Questions in Decision Theory

Itzhak Gilboa

June 15, 2011

History

- Pascal and Bernoulli

History

- Pascal and Bernoulli
- Ramsey and deFinetti

History

- Pascal and Bernoulli
- Ramsey and deFinetti
- von Morgenstern-Neumann

History

- Pascal and Bernoulli
- Ramsey and deFinetti
- von Morgenstern-Neumann
- Savage

History

- Pascal and Bernoulli
- Ramsey and deFinetti
- von Morgenstern-Neumann
- Savage
- Anscombe-Aumann

The Bible (Savage, 1954)

- $F=X^{S}=\{f \mid f: S \rightarrow X\}$

The Bible (Savage, 1954)

- $F=X^{S}=\{f \mid f: S \rightarrow X\}$
- P1 \succsim is a weak order

The Bible (Savage, 1954)

- $F=X^{S}=\{f \mid f: S \rightarrow X\}$
- P1 \succsim is a weak order
- P2 $f_{A^{c}}^{h} \succsim g_{A^{c}}^{h}$ iff $f_{A^{c}}^{h^{\prime}} \succsim g_{A^{c}}^{h^{\prime}}$

The Bible (Savage, 1954)

- $F=X^{S}=\{f \mid f: S \rightarrow X\}$
- P1 \succsim is a weak order
- P2 $f_{A^{c}}^{h} \succsim g_{A^{c}}^{h}$ iff $f_{A^{c}}^{h^{\prime}} \succsim g_{A^{c}}^{h^{\prime}}$
- P3x $\succsim y$ iff $f_{A}^{x} \succsim f_{A}^{y}$

The Bible (Savage, 1954)

- $F=X^{S}=\{f \mid f: S \rightarrow X\}$
- P1 \succsim is a weak order
- P2 $f_{A^{c}}^{h} \succsim g_{A^{c}}^{h}$ iff $f_{A^{c}}^{h^{\prime}} \succsim g_{A^{c}}^{h^{\prime}}$
- P3x $\begin{gathered} \\ \text { - } \\ \text { iff } \\ f_{A}^{x} \\ \\ f_{A}^{y}\end{gathered}$
- P4 $y_{A}^{x} \succsim y_{B}^{x}$ iff $w_{A}^{z} \succsim w_{B}^{z}$

The Bible (Savage, 1954)

- $F=X^{S}=\{f \mid f: S \rightarrow X\}$
- P1 \succsim is a weak order
- P2 $f_{A^{c}}^{h} \succsim g_{A^{c}}^{h}$ iff $f_{A^{c}}^{h^{\prime}} \succsim g_{A^{c}}^{h^{\prime}}$
- P3x $\begin{gathered}\text { - } \\ \text { iff } \\ f_{A}^{x} \\ f_{A}^{y}\end{gathered}$
- P4 $y_{A}^{x} \succsim y_{B}^{\chi}$ iff $w_{A}^{z} \succsim w_{B}^{z}$
- P5 $\exists f \succ g$

The Bible (Savage, 1954)

- $F=X^{S}=\{f \mid f: S \rightarrow X\}$
- P1 \succsim is a weak order
- P2 $f_{A^{c}}^{h} \succsim g_{A^{c}}^{h}$ iff $f_{A^{c}}^{h^{\prime}} \succsim g_{A^{c}}^{h^{\prime}}$
- P3x $\begin{gathered}\text { - } \\ \text { iff } \\ f_{A}^{x} \\ f_{A}^{y}\end{gathered}$
- P4 $y_{A}^{x} \succsim y_{B}^{x}$ iff $w_{A}^{z} \succsim w_{B}^{z}$
- P5 $\exists f \succ g$
- P6 $f \succ g \exists$ a partition of $S,\left\{A_{1}, \ldots, A_{n}\right\} f_{A_{i}}^{h} \succ g$ and $f \succ g_{A_{i}}^{h}$

Savage's Theorem

- Assume that X is finite. Then \succsim satisfies P1-P6 if and only if there exist a non-atomic finitely additive probability measure μ on S $\left(=\left(S, 2^{S}\right)\right)$ and a non-constant function $u: X \rightarrow \mathbb{R}$ such that, for every $f, g \in F$

$$
f \succsim g \quad \text { iff } \quad \int_{S} u(f(s)) d \mu(s) \geq \int_{S} u(g(s)) d \mu(s)
$$

Furthermore, in this case μ is unique, and u is unique up to positive linear transformations.

