Dynamics of Inductive Inference in a Unified Model

Itzhak Gilboa, Larry Samuelson, and David Schmeidler

September 13, 2011

Motivation

- September 16, 2001

What will the DJIA be?

Motivation

- September 16, 2001

What will the DJIA be?

- September 15, 2008
"The models do not apply"

Modes of Reasoning

- Bayesian

Prior on all states; Bayesian updating

Modes of Reasoning

- Bayesian

Prior on all states; Bayesian updating

- Case-Based

Analogies; similarities

Modes of Reasoning

- Bayesian

Prior on all states; Bayesian updating

- Case-Based

Analogies; similarities

- Rule-Based

Regularities; deduction, contrapositives...

Prevalence

- Case-based: universal; cats do it

Prevalence

- Case-based: universal; cats do it
- Rule-based: cognitively more demanding

Prevalence

- Case-based: universal; cats do it
- Rule-based: cognitively more demanding
- Bayesian: tends to be difficult; some inference (such as what information I could have gotten but didn't) are quite common

History in Research

- Rule-based: the oldest

Formal logic, dates back to the Greeks

History in Research

- Rule-based: the oldest

Formal logic, dates back to the Greeks

- Bayesian: 17th-18th centuries

Attributed to Bayes, 1763

History in Research

- Rule-based: the oldest

Formal logic, dates back to the Greeks

- Bayesian: 17th-18th centuries

Attributed to Bayes, 1763

- Case-based: the latest to be studied academically

Schank, 1986

Goals

- Develop a model that unifies these modes of reasoning

Goals

- Develop a model that unifies these modes of reasoning
- This would allow

Comparing them
Delineating their scope of applicability
Studying hybrid modes of reasoning Studying the dynamics of reasoning

General Model
 The primitives are:

- X - a set of characteristics that may be observed

General Model

The primitives are:

- X - a set of characteristics that may be observed
- Y - a set of outcomes that are to be predicted

$$
0<|X|,|Y|<\infty
$$

General Model

The primitives are:

- X - a set of characteristics that may be observed
- Y - a set of outcomes that are to be predicted

$$
0<|X|,|Y|<\infty
$$

- $\Omega=(X \times Y)^{\infty}$ - the set of states of the world

General Model

The primitives are:

- X - a set of characteristics that may be observed
- Y - a set of outcomes that are to be predicted

$$
0<|X|,|Y|<\infty
$$

- $\Omega=(X \times Y)^{\infty}$ - the set of states of the world
- $\mathcal{A} \subset 2^{\Omega}$ - the σ-algebra of conjectures

Some more notation

- For a state $\omega \in \Omega$ and a period t, there a history up to period t

$$
h_{t}(\omega)=\left(\omega(0), \ldots, \omega(t-1), \omega_{x}(t)\right)
$$

and its associated event

$$
\left[h_{t}\right]=\left\{\omega \in \Omega \mid\left(\omega(0), \ldots, \omega(t-1), \omega_{x}(t)\right)=h_{t}\right\}
$$

Some more notation

- For a state $\omega \in \Omega$ and a period t, there a history up to period t

$$
h_{t}(\omega)=\left(\omega(0), \ldots, \omega(t-1), \omega_{x}(t)\right)
$$

and its associated event

$$
\left[h_{t}\right]=\left\{\omega \in \Omega \mid\left(\omega(0), \ldots, \omega(t-1), \omega_{x}(t)\right)=h_{t}\right\}
$$

- For a history h_{t} and a subset of outcomes $Y^{\prime} \subset Y$ define the event

$$
\left[h_{t}, Y^{\prime}\right]=\left\{\omega \in\left[h_{t}\right] \mid \omega_{y}(t) \subset Y^{\prime}\right\}
$$

namely, that h_{t} occurs and results in an outcome in Y^{\prime}.

The Credence Function

- There is a σ-algebra \mathcal{E} of sets of conjectures

The Credence Function

- There is a σ-algebra \mathcal{E} of sets of conjectures
- Inference is driven by a σ-additive measure

$$
\phi: \mathcal{E} \rightarrow \mathbb{R}_{+}
$$

measuring the degree of belief that the agent has in sets of conjectures.

