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Relating thermodynamic and kinetic properties is a conceptual challenge with many practical benefits.
Here, based on first principles, we derive a rigorous inequality relating the entropy and the dynamic
propagator of particle configurations. It is universal and applicable to steady states arbitrarily far from
thermodynamic equilibrium. Applying the general relation to diffusive dynamics yields a relation between
the entropy and the (normal or anomalous) diffusion coefficient. The relation can be used to obtain useful
bounds for the late-time diffusion coefficient from the calculated steady-state entropy or, conversely, to
estimate the entropy based on measured diffusion coefficients. We demonstrate the validity and usefulness
of the relation through several examples and discuss its broad range of applications, in particular, for
systems far from equilibrium.
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Materials are characterized, on the one hand, by static
thermodynamic properties (heat capacity, compressibility)
and, on the other hand, by kinetic properties (viscosity,
conductivity, diffusion coefficient). Clearly, the dynamics
of a system dictates its steady state; however, the same
steady state may arise from many different dynamics.
Indeed, one of the remarkable feats of statistical mechanics
is the ability to relate thermodynamic properties to kinetic
ones in certain limits. Well-known examples of such
relations arise from linear response theory close to equi-
librium, for example, the Onsager relations, fluctuation-
dissipation theorems (including the Einstein relation), and
Green-Kubo relations [1]. Far from equilibrium, general-
izations include fluctuation theorems [2–4] and generalized
Green-Kubo relations [5]. Particularly remarkable are
relations between kinetic coefficients and quantities such
as temperature and entropy which are obtainable from one-
time independent configurations (e.g., the Einstein rela-
tion). Other relations, such as the Green-Kubo ones, require
two-time statistics.
In the present Letter, we derive, based on first principles,

a rigorous general relation between a one-time steady-state
variable, the entropy, and the dynamic propagator of
particle configurations. This relation holds arbitrarily far
from equilibrium. When applied to single-particle diffu-
sion, it connects the entropy with the late-time diffusion
coefficient. The relation, in its most generality, is an
inequality. It becomes an equality under specified assump-
tions. Such a relation would be very useful, because the
abilities to calculate or measure thermodynamic and kinetic
properties may differ substantially.
Several general relations between entropy and kinetic

properties were proposed over the years based on the
equilibrium theory of fluids. The Adam-Gibbs relation
between the entropy of a glass-forming liquid and its

relaxation time [6] has inspired later theories of the glass
transition [7,8]. Rosenfeld [9,10] and later, independently,
Dzugutov [11], proposed a phenomenological relation
between the entropy per particle of a fluid s and the
single-particle diffusion coefficient D. It reads D=ðvlÞ ¼
A exp½bðs − sidÞ�, where l ∼ ρ−1=3 is the mean interparticle
distance (ρ being the mean density), v ∼ T1=2 is the thermal
velocity (T being the temperature), sid is the entropy per
particle of the ideal gas, and A and b are system-dependent
phenomenological parameters to be found ad hoc by ex-
periment or simulation. Similar entropy-diffusion relations
were obtained rigorously for the specific case of a single
particle at equilibrium, diffusing in a random external
potential [12,13]. The relation derived below is not restric-
ted to equilibrium and applies also to the correlated motion
of many particles.
The phenomenological entropy-diffusion relation has

been tested extensively in the last two decades against ex-
periments and simulations. It has been used also in industrial
applications to indirectly infer transport properties. For a
recent reviewand literature survey, seeRef. [14]. Themyriad
of systems to which the relation has been applied ranges
from simple liquids (e.g., Refs. [15–17]), through active
particles [18], to planetary cores [19]. The success of the
phenomenological entropy-diffusion relation has been in-
consistent. Its physical origin, and thus the ability to account
for its successes and failures, has not been resolved.A theory
based on hidden scale invariance originating in the micro-
scopic interactions has been proposed to account for the
scaling with density and temperature [14,20,21]. Over-
all, the widespread use of the entropy-diffusion relation,
even if it is empirical and inaccurate, attests to the far-
reaching importance of relating thermodynamic and trans-
port properties.
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Derivation outline.—We consider a material at steady
state, consisting of N identical particles whose microscopic
configurations are given byX ¼ fx1;x2;…;xNg. The state
x of each particle may include its position, orientation,
velocity, etc. The many-particle configuration X changes
with time t according to the case-specific microscopic laws
of motion, defining a trajectory XðtÞ between t ¼ 0 and
t ¼ tobs, the observation time. Our main assumption, valid
for the vast majority of materials, is that the material has a
finite relaxation time τ. For times t > τ, the configurations
of the particles, which are regarded as indistinguishable, are
mixed, and the material reaches steady state.
At the core of the theory is the distinction between two

