidence by assuming that the agent entertains only
Bayesian conjectures. We emphasize that our purpose is not to criticize ei-
ther Bayesian reasoning or models based on Bayesian reasoning. Rather, our
point is that the same characteristics that make Bayesian reasoning work
well for a committed Bayesian can make it fragile in the hands of a tentative
Bayesian.

4.3 Probabilistic Reasoning

Our main result establishes conditions under which Bayesian reasoning is
fragile. However, it does not imply that when the weight of the Bayesian
conjectures becomes negligible (relative to the weight of all unrefuted conjec-
tures), probabilistic reasoning will be forever discarded. Instead, case-based
and to rule-based reasoning may subsequently give way to a new probabilis-
tic model. Specifically, if at history ht ϕ (B(ht)) is low (relative to, say,
ϕ (CB(ht))), it is still possible that at a certain continuation of ht, ht′ with
t′ > t, the agent will again form beliefs that put a high weight on singleton
hypotheses consistent with ht′ . As Proposition 1 indicates, this process is
consistent with a single, history-independent ϕ.

The dynamics of our model can thus capture the type of reasoning raised
in Section 1. Given a certain history ht′ above, the agent forms probabilistic
beliefs that can be thought of as a Bayesian model given ht′ . Such beliefs
cannot be guaranteed to assign a high probability to all eventualities. The
agent may have failed to seriously consider certain black swans, and some of
them will have very low probability. As a result, the agent may find herself
at a point where she mistrusts her model, and resorts to case-based and rule-
based reasoning in its stead. However, at some subsequent t′′ > t′, the agent
beliefs may again effectively form a new probabilistic model.

It is easier to generate such “conditionally Bayesian” models than a single,
a priori Bayesian model, for two related reasons: first, a model that starts at
a history ht has to consider only a subset of the events that a comprehensive
Bayesian model deals with. If the time horizon is finite, the number of
states one needs to assign probability to decreases exponentially fast as t
grows, which means that the probability assignment task becomes easier.
Second, as t grows, there are more data on the basis of which such probability
assignments may be done. Indeed, if one considers the Bayesian model, one
has to assign probabilities to many states with no data at all, out of thin air as
it were. By contrast, for sufficiently large t, the agent may find regularities
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in the data that may suggest a new probabilistic model for the remaining
periods.

At the same time, any probabilistic model generated after some history
ht will eventually face the same difficulty: whatever the finite history used
for its formulation, it will become negligible relative to the size of the state
space as one looks further into the future. Hence, one should expect that,
apart from simple statistical problems, no probabilistic model will ever be the
“correct” one. Rather, the agent will be cycling between periods in which she
has a satisfactory probabilistic models, and periods in which black swans are
observed and model uncertainty reigns. In such periods, case-based and rule-
based reasoning are needed to make predictions, and, eventually, to formulate
new probabilistic models.

To illustrate this, consider again the simplest example with no predicting
variables, say, X = {0}, and Y = {0, 1}. Suppose that the agent believes that
the data generating process on {0, 1}N follows a probabilistic model given
by a measure ρ (defined on the standard σ-algebra on {0, 1}N). However,
certain periods in the past might have been exceptional – say, periods of
wars, financial crises, and so forth. Hence, the agent does not believe that ρ
is necessarily the appropriate probability measure to be assigned to Ω. She
only believes that after a certain history, the continuation of the process will
be governed by ρ. In other words, ρ is the conditional belief on Ω given a
history ht (with conditional state space that is also {0, 1}N).

Assume further that the agent does not presume that she can assign
probabilities to the initial period, in which wars, financial crises, and the like
disrupt her prediction. She does not pretend to have probabilistic beliefs over
the length of time at which the process will finally stabilize and be govern
by ϕ. Rather, she awaits to see periods of relative calm, in which y = 1, and
she assigns weight to rules of the type “if yi = 1 for the last k periods, we
may finally see the periods governed by ρ.”

Let Rk,s stand for the conjecture that, after the first time in which k
consecutive 1’s were observed, the process will follow a state s ∈ {0, 1}N.
Explicitly,

Rk,s =

ω ∈ Ω

∣∣∣∣∣∣∣∣
∃t

ωY (i) = 1 t− k ≤ i < t
ωY (i) = s(i− t) t ≤ i

(ωY (i))i<t−1 does not contain a sequence of k 1’s

 .