The Credence Function

- There is a σ-algebra \mathcal{E} of sets of conjectures
- Inference is driven by a σ-additive measure

$$
\phi: \mathcal{E} \rightarrow \mathbb{R}_{+}
$$

measuring the degree of belief that the agent has in sets of conjectures.

- In the present model, $\phi(\mathcal{C})$ will not change with history.

The Credence Function

- There is a σ-algebra \mathcal{E} of sets of conjectures
- Inference is driven by a σ-additive measure

$$
\phi: \mathcal{E} \rightarrow \mathbb{R}_{+}
$$

measuring the degree of belief that the agent has in sets of conjectures.

- In the present model, $\phi(\mathcal{C})$ will not change with history.
- The only inference engine will be pseudo-Bayesian Conjectures A that are proven inconsistent with h_{t} will be discarded

The Credence Function

- There is a σ-algebra \mathcal{E} of sets of conjectures
- Inference is driven by a σ-additive measure

$$
\phi: \mathcal{E} \rightarrow \mathbb{R}_{+}
$$

measuring the degree of belief that the agent has in sets of conjectures.

- In the present model, $\phi(\mathcal{C})$ will not change with history.
- The only inference engine will be pseudo-Bayesian

Conjectures A that are proven inconsistent with h_{t} will be discarded

- One may with to make ϕ dependent on history h_{t}

The Credence Function

- There is a σ-algebra \mathcal{E} of sets of conjectures
- Inference is driven by a σ-additive measure

$$
\phi: \mathcal{E} \rightarrow \mathbb{R}_{+}
$$

measuring the degree of belief that the agent has in sets of conjectures.

- In the present model, $\phi(\mathcal{C})$ will not change with history.
- The only inference engine will be pseudo-Bayesian

Conjectures A that are proven inconsistent with h_{t} will be discarded

- One may with to make ϕ dependent on history h_{t}
- But there's no need to do that.

The Credence Function

- There is a σ-algebra \mathcal{E} of sets of conjectures
- Inference is driven by a σ-additive measure

$$
\phi: \mathcal{E} \rightarrow \mathbb{R}_{+}
$$

measuring the degree of belief that the agent has in sets of conjectures.

- In the present model, $\phi(\mathcal{C})$ will not change with history.
- The only inference engine will be pseudo-Bayesian

Conjectures A that are proven inconsistent with h_{t} will be discarded

- One may with to make ϕ dependent on history h_{t}
- But there's no need to do that.
- Convention: $\phi(\mathcal{E})=1$

Reasoning by Conjectures

- Given history h_{t}, all conjectures A such that

$$
A \cap\left[h_{t}\right]=\varnothing
$$

are refuted and should be discarded.

Reasoning by Conjectures

- Given history h_{t}, all conjectures A such that

$$
A \cap\left[h_{t}\right]=\varnothing
$$

are refuted and should be discarded.

- Conjectures A such that

$$
A \cap\left[h_{t}\right]=\left[h_{t}, Y\right]
$$

say nothing and are irrelevant.

How likely is a set of outcomes?

- Given history h_{t}, how much credence does ϕ lend to each outcome? Or to each set of outcomes?

How likely is a set of outcomes?

- Given history h_{t}, how much credence does ϕ lend to each outcome? Or to each set of outcomes?
- For $Y^{\prime} \varsubsetneqq Y$ define

$$
\mathcal{A}\left(h_{t}, Y^{\prime}\right)=\left\{A \in \mathcal{A} \mid \varnothing \neq A \cap\left[h_{t}\right] \subset\left[h_{t}, Y^{\prime}\right]\right\}
$$

which is the class of conjectures that
have not been refuted by h_{t} predict that the outcome will be in Y^{\prime} (hence relevant)

How likely is a set of outcomes?

- Given history h_{t}, how much credence does ϕ lend to each outcome? Or to each set of outcomes?
- For $Y^{\prime} \varsubsetneqq Y$ define

$$
\mathcal{A}\left(h_{t}, Y^{\prime}\right)=\left\{A \in \mathcal{A} \mid \varnothing \neq A \cap\left[h_{t}\right] \subset\left[h_{t}, Y^{\prime}\right]\right\}
$$

which is the class of conjectures that have not been refuted by h_{t} predict that the outcome will be in Y^{\prime} (hence relevant)

- Their weight

$$
\phi\left(\mathcal{A}\left(h_{t}, Y^{\prime}\right)\right)
$$

is the degree of support for the claim that the next observation will be in Y^{\prime}.