Decision Theory at a Crossroad

- Accuracy vs. beauty/generality

Decision Theory at a Crossroad

- Accuracy vs. beauty/generality
- Method: experiments, axioms, neurological data?

Decision Theory at a Crossroad

- Accuracy vs. beauty/generality
- Method: experiments, axioms, neurological data?
- Goal: theoretical models or applied decisions?

Decision Theory at a Crossroad

- Accuracy vs. beauty/generality
- Method: experiments, axioms, neurological data?
- Goal: theoretical models or applied decisions?
- Descriptive or normative?

Main Questions

- Rationality

Main Questions

- Rationality
- Probability

Main Questions

- Rationality
- Probability
- Utility

Main Questions

- Rationality
- Probability
- Utility
- Rules and analogies

Main Questions

- Rationality
- Probability
- Utility
- Rules and analogies
- Group decisions

Rationality

- Older concept: "Rational Man" should do...

Rationality

- Older concept: "Rational Man" should do...
- In neoclassical economics: only consistency

Rationality

- Older concept: "Rational Man" should do...
- In neoclassical economics: only consistency
- An even more subjective view: which consistency?

Rationality

- Older concept: "Rational Man" should do...
- In neoclassical economics: only consistency
- An even more subjective view: which consistency?
- Rationality as robustness

Rationality

- Older concept: "Rational Man" should do...
- In neoclassical economics: only consistency
- An even more subjective view: which consistency?
- Rationality as robustness
- Weaknesses (?): subjective, empirical, not monotonic in intelligence

Rationality

- Older concept: "Rational Man" should do...
- In neoclassical economics: only consistency
- An even more subjective view: which consistency?
- Rationality as robustness
- Weaknesses (?): subjective, empirical, not monotonic in intelligence
- Defense

Objective and Subjective Rationality

- A decision maker is defined by two relations $\left(\succsim^{*}, \succsim^{\wedge}\right)$

Objective and Subjective Rationality

- A decision maker is defined by two relations $\left(\succsim^{*}, \succsim^{\wedge}\right)$
- \succsim^{*} - can convince "any reasonable decision maker" that it is right

Objective and Subjective Rationality

- A decision maker is defined by two relations $\left(\succsim^{*}, \succsim^{\wedge}\right)$
- \succsim^{*} - can convince "any reasonable decision maker" that it is right
- \succsim^{\wedge} - cannot be convinced that it is wrong

Objective and Subjective Rationality

- A decision maker is defined by two relations $\left(\succsim^{*}, \succsim^{\wedge}\right)$
- \succsim^{*} - can convince "any reasonable decision maker" that it is right
- \succsim^{\wedge} - cannot be convinced that it is wrong
- Clearly, $\succsim^{*} \subset \succsim^{\wedge}$

Classical and Bayesian Statistics

- Classical: attempts to be objective, no intuition

Classical and Bayesian Statistics

- Classical: attempts to be objective, no intuition
- Bayesian: attempts to incorporate intuition and hunches

Classical and Bayesian Statistics

- Classical: attempts to be objective, no intuition
- Bayesian: attempts to incorporate intuition and hunches
- Classical - for making a point (to others)

Classical and Bayesian Statistics

- Classical: attempts to be objective, no intuition
- Bayesian: attempts to incorporate intuition and hunches
- Classical - for making a point (to others)
- Bayesian - for making a decision (for oneself)

Probability

- What is the probability of

Probability

- What is the probability of
- A coin coming up Head?

Probability

- What is the probability of
- A coin coming up Head?
- A car being stolen?

Probability

- What is the probability of
- A coin coming up Head?
- A car being stolen?
- A surgery succeeding?

Probability

- What is the probability of
- A coin coming up Head?
- A car being stolen?
- A surgery succeeding?
- A war erupting?

Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)

Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:

Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:
- Descriptively: people violate axioms (Ellsberg)

Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:
- Descriptively: people violate axioms (Ellsberg)
- Normatively: completeness?

Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:
- Descriptively: people violate axioms (Ellsberg)
- Normatively: completeness?
- Back to rationality: if it's so rational, why isn't it objective?

Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:
- Descriptively: people violate axioms (Ellsberg)
- Normatively: completeness?
- Back to rationality: if it's so rational, why isn't it objective?
- The Bayesian approach is good at representing knowledge, poor at representing ignorance

Objective probabilities

- Exist in simple cases (iid)

Objective probabilities

- Exist in simple cases (iid)
- Can be defined with identicality, as long as causal independence is retained

Objective probabilities

- Exist in simple cases (iid)
- Can be defined with identicality, as long as causal independence is retained
- Rule-based approaches: logit

Objective probabilities

- Exist in simple cases (iid)
- Can be defined with identicality, as long as causal independence is retained
- Rule-based approaches: logit
- Case-based approaches: empirical similarity

Objective probabilities

- Exist in simple cases (iid)
- Can be defined with identicality, as long as causal independence is retained
- Rule-based approaches: logit
- Case-based approaches: empirical similarity
- But none extends to the cases of wars, stock market crashes...

Alternatives to the Bayesian approach

- Schmeidler (1989): non-additive probabilities (capacities)

Alternatives to the Bayesian approach

- Schmeidler (1989): non-additive probabilities (capacities)
- Integration by Choquet's integral

Alternatives to the Bayesian approach

- Schmeidler (1989): non-additive probabilities (capacities)
- Integration by Choquet's integral
- Maxmin EU: there exists a set of probabilities C such that

$$
V(f)=\min _{P \in C} \int_{S} u(f(s)) d P(s)
$$

Other multiple-priors models

- Nau, Klibanoff-Marinacci-Mukerji: "smooth preferences"

$$
\begin{gathered}
\varphi: \mathbb{R} \rightarrow \mathbb{R} \\
\int_{\Delta(S)} \varphi\left(\int u(f) d p\right) d \mu
\end{gathered}
$$

Other multiple-priors models

- Nau, Klibanoff-Marinacci-Mukerji: "smooth preferences"

$$
\begin{gathered}
\varphi: \mathbb{R} \rightarrow \mathbb{R} \\
\int_{\Delta(S)} \varphi\left(\int u(f) d p\right) d \mu
\end{gathered}
$$

- Maccheroni-Marinacci-Rustichini: "variational preferences"

$$
V(f)=\min _{P \in \Delta(S)}\left\{\int_{S} u(f(s)) d P(s)+c(P)\right\}
$$

Incomplete relation

- Bewley:

$$
\begin{aligned}
f & \succ g \\
\forall p & \in C \\
\int_{S} u(f(s)) d P(s) & >\int_{S} u(g(s)) d P(s)
\end{aligned}
$$

Incomplete relation

- Bewley:

$$
\begin{aligned}
f & \succ g \\
\forall p & \in \quad C \\
\int_{S} u(f(s)) d P(s) & >\int_{S} u(g(s)) d P(s)
\end{aligned}
$$

- Fits the "objective rationality" notion

Incomplete relation

- Bewley:

$$
\begin{aligned}
f & \succ g \\
\forall p & \in \quad C \\
\int_{S} u(f(s)) d P(s) & >\int_{S} u(g(s)) d P(s)
\end{aligned}
$$

- Fits the "objective rationality" notion
- Can be combined with the maxmin criterion as "subjective rationality"

Utility

- What is utility and how is it related to well-being or happiness?

Utility

- What is utility and how is it related to well-being or happiness?
- Measurement of well-being and its relation to money

Utility

- What is utility and how is it related to well-being or happiness?
- Measurement of well-being and its relation to money
- The paraplegics and lottery winners

Utility

- What is utility and how is it related to well-being or happiness?
- Measurement of well-being and its relation to money
- The paraplegics and lottery winners
- Problems of measurement

Utility

- What is utility and how is it related to well-being or happiness?
- Measurement of well-being and its relation to money
- The paraplegics and lottery winners
- Problems of measurement
- All happy families... ?

Rules and analogies

- In the context of probability

Rules and analogies

- In the context of probability
- Statistics

Rules and analogies

- In the context of probability
- Statistics
- Moral argumentation

Rules and analogies

- In the context of probability
- Statistics
- Moral argumentation
- Recent model unifying the two, as well as Bayesian

Group decisions

- Do groups make better decisions than do individuals?

Group decisions

- Do groups make better decisions than do individuals?
- "Truth wins" vs. risk/uncertainty aversion

Group decisions

- Do groups make better decisions than do individuals?
- "Truth wins" vs. risk/uncertainty aversion
- Aggregation of opinions/judgment aggregation