equivalent perspectives of the dynamics, regarding the
particles as either indistinguishable or distinguishable
(identifiable); see Fig. 1. We utilize the two perspectives
to relate the steady-state behavior with the kinetic one. We
discretize the trajectory XðtÞ into K þ 1 consecutive
“snapshots” separated by time intervals τ, Xk ¼ XðkτÞ,
k ¼ 0; 1;…; K ¼ tobs=τ. We denote the probability to
obtain a certain sequence of configurations by P̃r½fXkg�
for indistinguishable particles and by Pr½fXkg� for identi-
fiable ones.
From the first perspective (top row of Fig. 1), we

consider configurations of the N indistinguishable par-
ticles. Over time intervals larger than τ, sufficiently many
randomizing events (e.g., collisions) occur to mix the parti-
cles. Hence, the configurations at different instances along
the discretized trajectory may be taken as independent,

drawn each from the same steady-state probability distri-
bution for indistinguishable particles P̃ðXÞ. This implies
the decomposition of P̃r½fXkg� into a product of indepen-
dent probabilities, P̃r½fXkg� ¼ P̃ðX0ÞP̃ðX1Þ � � � P̃ðXKÞ.
The steady-state entropy is the information content of
P̃ðXÞ [22],

S ¼ −
Z

dXP̃ðXÞ ln P̃ðXÞ; ð1Þ

up to a constant that fixes units (see Supplemental
Material [23]).
From the second perspective (bottom row of Fig. 1), we

treat particles as identifiable and follow their individual
dynamics. Their configurations, separated by time intervals
τ, are typically correlated, as each particle has traversed a
negligible part of the total available space. We assume
that the identifiable configurations follow a stationary
Markov process and denote the Markovian probabi-
lity to change from configuration Xk−1 to configuration
Xk during time τ (the propagator) as WτðXkjXk−1Þ.
This enables another decomposition of the trajectory
probability, this time for identifiable particles,
Pr½fXkg� ¼ PðX0ÞWτðX1jX0Þ � � �WτðXKjXK−1Þ, where
PðXÞ ¼ P̃ðXÞ=N! is the steady-state distribution of con-
figurations for identifiable particles [28].
Thus, we have decomposed the indistinguishable trajec-

tory distribution P̃r½fXkg� into steady-state distributions
P̃ðXkÞ and the identifiable trajectory distribution Pr½fXkg�
into kinetic distributionsWτðXkjXk−1Þ. To relate these two
results to entropy, we define the following integral over all
possible discretized trajectories [29]:

H ¼ −
1

K

Z
dfXkgPr½fXkg� lnðPr½fXkg�Þ: ð2Þ

When the decomposition of Pr is substituted in
Eq. (2), the integral becomes H ¼ ðSþ lnN!Þ=K −R
dX0PðX0Þ R dXWτðXjX0Þ lnWτðXjX0Þ [23].
The main complication lies in the relation between the two

trajectory distributions Pr and P̃r. Indistinguishable trajecto-
ries correspond to many possible permutations of identifiable
ones; yet, not all permutations are equally likely. For example,
the probability that particles that start far apart will switch
positions during time τ is negligibly small, whereas colliding
particles may permute with high probability.
First, we consider an extreme case, which sets a strict

lower bound on H, ignoring all the possible particle-
identity exchanges (except in the initial condition). With
this “undercounting,” we get P̃r ≥ N!Pr. When the decom-
position of P̃r is substituted in Eq. (2), this inequality gives
H ≥ ðSþ lnN!Þ=K þ S. Comparing the two expressions
for H arising from the two decompositions, we get