A bit more notation

- Since we have a special interest in subsets of conjectures, define, for $\mathcal{D} \subset \mathcal{A}$,

A bit more notation

- Since we have a special interest in subsets of conjectures, define, for $\mathcal{D} \subset \mathcal{A}$,
- The set of conjectures in \mathcal{D} that are unrefuted and predict and outcome in $Y^{\prime} \varsubsetneqq Y$

$$
\mathcal{D}\left(h_{t}, Y^{\prime}\right)=\left\{A \in \mathcal{D} \mid \varnothing \neq A \cap\left[h_{t}\right] \subset\left[h_{t}, Y^{\prime}\right]\right\}
$$

A bit more notation

- Since we have a special interest in subsets of conjectures, define, for $\mathcal{D} \subset \mathcal{A}$,
- The set of conjectures in \mathcal{D} that are unrefuted and predict and outcome in $Y^{\prime} \varsubsetneqq Y$

$$
\mathcal{D}\left(h_{t}, Y^{\prime}\right)=\left\{A \in \mathcal{D} \mid \varnothing \neq A \cap\left[h_{t}\right] \subset\left[h_{t}, Y^{\prime}\right]\right\}
$$

- Also, it will be useful to have a notation for the total weight of all conjectures in \mathcal{D} that are unrefuted and relevant:

$$
\phi\left(\mathcal{D}\left(h_{t}\right)\right)=\phi\left(\cup_{Y^{\prime} \subsetneq Y} \mathcal{D}\left(h_{t}, Y^{\prime}\right)\right)
$$

Special Case 1: Bayesian

- The set of Bayesian conjectures:

$$
\mathcal{B}=\{\{\omega\} \mid \omega \in \Omega\} \subset \mathcal{A}
$$

Special Case 1: Bayesian

- The set of Bayesian conjectures:

$$
\mathcal{B}=\{\{\omega\} \mid \omega \in \Omega\} \subset \mathcal{A}
$$

- Given a probability p on Ω, one may define

$$
\phi_{p}(\{\{\omega\} \mid \omega \in A\})=p(A)
$$

and get, for every h_{t} and every $Y^{\prime} \varsubsetneqq Y$,

$$
p\left(Y^{\prime} \mid\left[h_{t}\right]\right) \propto \phi_{p}\left(\mathcal{A}\left(h_{t}, Y^{\prime}\right)\right)
$$

Special Case 2: Case-Based

- Consider a simple case-based model of prediction. For a similarity function

$$
s: X \times X \rightarrow \mathbb{R}_{+}
$$

define the aggregate similarity for an outcome $y \in Y$

$$
S\left(h_{t}, y\right)=\sum_{i=0}^{t-1} \beta^{t-i} s\left(\omega_{x}(i), \omega_{x}(t)\right) \mathbf{1}_{\left\{\omega_{y}(i)=y\right\}}
$$

Special Case 2: Case-Based

- Consider a simple case-based model of prediction. For a similarity function

$$
s: X \times X \rightarrow \mathbb{R}_{+}
$$

define the aggregate similarity for an outcome $y \in Y$

$$
S\left(h_{t}, y\right)=\sum_{i=0}^{t-1} \beta^{t-i} s\left(\omega_{x}(i), \omega_{x}(t)\right) \mathbf{1}_{\left\{\omega_{y}(i)=y\right\}}
$$

- This is equivalent to kernel classification (with similarity playing the role of the kernel).

Special Case 2: Case-Based

- Consider a simple case-based model of prediction. For a similarity function

$$
s: X \times X \rightarrow \mathbb{R}_{+}
$$

define the aggregate similarity for an outcome $y \in Y$

$$
S\left(h_{t}, y\right)=\sum_{i=0}^{t-1} \beta^{t-i} s\left(\omega_{x}(i), \omega_{x}(t)\right) \mathbf{1}_{\left\{\omega_{y}(i)=y\right\}}
$$

- This is equivalent to kernel classification (with similarity playing the role of the kernel).
- More involved case-based reasoning is possible, but this is fine for now.

Case-Based cont.

