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Detecting and characterizing phase transitions in
active matter using entropy

Benjamin Sorkin, a Avraham Be’er, bc Haim Diamant a and Gil Ariel *d

A major challenge in the study of active matter lies in quantitative characterization of phases and

transitions between them. We show how the entropy of a collection of active objects can be used to

classify regimes and spatial patterns in their collective behavior. Specifically, we estimate the

contributions to the total entropy from correlations between the degrees of freedom of position and

orientation. This analysis pin-points the flocking transition in the Vicsek model while clarifying the

physical mechanism behind the transition. When applied to experiments on swarming Bacillus subtilis

with different cell aspect ratios and overall bacterial area fractions, the entropy analysis reveals a rich

phase diagram with transitions between qualitatively different swarm statistics. We discuss physical and

biological implications of these findings.

I. Introduction

Active matter is composed of motile objects which continuously
consume energy to generate propulsion.1,2 Such systems have
been extensively studied in the past two decades. They are of
particular relevance to biology, describing the collective motions
of a wide variety of entities,3 ranging from swarming bacteria4,5

and migrating cells6 to flocks of birds,7 marching locusts,8 and
human crowds.9 Numerous types of inanimate particles, such as
light-activated colloids10 and chemically-activated diffusiophore-
tic particles,11 exhibit similar behaviors.

With its perpetual energy dissipation, active matter provides
examples of far-from-equilibrium steady states with intriguing
statistical-mechanical aspects.1,2,12,13 These include: (a) break-
down and modification of the fluctuation-dissipation theo-
rem;13–15 (b) giant number fluctuations and breakdown of
the Mermin–Wagner theorem;1,2,16 and (c) the inadequacy of
temperature,17,18 pressure,19,20 and chemical potential12,18 as
thermodynamic state variables.

In contrast, entropy remains well-defined out of equilibrium
through its connection to information. The entropy quantifies
the information content of the system’s statistics through

Shannon’s formula,21

H ¼ �
X
X

pX ln pX ¼ �
ð
dXpðXÞ ln pðXÞ; (1)

where pX (p(X)) is the probability (density function) to obtain
the discrete (continuous) microstate X. Entropy-based consid-
erations have been effective for identifying and characterizing
changes in material properties, e.g., in equilibrium phase
transitions,22–24 pattern formation,25 and self-assembly.26 Yet,
they have rarely been applied to active systems. The main
reason is seemingly technical – estimation of entropy out of
equilibrium has proven challenging. Direct sampling of p(X) to
be used in eqn (1) is often either inapplicable or unreliable in
high-dimensional, continuous phase spaces (see, for example,
ref. 27–29). As a result, there is an ongoing effort to find reliable
entropy estimators, in particular, for experimental data.30–35

Several earlier works considered aspects of entropy (or
effective free energy) of active systems. Some involved coarse-
grained theories based on stochastic equations.36–39 Another
work used entropy estimation of interlaced frames using the
lossless-compression method,40 thus also incorporating tem-
poral information. Lastly, a dynamical inference approach
addressed both the static and dynamic (caliber) entropies,
which were maximized under the constraint of a given orienta-
tions correlation function (CF).41 Interestingly, in the latter, the
estimation based only on steady-state entropy (relying on
spatial correlations) failed to describe real bird flocks. The
current work builds on the structure-based entropy inference
presented in ref. 34 and 35. The method has been successfully
applied to several non-equilibrium systems. Here we apply it to
two active systems.
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Recent works on active matter have dealt with entropy
production (e.g., ref. 13, 42–45). While entropy is a state
property, not requiring a unit of time, entropy production is a
dynamic quantity related to the heat dissipation per unit time.
Out of equilibrium energy may constantly flow into the system,
and heat dissipation (i.e., entropy production) is necessary to
sustain a steady state. At that steady state, properties such as
the entropy are constant. In this context, other forms of
dynamical entropy approaches are worth mentioning, such as
estimating the e-entropy and the Kolmogorov–Sinai entorpy,46

the maximum-caliber principle,41,47 and using the entropy as a
Lyapunov function.48 Here we concentrate only on the steady-
state entropy, associated with the steady-state distribution of
microstates (e.g., positions and orientations).

