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Motivation

September 16, 2001
What will the DJIA be?

September 15, 2008
�The models do not apply�
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Modes of Reasoning

Bayesian
Prior on all states; Bayesian updating

Case-Based
Analogies; similarities

Rule-Based
Regularities; deduction, contrapositives...
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Prevalence

Case-based: universal; cats do it

Rule-based: cognitively more demanding

Bayesian: tends to be di¢ cult; some inference (such as what
information I could have gotten but didn�t) are quite common
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History in Research

Rule-based: the oldest
Formal logic, dates back to the Greeks

Bayesian: 17th-18th centuries
Attributed to Bayes, 1763

Case-based: the latest to be studied academically
Schank, 1986
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Goals

Develop a model that uni�es these modes of reasoning

This would allow
Comparing them
Delineating their scope of applicability
Studying hybrid modes of reasoning
Studying the dynamics of reasoning
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General Model
The primitives are:

X �a set of characteristics that may be observed

Y �a set of outcomes that are to be predicted

0 < jX j, jY j < ∞

Ω = (X � Y )∞ �the set of states of the world

A � 2Ω �the σ-algebra of conjectures
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Some more notation

For a state ω 2 Ω and a period t, there a history up to period t

ht (ω) = (ω(0), . . . ,ω(t � 1),ωx (t))

and its associated event

[ht ] = fω 2 Ω j (ω(0), . . . ,ω(t � 1),ωx (t)) = ht g

For a history ht and a subset of outcomes Y 0 � Y de�ne the event�
ht ,Y 0

�
=
�

ω 2 [ht ]
��ωy (t) � Y 0

	
namely, that ht occurs and results in an outcome in Y 0.
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The Credence Function

There is a σ-algebra E of sets of conjectures

Inference is driven by a σ-additive measure

φ : E !R+

measuring the degree of belief that the agent has in sets of
conjectures.

In the present model, φ(C) will not change with history.
The only inference engine will be pseudo-Bayesian

Conjectures A that are proven inconsistent with ht will be
discarded

One may with to make φ dependent on history ht
But there�s no need to do that.

Convention: φ(E) = 1
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Reasoning by Conjectures

Given history ht , all conjectures A such that

A\ [ht ] = ?

are refuted and should be discarded.

Conjectures A such that

A\ [ht ] = [ht ,Y ]

say nothing and are irrelevant.
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How likely is a set of outcomes?

Given history ht , how much credence does φ lend to each outcome?
Or to each set of outcomes?

For Y 0 $ Y de�ne

A(ht ,Y 0) =
�
A 2 A

��? 6= A\ [ht ] � �ht ,Y 0�	
which is the class of conjectures that

have not been refuted by ht
predict that the outcome will be in Y 0 (hence relevant)

Their weight
φ(A(ht ,Y 0))

is the degree of support for the claim that the next observation will be
in Y 0.
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A bit more notation

Since we have a special interest in subsets of conjectures, de�ne, for
D � A,

The set of conjectures in D that are unrefuted and predict and
outcome in Y 0 $ Y

D(ht ,Y 0) =
�
A 2 D

��? 6= A\ [ht ] � �ht ,Y 0�	
Also, it will be useful to have a notation for the total weight of all
conjectures in D that are unrefuted and relevant:

φ(D(ht )) = φ
�
[Y 0(YD(ht ,Y 0)

�
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Special Case 1: Bayesian

The set of Bayesian conjectures:

B = ffωg jω 2 Ωg � A

Given a probability p on Ω, one may de�ne

φp (ffωg jω 2 Ag) = p (A)

and get, for every ht and every Y 0 $ Y ,

p
�
Y 0j [ht ]

�
_ φp(A(ht ,Y 0))
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Special Case 2: Case-Based

Consider a simple case-based model of prediction. For a similarity
function

s : X � X!R+

de�ne the aggregate similarity for an outcome y 2 Y

S(ht , y) =
t�1
∑
i=0

βt�i s(ωx (i),ωx (t))1fωy (i )=yg

This is equivalent to kernel classi�cation (with similarity playing the
role of the kernel).