- The case-based conjectures will be of the form

$$
A_{i, t, x, z}=\left\{\omega \in \Omega \mid \omega_{x}(i)=x, \omega_{x}(t)=z, \omega_{y}(i)=\omega_{y}(t)\right\}
$$

for periods $i<t$ and two characteristics $x, z \in X$.

Case-Based cont.

- The case-based conjectures will be of the form

$$
A_{i, t, x, z}=\left\{\omega \in \Omega \mid \omega_{x}(i)=x, \omega_{x}(t)=z, \omega_{y}(i)=\omega_{y}(t)\right\}
$$

for periods $i<t$ and two characteristics $x, z \in X$.

- $A_{i, t, x, z}$ can be viewed as predicting
"in period i we'll observe characteristics x, in period t we'll observe characteristics z, and the outcomes will be identical"

Case-Based cont.

- The case-based conjectures will be of the form

$$
A_{i, t, x, z}=\left\{\omega \in \Omega \mid \omega_{x}(i)=x, \omega_{x}(t)=z, \omega_{y}(i)=\omega_{y}(t)\right\}
$$

for periods $i<t$ and two characteristics $x, z \in X$.

- $A_{i, t, x, z}$ can be viewed as predicting
"in period i we'll observe characteristics x, in period t we'll observe characteristics z, and the outcomes will be identical"
- Or:
"IF we observe characteristics x and z in periods i and t, (resp.) THEN we'll observe the same outcomes in these periods."

Case-based cont.

- The set of all case-based conjectures is

$$
\mathcal{C B}=\left\{A_{i, t, x, z} \mid i<t, x, z \in X\right\} \subset \mathcal{A} .
$$

Case-based cont.

- The set of all case-based conjectures is

$$
\mathcal{C B}=\left\{A_{i, t, x, z} \mid i<t, x, z \in X\right\} \subset \mathcal{A} .
$$

- To embed a similarity model, with $s: X \times X \rightarrow \mathbb{R}_{+}$in our model, define

$$
\phi_{s, \beta}\left(\left\{A_{i, t, x, z}\right\}\right)=\beta^{(t-i)} s(x, z)
$$

to get

$$
S\left(h_{t}, y\right)=\phi_{s, \beta}\left(\mathcal{A}\left(h_{t},\{y\}\right)\right)
$$

Special Case 3: Rule-Based

- Example: an association rule that says "if $x=1$ then $y=0$ " ("If two countries are democracies then they do not engage in a war")

Special Case 3: Rule-Based

- Example: an association rule that says "if $x=1$ then $y=0$ " ("If two countries are democracies then they do not engage in a war")
- can be captured by

$$
A=\{\omega \in \Omega \mid \omega(t) \neq(1,1) \quad \forall t\}
$$

Rule-based cont.

- A functional rule that says that " $y=f(x)$ "
("The price index increases at the same rate as the quantity of money")

$$
A=\left\{\omega \in \Omega \mid \omega_{y}(t)=f\left(\omega_{x}(t)\right) \quad \forall t\right\}
$$

Rule-based cont.

- A functional rule that says that " $y=f(x)$ "
("The price index increases at the same rate as the quantity of money")

$$
A=\left\{\omega \in \Omega \mid \omega_{y}(t)=f\left(\omega_{x}(t)\right) \quad \forall t\right\}
$$

- Similarly, one can bound the value of y by $f(x) \pm \delta$ etc.

Rule-based cont.

- A functional rule that says that " $y=f(x)$ "
("The price index increases at the same rate as the quantity of money")

$$
A=\left\{\omega \in \Omega \mid \omega_{y}(t)=f\left(\omega_{x}(t)\right) \quad \forall t\right\}
$$

- Similarly, one can bound the value of y by $f(x) \pm \delta$ etc.
- We do not offer a general framework for rules. Any refutable "theory" may be modeled as a conjecture, and we do not expect to exhaust the richness of structure of the theories.