Significant theoretical and experimental efforts have been
devoted to obtaining phase diagrams of active matter, i.e.,
characterizing the observed regimes and transitions between
them. In most cases an appropriate order parameter (OP) is
defined and measured or calculated. However, especially in
active matter, a single OP or a few OPs may not capture the
entire behavior of interest. For example, common OPs relate to
the particles’ orientations or velocities and do not reflect the
details of their spatial arrangement, let alone more subtle
cross-correlations between orientations and positions. This is
despite the fact that spatial heterogeneities are known to play a
major role in active systems.1,2,12 Indeed, different observables
and statistical attributes, such as cluster size distributions,
have been used. Such attributes (e.g., the cluster size) are not
always sharply defined.4,16,49,50

Correlation functions are well-defined higher-level descriptors
of particle arrangement compared to mean OPs. They are applic-
able out of equilibrium and routinely extracted from experiments
and simulations. We focus on the information content (entropy)
of CFs, following the approach of ref. 34 and 35. The idea is to
measure or compute different pair correlation functions corres-
ponding to different degrees of freedom (DOFs) of the particles.
Using these (Fourier-transformed) CFs as constraints, we apply
the functional developed in ref. 34 and 35 to obtain an upper
bound for the system’s entropy. In other words, we estimate how
much information has been gained by measuring the CF.
By constraining different CFs, or their combinations, one can
identify the DOFs that dominate a certain regime or transition.35

We will specifically use the two-point position CF (i.e., the
structure factor) and the orientations CF.

In the following Section II we specialize the method to the
systems studied here – particles moving in two dimensions (2D)
whose DOFs are position and orientation (either polar or nematic).
In Section III we apply the method to the Vicsek model,51 a
canonical minimal model where the particles are cognizant of their
neighbors’ velocity direction in the presence of uniform noise. This
model is known to exhibit a flocking transition with decreasing
noise. In Section IV we use the method to re-analyze experiments on
swarming bacteria.4 The experiments have shown that elongated
mutants undergo a swarming transition with qualitatively different
dynamics compared to the native, less elongated bacteria. We
discuss our findings and future perspectives in Section V.

II. Method

The two systems of interest consist of N particles in 2D, whose
DOFs are their positions {rn = (xn, yn)} and orientations {yn}.
Both systems are known to exhibit transitions involving changes
in the spatial and orientational arrangements of the particles.

For the positions, the typical two-point CF is the structure
factor,

SðqÞ ¼ 1

N

XN
n¼1

XN
m¼1

e�iq�ðrn�rmÞ

* +
; (2)

which is the Fourier-transformed two-point correlation of the
particle number density. The angular brackets denote an
ensemble average (over samples), and the factor N�1 ensures
that S(q) = 1 in the ideal-gas limit (uncorrelated positions). This
factor appears inside the brackets to treat cases where the
number of particles varies between samples (as in Section IV).
The wavevector q is discretized by the system’s size (box of side L)
according to

P
q ð�Þ ¼ ðL=2pÞ2

Ð
dqð�Þ. The uniform mode (q = 0) is

excluded throughout.
Similar to the case of particle number density, one can

define a two-point correlation of the orientation density field.
The angle DOF can be transformed using spherical harmonics,
which in 2D are Yl(y) = eily, l = 0, 1, . . .. In this sense, S(q) is the
0th harmonic correlator. The next harmonic is l = 1 for a polar
DOF (y A [�p, p)), and l = 2 for a nematic DOF (y A [�p/2, p/2)).
The orientations CFs are then 2 � 2 matrices,

DlðqÞ ¼ 2

N

XN
n¼1

XN
m¼1

e�iq�ðrn�rmÞn̂ðlynÞn̂yðlymÞ
* +

; (3)

where n̂(y) = (cos y, sin y) and † denotes transpose and complex

conjugation. The prefactor 2N�1 ensures that DlðqÞ ¼ I for an
ideal gas (I being the identity matrix).

Our goal is to find the information content encoded in the
CF. This is the minimal excess Shannon entropy with respect to
the ideal gas (i.e., uniform distribution with the same mean
density) that any system can have given the measured CF.
In other words, we find the maximum-entropy model with the
CF as a constraint. Following ref. 35, we denote the excess
entropy per particle, hex = h(HN � Hid

N )/Ni, where HN is the
system’s entropy for N particles, Hid

N is the ideal gas entropy
for N particles, and the average h�i here is over the number of
particles (for example, in analyzing the experiments with
swarming bacteria below or in grand-canonical ensembles).