S ≤ −
Z

dX0PðX0Þ
Z

dXWτðXjX0Þ lnWτðXjX0Þ: ð3Þ

FIG. 1. Derivation outline. We assume the existence of a finite
relaxation time τ. For t ≪ τ (left) the particles follow microscopic
dynamics (e.g., moving ballistically). For t > τ (right) the system
reaches a steady state. Two equivalent descriptions are consid-
ered. In the first (top row), particles are treated as indistinguish-
able. Their τ-separated configurations X are independent and
drawn from the steady-state distribution P̃ðXÞ, with entropy S. In
the second description (bottom row), particles are treated as
distinguishable (identifiable). Over time t > τ each particle
experiences many collisions, which (by the central limit theorem,
CLT) leads to an effective diffusion with mean-squared displace-
ment (MSD) 2dDt. Comparing the two statistics leads to a
relation between the steady-state entropy (top right) and diffusion
(bottom right).
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Equation (3) is our first universal relation between the
steady-state entropy and a kinetic property, the many-
particle propagator. It relies only on the existence of a
finite relaxation time and the Markov property. It can be
rationalized as follows. During the finite relaxation time τ,
the identifiable particles cover a small (intensive) region of
their phase space (right-hand side). Combining the regions
covered by all particles, without distinguishing among
them, is related to the available microstates in the indis-
tinguishable picture (left-hand side). Loosely speaking,
the right-hand side overcounts the overlap between
regions explored by different particles, which leads to the
inequality.
One is typically interested in the transport properties of a

subset of particles much smaller than N, in particular, the
effective diffusion coefficient of a single particle. If the
particles are independent and the system is translation
invariant, the propagator can be decomposed into single-
particle ones, WτðXjX0Þ¼wτðΔx1ÞwτðΔx2Þ���wτðΔxNÞ,
where Δxj ¼ xj − x0

j , leading to H¼ðSþlnN!Þ=K
−N

R
dΔxwτðΔxÞlnwτðΔxÞ. If the particles are dependent,

this relation sets another bound on H [23,33]. Overall,
owing to the subextensive property of the entropy [23],
Eq. (3) becomes a bound on the entropy per particle,
s ¼ S=N,

s ≤ −
Z

dΔxwτðΔxÞ lnwτðΔxÞ: ð4Þ

Compared to Eq. (3), the inequality of Eq. (4) is less tight
but more practical, as the single-particle propagator is more
accessible in experiments, simulations, and coarse-grained
theories.
In most materials, due to the central limit theorem, the

single-particle propagator converges to a Gaussian over
intervals Δt > τ, wΔtðΔxÞ ¼ ð4πDΔtÞ−d=2e−jΔxj2=ð4DΔtÞ,
where D is the diffusion coefficient and d is the dimen-
sionality. Substitution into Eq. (4) gives

Dτ ≥ ðDτÞ∘ exp½ð2=dÞðs − s∘Þ�; ð5aÞ

where the superscript ° denotes values for a reference sys-
tem with a tighter bound. This is an exact and practically
useful relation.
To improve the bound, we need to evaluate the con-

tribution of the neglected permutations when relating
indistinguishable and identifiable trajectories. Taking a
mean-field approach, we assume that during each time
step τ every particle can be exchanged with z nearby parti-
cles. Hence, P̃r ≃ N!zNK Pr. As a result, Eq. (3) is re-
placed by Sþ N ln z ≤ −

R
dXWτðXjX0Þ lnWτðXjX0Þ.

Estimating z requires kinetic considerations. Each particle
has a “sphere of influence” of radius ∼ðDsτÞ1=2, where Ds
is a short-time diffusion coefficient [34]. Therefore,
z ∼ ρðDsτÞd=2. This leads to [23]

D ≥ Ds exp½ð2=dÞðs − sidÞ�; ð5bÞ

where sid ¼ − ln ρ is the ideal-gas entropy. Equation (5b) is
not exact, but it gives an improved bound under the mean-
field assumption.
Equation (4) could be applied to any single-particle

propagator wτðΔxÞ. For example, consider anomalous
diffusion where the particle’s mean-squared displacement
(MSD) is equal to dFΔtα, with a generalized diffusion
coefficient F [35]. A modified derivation [23] leads to the
generalized relation [36]

Fτα ≥ ðFταÞ∘ exp½ð2=dÞðs − s∘Þ�: ð6Þ
Both inequalities (5) and (6) become equalities when
trajectories do not mix and the dynamics is accurately
represented by single-particle (generalized) diffusion.
Unlike the earlier phenomenological relations [9,11],