The Main Result - Example

- The year is 1960. The reasoner has to predict, for the next 60 years, whether a war will or will not occur. For simplicity, assume that there are no characteristics to observe and consider a finite horizon. Thus,

$$
|X|=1 \quad|Y|=2 \quad T=60
$$

The Main Result - Example

- The year is 1960 . The reasoner has to predict, for the next 60 years, whether a war will or will not occur. For simplicity, assume that there are no characteristics to observe and consider a finite horizon. Thus,

$$
|X|=1 \quad|Y|=2 \quad T=60
$$

- There are many states

$$
|\Omega|=2^{T}=2^{60}
$$

The Main Result - Example

- The year is 1960 . The reasoner has to predict, for the next 60 years, whether a war will or will not occur. For simplicity, assume that there are no characteristics to observe and consider a finite horizon. Thus,

$$
|X|=1 \quad|Y|=2 \quad T=60
$$

- There are many states

$$
|\Omega|=2^{T}=2^{60}
$$

- Out of all conjectures $\left(|\mathcal{A}|=2^{2^{60}}\right)$ focus on Bayesian and case-based conjectures:

$$
\begin{aligned}
|\mathcal{B}| & =2^{T}=2^{60} \\
|\mathcal{C B}| & =\binom{T}{2}=\binom{60}{2} \cong 1800
\end{aligned}
$$

Example - cont.

- Assume that the reasoner "gives a chance" to CB reasoning

$$
\phi(\mathcal{C B})=\varepsilon ; \quad \phi(\mathcal{B})=1-\varepsilon
$$

and splits the weight ϕ within each class of conjectures uniformly.

Example - cont.

- Assume that the reasoner "gives a chance" to CB reasoning

$$
\phi(\mathcal{C B})=\varepsilon ; \quad \phi(\mathcal{B})=1-\varepsilon
$$

and splits the weight ϕ within each class of conjectures uniformly.

- Each Bayesian conjecture gets a weight

$$
\frac{1-\varepsilon}{2^{T}}=\frac{1-\varepsilon}{2^{60}}
$$

and each case-based conjectures - a weight

$$
\frac{\varepsilon}{\binom{T}{2}} \cong \frac{\varepsilon}{1800}
$$

Example - cont.

- Assume that the reasoner "gives a chance" to CB reasoning

$$
\phi(\mathcal{C B})=\varepsilon ; \quad \phi(\mathcal{B})=1-\varepsilon
$$

and splits the weight ϕ within each class of conjectures uniformly.

- Each Bayesian conjecture gets a weight

$$
\frac{1-\varepsilon}{2^{T}}=\frac{1-\varepsilon}{2^{60}}
$$

and each case-based conjectures - a weight

$$
\frac{\varepsilon}{\binom{T}{2}} \cong \frac{\varepsilon}{1800}
$$

- Now the year is 2010, that is $t=50$. There are $2^{T-t}=2^{10}$ unrefuted Bayesian conjectures, and $t=50$ case-based ones.

Example - cont.

- Thus, the total weight of Bayesian conjectures still in the game is

$$
\phi\left(\mathcal{B}\left(h_{t}\right)\right)=2^{T-t} \frac{1-\varepsilon}{2^{T}}<\frac{1}{2^{t}}=\frac{1}{2^{50}}
$$

and the case-based ones have total weight

$$
\phi\left(\mathcal{C B}\left(h_{t}\right)\right)=t \frac{\varepsilon}{\binom{T}{2}} \cong 50 \frac{\varepsilon}{1800}
$$

Example - cont.

- Thus, the total weight of Bayesian conjectures still in the game is

$$
\phi\left(\mathcal{B}\left(h_{t}\right)\right)=2^{T-t} \frac{1-\varepsilon}{2^{T}}<\frac{1}{2^{t}}=\frac{1}{2^{50}}
$$

and the case-based ones have total weight

$$
\phi\left(\mathcal{C B}\left(h_{t}\right)\right)=t \frac{\varepsilon}{\binom{T}{2}} \cong 50 \frac{\varepsilon}{1800}
$$

- Generally,
$\phi\left(\mathcal{B}\left(h_{t}\right)\right)$ decreases exponentially in t
$\phi\left(\mathcal{C B}\left(h_{t}\right)\right)$ decreases polynomially (quadratically) in t

Example - cont.