More involved case-based reasoning is possible, but this is �ne for
now.
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Case-Based cont.

The case-based conjectures will be of the form

Ai ,t ,x ,z = fω 2 Ω jωx (i) = x ,ωx (t) = z ,ωy (i) = ωy (t)g

for periods i < t and two characteristics x , z 2 X .

Ai ,t ,x ,z can be viewed as predicting
�in period i we�ll observe characteristics x , in period t we�ll observe
characteristics z , and the outcomes will be identical�

Or:
�IF we observe characteristics x and z in periods i and t, (resp.)
THEN we�ll observe the same outcomes in these periods.�
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Case-based cont.

The set of all case-based conjectures is

CB = fAi ,t ,x ,z j i < t , x , z 2 X g � A.

To embed a similarity model, with s : X � X!R+ in our model,
de�ne

φs ,β(fAi ,t ,x ,zg) = β(t�i )s(x , z)

to get
S(ht , y) = φs ,β(A(ht , fyg))
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Special Case 3: Rule-Based

Example: an association rule that says �if x = 1 then y = 0�
(�If two countries are democracies then they do not engage in a war�)

can be captured by

A = fω 2 Ω jω(t) 6= (1, 1) 8tg
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Rule-based cont.

A functional rule that says that �y = f (x)�
(�The price index increases at the same rate as the quantity of
money�)

A = fω 2 Ω jωy (t) = f (ωx (t)) 8t g .

Similarly, one can bound the value of y by f (x)� δ etc.

We do not o¤er a general framework for rules. Any refutable �theory�
may be modeled as a conjecture, and we do not expect to exhaust the
richness of structure of the theories.
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The Main Result �Example

The year is 1960. The reasoner has to predict, for the next 60 years,
whether a war will or will not occur. For simplicity, assume that there
are no characteristics to observe and consider a �nite horizon. Thus,

jX j = 1 jY j = 2 T = 60

There are many states

jΩj = 2T = 260

Out of all conjectures (jAj = 2260) focus on Bayesian and case-based
conjectures:

jBj = 2T = 260

jCBj =

�
T
2

�
=

�
60
2

�
�= 1800
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Example �cont.

Assume that the reasoner �gives a chance� to CB reasoning

φ(CB) = ε; φ(B) = 1� ε

and splits the weight φ within each class of conjectures uniformly.

Each Bayesian conjecture gets a weight

1� ε

2T
=
1� ε

260

and each case-based conjectures �a weight

ε

(T2 )
�= ε

1800

Now the year is 2010, that is t = 50. There are 2T�t = 210 unrefuted
Bayesian conjectures, and t = 50 case-based ones.
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Example �cont.

Thus, the total weight of Bayesian conjectures still in the game is

φ (B(ht )) = 2T�t
1� ε

2T
<
1
2t
=

1
250

and the case-based ones have total weight

φ (CB(ht )) = t
ε

(T2 )
�= 50 ε

1800

Generally,
φ (B(ht )) decreases exponentially in t
φ (CB(ht )) decreases polynomially (quadratically) in t
=) For su¢ ciently large t, reasoning tends to be mostly case-based.
(And any other class of conjectures of polynomial size can beat the
Bayesian.)
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Assumption 1

We retain the main assumption that the reasoner gives some weight
to the case-based conjectures (or to another polynomial class):

Assumption 1: φ(B), φ(CB) > 0.
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Assumption 2

We assume some open-mindedness in the way that the weight
φT (BT ) is split. Uniform means that 8 ht , h0t 2 Ht ,

φ (B(ht ))
φ (B(h0t ))

= 1

More generally, we can demand

φ (B(ht ))
φ (B(h0t ))

� c

or even let c depend on t, provided that ct does not increase more
than polynomially in t:

Assumption 2: 9 P(t), 8 t 8 ht , h0t 2 Ht ,

φ(B(ht ))
φ(B(h0t ))

� P(t)
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Assumption 3

Finally, the weight of the case-based conjectures is assumed to be
proportional to the similarity between the characteristics. Speci�cally,

Assumption 3: There exists a polynomial Q(t) such that, (1) for
every i , i 0, t, t 0, x , x 0 and z , z 0 with t � i = t 0 � i 0, and t 0 < t,

φ(fAi 0,t 0,x 0,z 0g)
φ(fAi ,t ,x ,zg)

� Q(t) (1)

and (2) for every t, x , z 2 X and i < i 0 < t,

φ(fAi ,t ,x ,zg)
φ(fAi 0,t ,x ,zg)

� Q(t). (2)
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The Main Result

Theorem
Let Assumptions 1-3 hold. Then at each ω 2 Ω,

lim
t!∞

φ (B(ht ))
φ (CB(ht ))

= 0.