(a) Eqs. (5) are inequalities in general; (b) they are not
restricted to thermodynamic equilibrium; (c) the coefficient
b has an explicit value, b ¼ 2=d; and (d) there is an explicit
dependence on the relaxation time τ. These differences
explain the discrepancies between the phenomenological
relations and observations. Departure from equality may be
caused by strong correlations among particles [37,38] or
extra dependencies of τ and Ds on ρ and T, which deviate
from Ds ∼ vl ∼ ρ−1=dT1=2 as arising from simple kinetic
theory. The latter effect is seen in Fig. 2(b) and also in
Fig. S1, Supplemental Material [23].
We now demonstrate the validity and usefulness of

Eqs. (5) and (6) in several examples.
Previously tested examples.—Quite a few empirical

studies found values of b close to or bounded by 2=d,
as predicted by Eqs. (5). Simulations gave b ¼ 0.65 for a
3D hard-sphere gas [9], b ¼ 0.67–0.70 for liquid metals
[19,39], and b ¼ 0.70–0.73 and 0.65 for water and meth-
anol, respectively [40]. Experiments on colloidal mono-
layers (d ¼ 2) gave values bounded from above by b ¼ 1
[41–44] and at least twice as high b for the rotational
diffusion coefficient (d ¼ 1) [43]. Still, recent extensive
molecular dynamics simulations of Lennard-Jones fluids in
3D gave b ¼ 0.751 [45]. This deviation from b ¼ 2=3 can
be attributed to the above-mentioned dependencies on
density and temperature.
Example: Homogenized diffusion.—Under a periodic or

random potential, the motion of a diffusing particle, after
traversing sufficiently long distances, is accurately descri-
bed by an effective (“homogenized”) diffusion [46–48].
Calculations of the homogenized D even for the simplest
scenarios require elaborate mathematical analyses
[12,13,47,48]. In certain cases, Eqs. (5) offer a far simpler
alternative. Indeed, for a particle in a random potential, the
analysis in Ref. [12] arrives at a relation that coincides with
Eq. (5b) in the limit of a single particle at equilibrium. For a
particle in a 1D periodic potential, the known analytical
result for the homogenizedD [46–48] agrees with Eq. (5a),
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where the inequality tends to an equality for weak to
moderate potentials [23].
Example: Anomalous diffusion in a single file.—Single-

file diffusion is relevant to a large variety of transport
processes [49]. The model consists of N rigid particles of
diameter a, restricted to move along a line of length L
without bypassing each other. An isolated particle would
perform normal Brownian motion with diffusion coefficient
Ds. However, when put in a single file with others, its
motion becomes subdiffusive, with the exact result [50]
MSDðtÞ ¼ Ft1=2, F ¼ 2aðDs=πÞ1=2ð1 − ϕÞ=ϕ, where
ϕ ¼ Na=L is the line fraction occupied by the particles.
This ϕ dependence can be easily reproduced using Eq. (6).
The single-file constraint prevents mixing of particle
trajectories (i.e., z ¼ 1 exactly), suggesting that the bound
in Eq. (6) should be tight. The total entropy per particle is
s ¼ ln½ð1 − ϕÞ=ϕ�, and τ is proportional to the time
between encounters of neighboring particles, τ ∼ l2=Ds,
where l ¼ aðϕ−1 − 1Þ is the mean distance between
neighbors. Substituting these into Eq. (6) (with d ¼ 1),
we obtain F ∼ aD1=2

s ð1 − ϕÞ=ϕ. Equation (6) turns out to
be an equality here, although the particles’ motions are
correlated.

Example: Single-file diffusion in a periodic potential.—
To our best knowledge, there is no analytical result for the
homogenized anomalous diffusion coefficient in this case
[51,52]. Here, pointlike particles (a → 0) perform random
walks without bypassing each other, under a potential
with amplitude E (in units of kBT) and periodicity λ,
UðxÞ ¼ E½1 − cosð2πx=λÞ�. This describes, for example,
single-file diffusion occurring over a periodic substrate.
The entropy per particle is s ¼ − ln ρþ fðEÞ, where fðEÞ
is given in the Supplemental Material [23]. Using Eq. (6),
we predict that Fτ1=2 ¼ Ae2fðEÞ=ρ2, where A is a constant.
To verify this prediction, we performed Langevin dynamics
simulations with periodic boundary conditions for various
particle densities ρ (number of particles per λ) and potential
strengths E. We measured the MSD and extracted the
generalized diffusion coefficient F. Obtaining τ is intricate
in this example because of its dependence on both ρ and E.
We assess it numerically from the crossover time between
normal and anomalous diffusion [23]. Figure 2(a) shows
Fτα as a function of ρ for fixed E ¼ 0, 0.2, 1. The pre-
diction Fτα ∼ ρ−2 with α ¼ 1=2 is verified. In Fig. 2(b), we
plot Fτα as a function of E for fixed ρ ¼ 1, 2, 3. The
prediction works well for small E but gets further from
the numerical results as the potential strength is increased.
This is due to an underestimation of τ for large E [23].
Alternatively, one can use these results together with the
analytical expression to infer τðρ; EÞ.
Example: Momentum entropy.—For momenta, the de-