- Thus, the total weight of Bayesian conjectures still in the game is

$$
\phi\left(\mathcal{B}\left(h_{t}\right)\right)=2^{T-t} \frac{1-\varepsilon}{2^{T}}<\frac{1}{2^{t}}=\frac{1}{2^{50}}
$$

and the case-based ones have total weight

$$
\phi\left(\mathcal{C B}\left(h_{t}\right)\right)=t \frac{\varepsilon}{\binom{T}{2}} \cong 50 \frac{\varepsilon}{1800}
$$

- Generally,
$\phi\left(\mathcal{B}\left(h_{t}\right)\right)$ decreases exponentially in t $\phi\left(\mathcal{C B}\left(h_{t}\right)\right)$ decreases polynomially (quadratically) in t
- \Longrightarrow For sufficiently large t, reasoning tends to be mostly case-based. (And any other class of conjectures of polynomial size can beat the Bayesian.)

Assumption 1

- We retain the main assumption that the reasoner gives some weight to the case-based conjectures (or to another polynomial class):

Assumption 1

- We retain the main assumption that the reasoner gives some weight to the case-based conjectures (or to another polynomial class):
- Assumption 1: $\phi(\mathcal{B}), \phi(\mathcal{C B})>0$.

Assumption 2

- We assume some open-mindedness in the way that the weight $\phi_{T}\left(\mathcal{B}_{T}\right)$ is split. Uniform means that $\forall h_{t}, h_{t}^{\prime} \in H_{t}$,

$$
\frac{\phi\left(\mathcal{B}\left(h_{t}\right)\right)}{\phi\left(\mathcal{B}\left(h_{t}^{\prime}\right)\right)}=1
$$

Assumption 2

- We assume some open-mindedness in the way that the weight $\phi_{T}\left(\mathcal{B}_{T}\right)$ is split. Uniform means that $\forall h_{t}, h_{t}^{\prime} \in H_{t}$,

$$
\frac{\phi\left(\mathcal{B}\left(h_{t}\right)\right)}{\phi\left(\mathcal{B}\left(h_{t}^{\prime}\right)\right)}=1
$$

- More generally, we can demand

$$
\frac{\phi\left(\mathcal{B}\left(h_{t}\right)\right)}{\phi\left(\mathcal{B}\left(h_{t}^{\prime}\right)\right)} \leq c
$$

or even let c depend on t, provided that c_{t} does not increase more than polynomially in t :

Assumption 2

- We assume some open-mindedness in the way that the weight $\phi_{T}\left(\mathcal{B}_{T}\right)$ is split. Uniform means that $\forall h_{t}, h_{t}^{\prime} \in H_{t}$,

$$
\frac{\phi\left(\mathcal{B}\left(h_{t}\right)\right)}{\phi\left(\mathcal{B}\left(h_{t}^{\prime}\right)\right)}=1
$$

- More generally, we can demand

$$
\frac{\phi\left(\mathcal{B}\left(h_{t}\right)\right)}{\phi\left(\mathcal{B}\left(h_{t}^{\prime}\right)\right)} \leq c
$$

or even let c depend on t, provided that c_{t} does not increase more than polynomially in t :

- Assumption 2: $\exists P(t), \forall t \forall h_{t}, h_{t}^{\prime} \in H_{t}$,

$$
\frac{\phi\left(\mathcal{B}\left(h_{t}\right)\right)}{\phi\left(\mathcal{B}\left(h_{t}^{\prime}\right)\right)} \leq P(t)
$$

Assumption 3

- Finally, the weight of the case-based conjectures is assumed to be proportional to the similarity between the characteristics. Specifically,

Assumption 3

- Finally, the weight of the case-based conjectures is assumed to be proportional to the similarity between the characteristics. Specifically,
- Assumption 3: There exists a polynomial $Q(t)$ such that, (1) for every $i, i^{\prime}, t, t^{\prime}, x, x^{\prime}$ and z, z^{\prime} with $t-i=t^{\prime}-i^{\prime}$, and $t^{\prime}<t$,

$$
\begin{equation*}
\frac{\phi\left(\left\{A_{i^{\prime}, t^{\prime}, x^{\prime}, z^{\prime}}\right\}\right)}{\phi\left(\left\{A_{i, t, t, z}\right\}\right)} \leq Q(t) \tag{1}
\end{equation*}
$$

and (2) for every $t, x, z \in X$ and $i<i^{\prime}<t$,

$$
\begin{equation*}
\frac{\phi\left(\left\{A_{i, t, x, z}\right\}\right)}{\phi\left(\left\{A_{i^{\prime}, t, x, z}\right\}\right)} \leq Q(t) . \tag{2}
\end{equation*}
$$

The Main Result

Theorem

Let Assumptions 1-3 hold. Then at each $\omega \in \Omega$,

$$
\lim _{t \rightarrow \infty} \frac{\phi\left(\mathcal{B}\left(h_{t}\right)\right)}{\phi\left(\mathcal{C B}\left(h_{t}\right)\right)}=0
$$

- Thus, a pseudo-Bayesian updating rule drives out Bayesian reasoning.