(Observe that Rk,s ∩ Rk′,s′ may be non-empty for s 6= s′ if k 6= k′. However,
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s 6= s′ does imply that Rk,s and Rk,s′ are disjoint for every k.)
Let us assume that the agent assigns to the conjectures {Rk,s}s a total

weight Q(k) = k−2 and that ρ, when applied to Ω, satisfies 2. The weight of
the “rule-based” conjectures will be given by

ϕ({Rk,s}s∈A) = Q(k)ρ(A)

for a measurable A ⊂ {0, 1}N.
Apart from these conjectures, the agent will be assumed to assign positive

weight also to the case-based conjectures,

Ai,t = {ω ∈ Ω |ωY (i) = ωY (t)} ,

and assume that their weight is

ϕ({Ai,t}) = Q(t)/t

that is, that the total weight of the case-based conjectures at time t is Q(t) =
t−2 and that this weight is divided equally among the periods preceding t. In
particular, Assumption 3 holds.

Consider a history ht. Every sequence of 1’s in it initiates a rule Rk,s.
However, since Assumptions 2 and 3 hold, the probabilistic reasoning em-
bodied by the rules {Rk,s}s,k≤t will give way to the case-based reasoning as
in Proposition 2. To be precise, fix t and consider the reasoning at history
ht′ with t′ > t. There are up to t different sets of conjectures {Rk,s}s∈{0,1}N
that affect the agent’s reasoning in a probabilistic way, but since the weight
of each of them decreases exponentially fast with t′, in the long run the
weight of all of them combined will be negligible relative to the weight of the
case-based conjectures.

However, as t′ grows, new sets of conjectures {Rk,s}s∈{0,1}N might join
the game. Assume that t is large and that the longest sequence of 1’s in
ht is of length k << t. When, at some point, k + 1 1’s are observed, the
weight of the probabilistic reasoning in {Rk+1,s}s∈{0,1}N will be Q(k+ 1), and
it will overwhelm the weight of the case-based reasoning, Q(t). Moreover,
this phenomenon is likely to recur. Suppose, for the sake of the argument,
that the true data generating process of yt is uniform (and iid). Considering
a given length k, we may ask when will a sequence of k 1’s will first appear.
With very high probability, this will occur at time t which is exponentially
larger than k. At such a history ht, the agent will reason mostly by the
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probabilistic reasoning ρ. Over time, as t′ > t grows, a repetition of the
arguments behind Proposition ?? ensures that this probabilistic reasoning
will decline in weight, but with probability 1, new probabilistic models will
be developed later on.

Thus, our framework may capture non-trivial dynamics between case-
based and rule-based reasoning. Moreover, it can describe how probabilistic
theories may be re-developed as history unfolds. Under the assumptions
of Proposition 2, a prior distribution that has been formed at time t = 0
will have a negligible effect on reasoning in the long term. Yet, conditional
probabilistic models might be re-formulated, capturing the agents beliefs that
she can make probabilistic predictions from a certain time on.

5 Concluding Remarks

5.1 Methods for Generating Conjectures

In many examples ranging from scientific to everyday reasoning, it may be
more realistic to put weight ϕ not on specific conjectures A, but on methods
or algorithms that generate them. For example, linear regression is one such
method. When deciding how much faith to put in the prediction generated
by the OLS method, it seems more plausible that agents put weight on
“whatever the OLS method prediction came out to be” rather than on a
specific equation such as “yt = 0.3 + 5.47xt.”

One simple way to capture such reasoning is to allow the carriers of
weight of credence to be sets of conjectures, with the understanding that
within each set a most successful conjecture is selected for prediction, and
that the degree of success of the set is judged by the accuracy of this most
successful conjecture. The following example illustrates.

Suppose that the agent is faced with a sequence of datasets. In each
dataset there are many consecutive observations, indicating whether a comet
has appeared (1) or not (0). Different datasets refer to potentially different
comets.