For homogeneous systems (i.e., no symmetry-breaking exter-
nal field), the upper bound of hex using the structure factor as
the CF is given by34

hex½S� ¼
1

2hNi
X
qa0

lnSðqÞ þ 1� SðqÞ½ �: (4)

Similarly, the entropy’s upper bound as a functional of the
orientations CF is35

hex½Dl � ¼ 1

2hNi
X
qa0

ln detDlðqÞ þ 2� trDlðqÞ
� �

: (5)
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The lower of the two entropy bounds given by eqn (4) and (5)
should point to the dominant DOF.

We will also use a mixed CF defined as the 3 � 3 matrix,

MðqÞ ¼ A�1 1

N

XN
n¼1

XN
m¼1

e�iq�ðrn�rmÞfðlynÞfyðlymÞ
* +

; (6)

where f(y) = (1, cos y, sin y), and A�1 ¼ diagð1; 2; 2Þ is the
normalization matrix (A being the ideal-gas limit of the expres-
sion in angular brackets). The corresponding upper bound for
the entropy is

hex½M� ¼
1

2hNi
X
qa0

ln detMðqÞ þ 3� trMðqÞ½ �: (7)

Note that M11(q) is the structure factor S(q), while the block Mij,

i, j = 2, 3, forms DlðqÞ. The off-diagonal terms, M12ðqÞ ¼M�
21ðqÞ

and M13ðqÞ ¼M�
31ðqÞ, are the position-orientation cross-

correlations. Since the spherical harmonics form an orthogonal
basis, hex½M� is guaranteed to be smaller than both hex[S] and
hex½Dl �. The maximum hex½M�, obtained for uncorrelated posi-

tions and orientations, is hex S½ � þ hex½Dl �. One may similarly
include more CFs corresponding to additional spherical har-
monics, which will obviously reduce the entropy bound further.

III. Vicsek model

The Vicsek model51 is a minimal model for active matter, in
which the dynamics of self-propelled objects leads to collective
behavior and flocking. See Fig. 1 for typical snapshots. It is an
example of the interplay between local alignment interactions
and disordering noise. In this section we apply the method

described in Section II to simulations of the Vicsek model.
We obtain the excess entropy for different values of system
parameters and resolve the role of each DOF in the collective
dynamics.

In the Vicsek model, particle velocities {vn} have a fixed
magnitude v, such that vn = v(cos yn, sin yn). Initially (at t = 0),
particle positions are uniformly distributed on a square L � L
with periodic boundary conditions. At each simulation
time step, the orientation is updated to the direction of the
average velocity of all neighbors up to an interaction distance r,

tan½ynðtÞ�¼hsinðymðtÞÞijrn�rm jor=hcosðymðtÞÞijrn�rm jor, plus added

(intrinsic) noise Zn(t), uniformly distributed on [�Zp, Zp], with
Z A [0,1]. Positions are updated deterministically given the
velocities. The equations of motion are summarized as

ynðtþ1Þ¼ynðtÞþZnðtÞ; (8a)

rn tþ1ð Þ¼ rn tð Þþvn yn tð Þð Þ: (8b)

The control parameters are the density, r = N/L2, and the
temperature-like noise Z (where Z = 0 corresponds to T = 0,
and Z = 1 to T - N). Throughout this section, the values of
r = 1 and v = 0.1 are fixed, and the density is controlled by
changing L at fixed N.

The order parameter (OP) is defined as yav = |heiyi|, with
yav = 1 corresponding to perfect orientational order, and yav = 0
to complete disorder. Upon varying r and Z, the OP shows a
transition which sharpens with increasing N and L at constant
r.51,52 Most transitions in active systems involve not only
alignment but also clustering.1,2 The OP as defined above,
however, does not capture the spatial arrangement of particles.