Bayesian Learning

- How come there is no learning? Wasn't the posterior probability of the true state supposed to increase?

Bayesian Learning

- How come there is no learning? Wasn't the posterior probability of the true state supposed to increase?
- Indeed,

$$
\frac{p(\{\omega\})}{p\left(\left[h_{t}\right]\right)}
$$

grows exponentially with t.

Bayesian Learning

- How come there is no learning? Wasn't the posterior probability of the true state supposed to increase?
- Indeed,

$$
\frac{p(\{\omega\})}{p\left(\left[h_{t}\right]\right)}
$$

grows exponentially with t.

- But this is so because the denominator is shrinking.

Bayesian Learning

- How come there is no learning? Wasn't the posterior probability of the true state supposed to increase?
- Indeed,

$$
\frac{p(\{\omega\})}{p\left(\left[h_{t}\right]\right)}
$$

grows exponentially with t.

- But this is so because the denominator is shrinking.
- That is, precisely for the reason that the entire Bayesian mode of thinking fades away.

Bayesian Learning

- How come there is no learning? Wasn't the posterior probability of the true state supposed to increase?
- Indeed,

$$
\frac{p(\{\omega\})}{p\left(\left[h_{t}\right]\right)}
$$

grows exponentially with t.

- But this is so because the denominator is shrinking.
- That is, precisely for the reason that the entire Bayesian mode of thinking fades away.
- This doesn't happen if $\varepsilon=0$: a committed Bayesian will never see how low are the a priori probabilities of the Bayesian conjectures, because she has no alternative to compare them to.

When is Bayesianism Reasonable?

- Our result depends on Assumption 2, which says that the reasoner doesn't know too much about the process (hence cannot favor some states too much).

When is Bayesianism Reasonable?

- Our result depends on Assumption 2, which says that the reasoner doesn't know too much about the process (hence cannot favor some states too much).
- A counterexample: the reasoner knows that the state is ω, and this happens to be true.

When is Bayesianism Reasonable?

- Our result depends on Assumption 2, which says that the reasoner doesn't know too much about the process (hence cannot favor some states too much).
- A counterexample: the reasoner knows that the state is ω, and this happens to be true.
- Clearly, Assumption 2 is violated.

When is Bayesianism Reasonable?

- Our result depends on Assumption 2, which says that the reasoner doesn't know too much about the process (hence cannot favor some states too much).
- A counterexample: the reasoner knows that the state is ω, and this happens to be true.
- Clearly, Assumption 2 is violated.
- Such a reasoner would have no reason to abandon the Bayesian belief.

Reasonable Bayesianism - cont.

- More generally: the reasoner may know the process up to k parameters
and k does not grow with t

Reasonable Bayesianism - cont.

- More generally: the reasoner may know the process up to k parameters and k does not grow with t
- Example: observing a comet knowing that the phenomenon is cyclical.

Reasonable Bayesianism - cont.

- More generally: the reasoner may know the process up to k parameters and k does not grow with t
- Example: observing a comet knowing that the phenomenon is cyclical.
- Bayesianism will survive if

The reasoner believes that she knows the process She happens to be right.

The IID Case

- A probability measure μ on Σ is a non-trivial conditionally iid measure if, for every $x \in X$ there exists $\lambda_{x} \in \Delta(Y)$ such that (i) for every h_{t}, the conditional distribution of Y given h_{t} according to μ is $\lambda_{x_{t}}$; and (ii) λ_{x} is non-degenerate for every $x \in X$.