Now assume that the agent considers the general notion that comets
appear in a cyclical fashion. That is, each dataset would look like

0, 0, ..., 0, 1, 0, 0, ..., 0, 1, ...

where a single 1 appears after k 0’s precisely. However, k may vary from
one dataset to the next. In this case, the general notion or “paradigm” that
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comets have a cyclical behavior can be modeled by a set of conjectures—
all conjectures that predict cycles, parametrized by k. If many comets have
been observed to appear according to a cycle, the general method, suggesting
“find the best cyclical theory that explains the observations” will gain much
support, and will likely be used in the future. Observe that the method may
gain credence even though the particular conjectures it generates differ from
one dataset to the next.

5.2 Probabilistic Conjectures

An important next step is to extend this framework to probabilistic conjec-
tures. Conjectures would then be represented by probability distributions
rather than by sets of states. The Bayesian conjectures in such an exten-
sion are straightforward, and consist of probability distributions over states.
Each such distribution f has an a priori weight ϕ({f}). If the support of
ϕ is contained within the set of Bayesian conjectures, then ϕ is simply the
Bayesian prior. Given a history ht, the conjecture f is no longer classified
dichotomously into “consistent with ht” or “inconsistent with ht.” Rather,
it is continuously ranked in [0, 1] according to the probability of history ht
given theory f , that is, according to the theory’s likelihood function at ht.
Multiplying the likelihood function by the a-priori weight ϕ({f}) leads to a
natural measure of the belief in theory f following history ht. Indeed, this
is, up to renormalization, precisely the result of a Bayesian update over the
Bayesian conjectures.

The specification of non-Bayesian conjectures is less clear. Should these
be formulated as sets of distributions over states, or as distributions over
sets of states, some combination of these generalizations, or something else?
Finding such an appropriate generalization is a topic for further research.

5.3 Single-Conjecture Predictions

This paper is concerned with reasoning that takes many conjectures into
account and aggregates their predictions. Alternatively, we may consider
reasoning modes that focus on a most preferred conjecture (among the unre-
futed ones) and make predictions based on it alone. For example, if we select
the simplest theory that is consistent with the data, we obtain Wittgenstein’s
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[42] definition of induction.24 If, by contrast, we apply this method to case-
based conjectures, we end up with nearest-neighbor approaches (see Cover
and Hart [7] and Fix and Hodges [11, 12]) rather than with the case-based
aggregation discussed here.

5.4 Decision Theory

In order to explore the implications of our analysis to decision making, the
framework needs to incorporate acts and payoffs, and to specify the inter-
action between the agent’s choices and the underlying process. There are
situations in which this interaction is practically non-existent. For example,
a small trader in the stock market may assume that her actions have no effect
on future prices. In this case, the decision problem is in close relationship to
a prediction problem: the payoff at each period is a function of the quality
of the guess made, but no additional complications arise. Other examples
of this type include a physician who has to make diagnoses or treatment
decisions for a different patient each period, or a graduate admissions officer
who has to make admission decisions for consecutive candidates.

However, many choice situations require one to go beyond predictions,
and to consider the effect that one’s choices might have on the unfolding
of the process in the future. In these situations, it is conceptually simplest
to assume that the agent makes one choice of an act (or a strategy) at the
outset, then history unfolds, nature determines the state of the world, and the
agent’s utility is determined by the resulting outcome. In this case, each act
f associates outcomes with states ω as in a standard Savage model. But our
framework needs to be augmented before it can be used to generate beliefs
over this state space. The reason is that many conjectures in the framework –
such as case-based conjectures, or those corresponding to association rules –
only constrain the values of yt given xt, but remain silent on the evolution of
the xt’s in the future. Such conjectures are all one needs to make conditional
predictions at a specific period t, but if one engages in long-run predictions,
one has to ask oneself not only which yτ are likely to occur given xτ for τ > t,
but also which xτ are likely to be observed in the future.