Fig. 1 Illustrative snapshots from simulations of the Vicsek model. The shown system contains 103 particles under constant noise (top row: Z = 0.2,
bottom row: Z = 0.6), interaction radius (r = 1), and velocity (v = 0.1), and varying density r as indicated. yav is the order parameter. With increasing density,
the (spatial) flocking and (orientational) alignment become more pronounced. For lower noise the transition occurs earlier. See Fig. 2 for the
corresponding entropy contributions. The vertical lines separate the orientationally disordered and ordered phases as we infer from Fig. 2. Without
the entropy bounds of Fig. 2, the choice of where to put these ‘transition lines’ would have been uncertain.
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Common remedies are to define clusters and study their size
distribution,49,50 or consider various CFs.53–55

We performed simulations of the Vicsek model with N = 104

particles and 100 runs for a range of densities and noise
amplitudes. From each run we took 10 snapshots interspaced
by more than the initial relaxation time, resulting in a total of
103 samples. Each sample s has the configuration {xs

n, ys
n, ys

n}
(n = 1,. . .,104). From these samples we compute three CFs
according to eqn (2), (3) and (6): (a) the structure factor, S(q); (b)
the polar orientations CF, D1ðqÞ; and (c) the ‘‘mixed’’ CF, MðqÞ,
imposing simultaneously both S(q) and D1ðqÞ and including also
position-orientation cross-correlations. Note that for K samples
with N particles, all three CFs can be computed in OðNKÞ
efficiency. In particular, the double sums over N can be avoided
by calculating for each sample

P
n e
�iq�rn ,

P
n e
�iq�rn n̂ðlynÞ orP

n e
�iq�rn fðynÞ, and multiplying by the transposed conjugate.

The entropy contributions obtained from the three CFs
using eqn (4), (5), and (7), along with the OP, are shown in
Fig. 2 for varying densities at constant noise amplitude, and in
Fig. 3 for varying noise amplitudes at constant density. The OP
increases with increasing density, as more and more particles
are located within the interaction radius. The OP decreases
with increasing noise amplitude, as particle orientations
become less and less correlated. These are the expected trends,
in line with the common view of the order–disorder transition
in the Vicsek model as arising from a competition between
mutual alignment and noise. To establish the existence of a
phase transition and characterize it (e.g., whether it is first- or
second-order) requires more than these monotone trends in the
OP. One should demonstrate numerically the existence, in the
thermodynamic limit, of a critical noise Zc(r) and critical

density rc(Z) such that for Z 4 Zc or r o rc the OP vanishes.
The order of the transition can be inferred from the presence or
absence of a jump in the OP, the extraction of critical
exponents,51 or Binder cumulants.56 Indeed, there is still
uncertainty concerning the order of the transition in the Vicsek
model depending on the implementation details (e.g., intrinsic
vs. extrinsic noise).3,51,56,57

The excess entropy contributions give a richer account of the
transition. They provide an alternative point of view concerning
the interplay between positional and orientational DOFs.
Consider the dependence of entropy on density at fixed noise
amplitude, Fig. 2. Alignment reduces the entropy of the orienta-
tional DOF. At low densities, the alignment requires clustering,
which reduces also the positional entropy. Thus stronger
alignment and tighter clusters at low density make the entropy
decrease with density. At high density, on the other hand,
alignment no longer requires clustering, as every particle has
many neighbors even in an ideal-gas distribution. The system
can ‘‘afford’’ a broad distribution of particle positions without
affecting much the alignment, and the entropy increases with
density. (Recall that Fig. 2 and 3 show the excess entropy over
that of the ideal gas, which removes the trivial reduction in
entropy due to the decreasing system size L.) Put together, these
two trends lead to a well-defined critical density where the slope
of hex(r) changes sign. As seen in Fig. 2, this point marks the
transition much more sharply than the OP, especially for small
system sizes. The minimum in hex(r) is clearly observed even
for N = 100 (not shown). These transitions involve the for-
mation of traveling bands,52,58 appearing much more promi-
nently for N = 104 (not shown). In our simulations, the bands
moved strictly perpendicular to the box boundaries, suggesting

Fig. 2 Excess entropy per particle hex in the Vicsek model as a function of density r for several noise amplitudes Z. Different symbols show hex as
obtained from different correlation functions: structure factor S(q) (orange circles), polar orientation correlation function D1ðqÞ (blue squares), and mixed
correlation functionMðqÞ (red triangles). The connected empty circles show the order parameter, yav. Dashed vertical lines in the left panels indicate the
densities of the snapshots appearing in Fig. 1. Parameters: N = 104, r = 1, v = 0.1.
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that they may have been boundary-related. Nevertheless, we
find that the entropy is lower still for the small-but-dense
clusters than for the traveling-bands phases; hence the steady
rise of entropy with increasing Z in Fig. 3. The continuous
entropy minimum as a function of density, and its sharpening
with increasing N (not shown), support a second-order transi-
tion, at least within the range of parameters studied here.