The IID Case

- A probability measure μ on Σ is a non-trivial conditionally iid measure if, for every $x \in X$ there exists $\lambda_{x} \in \Delta(Y)$ such that (i) for every h_{t}, the conditional distribution of Y given h_{t} according to μ is $\lambda_{x_{t}}$; and (ii) λ_{x} is non-degenerate for every $x \in X$.
- Assumption 2': There exists a non-trivial conditionally iid measure μ such that, for every $A \in \Sigma$

$$
\varphi(\{\{\omega\} \mid \omega \in A\})=\mu(A) \varphi(\mathcal{B})
$$

The IID Case - Result

Theorem

Let Assumptions 1-3 hold. Then

$$
\mu\left(\lim _{t \rightarrow \infty} \frac{\phi\left(\mathcal{B}\left(h_{t}\right)\right)}{\phi\left(\mathcal{C B}\left(h_{t}\right)\right)}=0\right)=1
$$

How do Case-Based Conjectures Survive?

- Imagine that each conjecture is a consultant.

How do Case-Based Conjectures Survive?

- Imagine that each conjecture is a consultant.
- They sit in a room at $t=0$ and state predictions A.

How do Case-Based Conjectures Survive?

- Imagine that each conjecture is a consultant.
- They sit in a room at $t=0$ and state predictions A.
- As history unfolds, the refuted ones are asked to leave.

How do Case-Based Conjectures Survive?

- Imagine that each conjecture is a consultant.
- They sit in a room at $t=0$ and state predictions A.
- As history unfolds, the refuted ones are asked to leave.
- Case-based consultants are allowed to say "I don't know".
$A_{2003,2010, x, z}$ says something about $t=2010$, but nothing about other t 's

How do Case-Based Conjectures Survive?

- Imagine that each conjecture is a consultant.
- They sit in a room at $t=0$ and state predictions A.
- As history unfolds, the refuted ones are asked to leave.
- Case-based consultants are allowed to say "I don't know".
$A_{2003,2010, x, z}$ says something about $t=2010$, but nothing about other t 's
- Commitment to Bayesianism means that the weight $\phi\left(A_{2003,2010, x, z}\right)$ has to be split among the 2^{58} states in $A_{2003,2010, x, z}$. Most of these will be wrong.

How do Case-Based Conjectures Survive?

- Imagine that each conjecture is a consultant.
- They sit in a room at $t=0$ and state predictions A.
- As history unfolds, the refuted ones are asked to leave.
- Case-based consultants are allowed to say "I don't know".
$A_{2003,2010, x, z}$ says something about $t=2010$, but nothing about other t 's
- Commitment to Bayesianism means that the weight $\phi\left(A_{2003,2010, x, z}\right)$ has to be split among the 2^{58} states in $A_{2003,2010, x, z}$. Most of these will be wrong.
- Leaving the case-based consultant in the room is like crediting him with knowing when to remain silent. As if the meta-knowledge (when do I really know something) is another criterion in the selection of consultants.

Comments

- Convergence to an additive probability but a frequentist (non-Bayesian) one.

Comments

- Convergence to an additive probability but a frequentist (non-Bayesian) one.
- Similar results could apply to families of rule based conjectures and may generate non-additive probability.

Comments

- Convergence to an additive probability
but a frequentist (non-Bayesian) one.
- Similar results could apply to families of rule based conjectures and may generate non-additive probability.
- A different interpretation: the result describes the formation of prior probability.

If one knows how to split weight among states (Laplace?).

Case-Based vs. Rule-Based Dynamics

- The weight of the case-based conjectures is fixed

Case-Based vs. Rule-Based Dynamics

- The weight of the case-based conjectures is fixed
- Each rule (or theory) has a high weight a priori If successful, the reasoner is mostly rule-based If not, the cases are always there

Algorithms

- Often the carrier of credence is not a particular conjecture, but an algorithm to generate one.

Algorithms

- Often the carrier of credence is not a particular conjecture, but an algorithm to generate one.
- Example: OLS

The particular regression line is not the issue It's the method of generating it

Algorithms

- Often the carrier of credence is not a particular conjecture, but an algorithm to generate one.
- Example: OLS

The particular regression line is not the issue It's the method of generating it

- Another version: carriers are classes of conjectures, with maximum likelihood within each one.

Other Directions

- Probabilistic version

Rules replaced by distributions
Refutation - by likelihood Several ways to proceed

Other Directions

- Probabilistic version

Rules replaced by distributions
Refutation - by likelihood
Several ways to proceed

- Decision theory

For example, payoff is only at terminal states
One can use Choquet expected utility
There could be multiple ϕ 's (with maxmin over them?)