24See Solomonoff [40], who suggested to couple this preference for simplicty with Kol-
mogorov complexity measure to yield a theory of philosophy of science. Gilboa and
Samuelson [15] discuss the optimal selection of the preference relation over theories in
this context.
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6 Appendix: Proofs

6.1 Proof of Proposition 1

Define, for each ht and for every Y ′ ( Y ,

ϕ ({[ht, Y ′] ∪ (ht)
c}) = chtϕht(A(ht, Y

′))

for every conjecture of the form {[ht, Y ′] ∪ (ht)
c}, and set ϕ(F) = 0 where

F is the set of all conjectures that are not of this form, and cht > 0 is
to be determined. Observe that the conjecture [ht, Y

′] ∪ (ht)
c is unrefuted

and non-tautological only at ht. Hence, at history ht, only conjectures of
the form [ht, Y

′′] ∪ (ht)
c (with Y ′′ ( Y ) are unrefuted and non-tautological,

and the total weight that they assign to a subset of outcomes Y ′ is by con-
struction chtϕht(A(ht, Y

′)). The coefficient cht is chosen so that the total
weight assigned by ϕ to all conjectures converges, which would be the case,
for instance, if ∑

ht∈Ht

cht = t−2.

6.2 Proof of Proposition 2

We start by showing that, because the ratio of weights assigned to specific
histories of the same length t is bounded by a polynomial of t, the weight
of each particular such event is bounded by this polynomial divided by an
exponential function of t.

Consider a period t and a history ht. If ϕ(B(ht)) > η, then, since for
every ht, h

′
t ∈ Ht, ϕ(B(ht)) ≤ P (t)ϕ(B(h′t)), for every h′t,

ϕ(B(h′t)) ≥
ϕ(B(ht))

P (t)
>

η

P (t)

Observe that |Ht| ≥ dt for d = |X||Y | > 1. Hence

ϕ(B) >
dtη

P (t)

and ϕ(B) < 1 implies

η <
P (t)

dt
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Since this is true for every η such that η < ϕ(B(ht)), we conclude that

ϕ(B(ht)) ≤
P (t)

dt
. (16)

We now turn to discuss the weight of the case-based conjectures that are
relevant for prediction at ht. We wish to show that this weight cannot be
too small. First, observe that the set of case-based conjectures is countable.
Denote the total weight of the case-based conjectures whose second period
is τ by Sτ . Explicitly,

Sτ =
τ−1∑
i=0

∑
x,z∈X

ϕ ({Ai,τ ,x′,z′})

Then,

ϕ (CB) =
∞∑
τ=1

Sτ .

Choose T large enough so that

T∑
τ=1

Sτ >
ϕ (CB)

2
. (17a)

From now on, assume that t ≥ T .
Consider a conjectureA(t−1),t,x,z ∈ CB and assume that ϕ

({
A(t−1),t,x,z

})
<

ξ. By (13) (of Assumption 3) we have that, for all t′ < t, x′, z′

ϕ
({
A(t′−1),t′,x′,z′

})
< ξQ(t).

By (14) (of that Assumption), we know that for all i < t′ < t, and all x′, z′,

ϕ ({Ai,t′,x′,z′}) < ϕ
({
A(t′−1),t′,x′,z′

})
Q(t) < ξ [Q(t)]2 .

The overall number of case-based conjectures whose second period is t′ ≤ t

is |X|2
(
t
2

)
. Since the weight of each is less than ξ [Q(t)]2 we conclude that

their total weight satisfies

T∑
τ=1

Sτ < ξ [Q(t)]2 |X|2
(
t
2

)
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and, using (17a) we obtain

ϕ (CB)

2
<

T∑
τ=1

Sτ < ξ [Q(t)]2 |X|2
(
t
2

)
.

Define

R(t) = 2 [Q(t)]2 |X|2
(
t
2

)
and observe that it is a polynomial in t.

Thus, we have

ξ >
ϕ (CB)

R(T )
.

Since this holds for any ξ such that ξ > ϕ
({
A(t−1),t,x,z

})
, it has to be the

case that

ϕ
({
A(t−1),t,x,z

})
≥ ϕ (CB)

R(t)
.

We observe that at ht there are precisely t case-based conjectures that
are unrefuted and non-tautological, and among them there is one of the type
A(t−1)t,x,z (that is, the one defined by x = ωX(t − 1) and z = ωX(t)). It
follows that

ϕ (CB(ht)) ≥ ϕ
({
A(t−1),t,x,z

})
≥ ϕ (CB)

R(t)
. (18)

Combining (16) and (18) we obtain

ϕ (B(ht))

ϕ (CB(ht))
<
P (t)R(t)

ϕ(CB)dt

where the expression on the right clearly converges to 0 as t→∞.
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