All entropy contributions shown in Fig. 2 and 3 increase with
noise amplitude, as expected. Yet, the different contributions do
not increase to the same extent. Since the noise acts directly on
the orientational DOF, the distribution of this DOF is affected by
changes in noise amplitude more strongly than that of the
translational DOF. Consequently, at a certain noise amplitude,
the entropy contributions from the positional and orientational
DOFs switch order. Compare the panels for Z = 0.4 and Z = 0.6 in
Fig. 2. This crossover from an orientation-dominated regime to a
translation-dominated regime does not appear to coincide with
the order–disorder transition itself (see Fig. 3), implying the
existence of another transition. This may be related to the
previously reported two transitions, one being the well-known
flocking transition (here consistent with a second-order
transition51), and the other indicating the gradual loss of orien-
tational order while keeping some positional order (i.e., transi-
tion from homogeneous patches to bands). See, e.g., the two
curves in Fig. 2(e) of ref. 58, and the two critical noises Zb,c in
Fig. 7 of ref. 40. The latter work inferred the transition from
entropy through a time-interlaced estimation algorithm, i.e.,
including temporal information. For the range of parameters
and system sizes studied here, the crossover occurs in the range
Z = 0.4–0.5, independent of density.

Fig. 2 and 3 show also the entropy contribution derived from
the mixed CF,MðqÞ. This contribution is always more negative
than the sum of the ones obtained from S(q) and D1ðqÞ
separately, as mentioned in Section II. In the Vicsek model

we find that the excess entropy from hex½M� is only about 1
percent lower than hex½S� þ hex½D1�. Thus, in this model, cross-
correlations between particle positions and orientations do not
contribute appreciably to the entropy.

IV. Swarming bacteria

Bacterial swarming is a rapid mass-migration in which thou-
sands of cells move collectively, forming coherent patterns.
Physically, swarming is a natural example of active particles
consuming energy to generate collective motion. Accordingly,
understanding the constraints that physics imposes on these
dynamics is essential for clarifying the mechanisms underlying
swarming.5,59 Here, we revisit experiments on swarming Bacil-
lus subtilis cells with different aspect ratios and at different area
fractions – two physical parameters known to affect collective
behavior.4 See Fig. 4.

Previous analysis of these experiments revealed three quali-
tatively distinct swarming regimes, describing how cell shape
and population density govern the dynamical characteristics of
the swarm. Strains with small aspect ratios, such as the wild-
type (WT), exhibited rapid mixing, homogeneous density, and
no preferred direction of motion, for all tested values of area
fraction. The absence of qualitative differences over the range
of area fractions suggests a single phase. Long mutants showed
different swarming statistics. In particular, two phases were
identified – a dilute phase consisting of small moving clusters,
and a denser phase, in which large moving clusters of the size
of the viewing area caused strong number fluctuations in time.4

Importantly, the differences between the phases were identified
using the cluster size distribution – an ad hoc measurement
which is not well defined (the definition of a bacterial cluster is
not unique) – and the temporal dynamics. Spatial correlation
functions were not indicative of a phase transition.

Fig. 3 Excess entropy per particle in the Vicsek model as a function of noise amplitude for several densities. Symbols and parameters are the same as in Fig. 2.
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In ref. 4, a custom algorithm enabled tracking of individual
cell trajectories and orientations. We use the same data to
obtain the CFs: the structure factor S(q), orientations CF D2ðqÞ
(correlations between the nematic DOFs of the rod-like
bacteria†), and their mixed CF MðqÞ. The entropy contribu-
tions of the corresponding DOFs are then inferred according to
Section II. We concentrate on the WT and the longest mutant,
with aspect ratios of 7 and 19, respectively.

Fig. 5 shows the excess entropy per particle, hex, as inferred
from the three CFs mentioned above, as a function of the area
fraction, for the WT (left panel) and long mutant (right panel).
We plot also the entropy contribution of cross-correlations,
hcross ¼ hexM½ � � hex S½ � þ hex D2

� �� �
.