composition into single-particle dynamics is exact. When
the momentum propagator is used in Eq. (4), Dτ appearing
in Eq. (5) is replaced by the mean-squared momentum. The
latter is proportional to the mean kinetic energy, which in
turn is proportional to T. Equation (5a) for d ¼ 3 then gives
e2s=3∼T, in line with the classical result, s¼ lnT3=2þconst.
Summary.—Equation (3) shows a rigorous generic mark

left by the steady-state entropy of materials on their
dynamics. It offers a theoretical framework for relating
static and kinetic properties arbitrarily far from equilibrium,
e.g., for fluids in steady flow or active matter. The only
assumptions are the existence of a finite relaxation time and
Markovian dynamics at late times. Thus, remarkably,
quantitative predictions concerning kinetic coefficients
could be obtained without a kinetic theory.
Equation (4) makes the general framework more appli-

cable as it relates the entropy with the accessible dynamics
of individual particles. We have used it to obtain relations
between the entropy and the (generalized) late-time dif-
fusion, Eqs. (5) and (6). With additional knowledge of the
material’s relaxation time [Eqs. (5a) and (6)] or short-time
diffusion coefficient [Eq. (5b)], the relations can be used to
obtain useful bounds for the late-time diffusion coefficient
from entropy, and vice versa, as demonstrated in the
examples above [53]. In essence, these relations imply
that Dτ, Fτα, or D=Ds are actually static configurational
properties. This is reminiscent of the Einstein relation

(a)

(b)

FIG. 2. Single-file diffusion in a periodic potential. (a) Anoma-
lous MSD as a function of density for fixed potential strengths as
indicated. The MSD is scaled by the predicted energy-dependent
factor to make the data collapse. (b) MSD versus potential
strength for fixed densities as indicated. The MSD is scaled by the
predicted density-dependent factor to make the data collapse.
Symbols show results of Langevin dynamics simulations and
solid lines show the theoretical predictions obtained from
entropy. Inset: Illustration of the simulated system.
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Dη ∼ T, η being a friction coefficient. The Einstein relation
can be reproduced by a similar argument to the one used
here, comparing the equilibrium entropy of the particle’s
fast-relaxing velocity, s ¼ lnTd=2 þ const, with the infor-
mation content of the resulting diffusive trajectories. The
inequalities derived here, however, are much more general
and hold arbitrarily far from equilibrium.
The examples given above highlight the conditions

under which the inequality approaches an equality, namely,
weak mixing of particle trajectories and weakly correlated
dynamics. We expect the bound not to be as tight in more
strongly correlated or slowly relaxing systems. The viola-
tion of the rigorous bound derived here might serve as a
useful indicator of anomalous behaviors such as ergodicity
breaking and aging [43].
The range of possible applications of Eqs. (5) and (6) is

vast. The case of diffusion under an external potential
analyzed above clearly shows how the relations could be
used to infer binding parameters from measured diffusion.
From the opposite direction, entropy is often fairly easy to
find from equilibrium thermodynamics or estimate in
nonequilibrium steady states [54–59]. This can be used
to infer diffusion coefficients in complex scenarios, in
particular, in active matter.
We conclude by highlighting the more general inequality

relating the entropy with the dynamic propagator, Eq. (3),
which enables various extensions of the theory beyond
single-particle diffusion. It can be used to treat the
correlated diffusion of two or more particles. Introducing
weak interactions into the propagator Wτ will improve the
bound in Eq. (4). One can substitute nondiffusive propa-
gators in Eq. (4) to study, for example, memory effects. It
will be particularly important to derive relations for kinetic
coefficients other than the diffusion coefficient, such as the
heat conductivity and viscosity. The theoretical framework
constructed here, utilizing the distinction between the fast
relaxation of indistinguishable particle configurations and
the coarse-grained dynamics of identifiable particles, will
hopefully be instrumental in the progress toward a con-
sistent general theory of nonequilibrium thermodynamics.
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