Thus, a pseudo-Bayesian updating rule drives out Bayesian reasoning.
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Bayesian Learning

How come there is no learning? Wasn�t the posterior probability of
the true state supposed to increase?

Indeed,
p (fωg)
p ([ht ])

grows exponentially with t.

But this is so because the denominator is shrinking.

That is, precisely for the reason that the entire Bayesian mode of
thinking fades away.

This doesn�t happen if ε = 0: a committed Bayesian will never see
how low are the a priori probabilities of the Bayesian conjectures,
because she has no alternative to compare them to.
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When is Bayesianism Reasonable?

Our result depends on Assumption 2, which says that the reasoner
doesn�t know too much about the process (hence cannot favor some
states too much).

A counterexample: the reasoner knows that the state is ω, and this
happens to be true.

Clearly, Assumption 2 is violated.

Such a reasoner would have no reason to abandon the Bayesian belief.
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Reasonable Bayesianism �cont.

More generally: the reasoner may know the process up to k
parameters

and k does not grow with t

Example: observing a comet
knowing that the phenomenon is cyclical.

Bayesianism will survive if
The reasoner believes that she knows the process
She happens to be right.
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The IID Case

A probability measure µ on Σ is a non-trivial conditionally iid measure
if, for every x 2 X there exists λx 2 ∆(Y ) such that (i) for every ht ,
the conditional distribution of Y given ht according to µ is λxt ; and
(ii) λx is non-degenerate for every x 2 X .

Assumption 2�: There exists a non-trivial conditionally iid measure µ
such that, for every A 2 Σ

ϕ (ffωg jω 2 Ag) = µ(A)ϕ(B)
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The IID Case �Result

Theorem
Let Assumptions 1-3 hold. Then

µ

�
lim
t!∞

φ (B(ht ))
φ (CB(ht ))

= 0
�
= 1.
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How do Case-Based Conjectures Survive?

Imagine that each conjecture is a consultant.

They sit in a room at t = 0 and state predictions A.

As history unfolds, the refuted ones are asked to leave.

Case-based consultants are allowed to say �I don�t know�.
A2003,2010,x ,z says something about t = 2010, but nothing about

other t�s

Commitment to Bayesianism means that the weight φ (A2003,2010,x ,z )
has to be split among the 258 states in A2003,2010,x ,z . Most of these
will be wrong.

Leaving the case-based consultant in the room is like crediting him
with knowing when to remain silent. As if the meta-knowledge (when
do I really know something) is another criterion in the selection of
consultants.
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Comments

Convergence to an additive probability
but a frequentist (non-Bayesian) one.

Similar results could apply to families of rule based conjectures
and may generate non-additive probability.

A di¤erent interpretation: the result describes the formation of prior
probability.

If one knows how to split weight among states (Laplace?).
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Case-Based vs. Rule-Based Dynamics

The weight of the case-based conjectures is �xed

Each rule (or theory) has a high weight a priori
If successful, the reasoner is mostly rule-based
If not, the cases are always there
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Algorithms

Often the carrier of credence is not a particular conjecture, but an
algorithm to generate one.

Example: OLS
The particular regression line is not the issue
It�s the method of generating it

Another version: carriers are classes of conjectures, with maximum
likelihood within each one.
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Other Directions

Probabilistic version
Rules replaced by distributions
Refutation �by likelihood
Several ways to proceed

Decision theory
For example, payo¤ is only at terminal states
One can use Choquet expected utility
There could be multiple φ�s (with maxmin over them?)
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