For the elongated mutant (Fig. 5, right), a sharp jump in all
entropy contributions around r = 0.18 indicates a first-order
transition. (The relative jump is similar for all four entropies; it
is less evident in Fig. 5 for the smaller contributions from S(q)
and D2ðqÞ). This agrees with the observations in ref. 4. The
transition from a lower excess entropy in the dilute phase to a
higher one in the dense phase is counter-intuitive. One expects
a higher area fraction to lead to stronger alignment and thus to
lower entropy. As we have seen in the Vicsek model, however,
this is not always the case. At low area fractions isolated cells
are immobile, possibly because single cells cannot form a
hydrated layer necessary to move.5 As a result, the alignment
of cells that are close to one another (and therefore moving
together) is significantly higher, resulting in strong position-

orientation cross-correlations. Indeed, these cross-correlations
give the dominant contribution to the entropy (gray diamonds
in Fig. 5, right panel). The first-order transition implies coex-
istence of the two states – stationary isolated cells and small
moving clusters. The motion of the clusters makes the two
‘phases’ mix spatially.

For the WT (Fig. 5, left), the entropy reveals subtle phenom-
ena and possibly new transitions, which the standard CF
analysis did not identify.4 First, there is a gap between
r = 0.27 and r = 0.33, reflecting a very small number of samples
in this range, which did not allow entropy calculation.‡ The
entropy contributions of alignment and cross-correlations
show a jump across the gap, possibly indicating a first-order
transition. These observations may again be rationalized by
the coexistence of two phases. Unlike the elongated mutant,
WT cells can move at low area fraction, and their spatial
distribution is locally homogeneous at all area fractions.
Hence, the swarm segregates into locally homogeneous, mobile
domains of low and high area fraction. Samples whose
mean area fraction falls in the coexistence range would be
found only when the field of view covers an intermediate region
separating the two phases, which explains the scarcity of
such samples.

Thus the first-order transition is seen for both the WT and
mutant strains; yet, because WT cells can move at low area fraction
while the mutants cannot, the transition is manifested differently.
The mutant undergoes the transition at a lower area fraction.
This may hint at an active isotropic-to-nematic transition, which is
promoted by the mutant’s large aspect ratio.

Fig. 4 Experimental snapshots showing swarming Bacillus subtilis bacteria with different aspect ratios and at different area fractions. Reproduced from
ref. 4. The scale bar is 50 mm.

† Rod-like Bacteria such as Bacillus subtilis swarm cells are usually described as
polar particles, rather than nematic ones.5,16,59 However, analyzing single images,
one cannot distinguish the bacterial ‘head’ from its ‘tail’. For this reason, we treat
cells as nematic particles. ‡ The data are sufficient for inferring a correlation length.4
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The second interesting observation concerning the WT cells
is the sharp minimum at r = 0.41, which may indicate a second-
order transition. The non-monotone dependence on area fraction
is manifested in all entropy contributions. It is reminiscent of the
entropy variation across the flocking transition in the Vicsek
model (cf. Fig. 2), involving a competition between positional
and orientational entropies.

V. Discussion

This work has two goals. The physical goal has been to identify
and characterize hitherto unrecognized features of two canoni-
cal active systems – the Vicsek model and bacterial swarming.
A more general, technical goal has been to demonstrate the
applicability and advantages of the entropy-bounds method.

In the Vicsek model we have found further evidence for an
order–disorder transition of continuous (second-order) nature.
We have clarified the interplay between positions and orientations
before and after the transition while pin-pointing its critical
density for varying noise amplitude. Our method has also allowed
the identification of a crossover from orientation-dominated to
position-dominated collective dynamics above a certain noise
amplitude (consistent with previous studies40,58), which is insen-
sitive to density. In bacterial suspensions we have found clear-cut
evidence for a discontinuous, first-order transition, associated
with separation into coexisting domains of different density and
mobility. At higher area fraction we have identified another
transition, continuous (probably second-order) in nature, with
entropy dependence resembling the Vicsek flocking transition.

Concerning the second goal, we have established the ability
of the entropy-bounds method to distill the information con-
tained in structural correlations into a single useful number
while resolving the different contributions coming from different
microscopic DOFs. This ability has led to the new observations
mentioned above. The method has another crucial advantage
which has not been used here. We have measured the CFs
from ‘microscopic’ configurations obtained by simulation or
microscopy. These configurations could be fed into alternative,
computational entropy-estimation methods. However, CFs are

coarse-grained properties which can be obtained by macroscopic
measurements without direct access to the particles’ DOFs. For
example, the CFs could be obtained by scattering and birefrin-
gence. Thus we hope that the entropy-bounds method will
become a wide-spread useful tool for identifying and characteriz-
ing transitions of diverse systems in and out of equilibrium.
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