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We derive a reduced quasi-one-dimensional theory of geometrically frustrated elastic ribbons. Expressed
in terms of geometric properties alone, it applies to ribbons over a wide range of scales, allowing the study
of their elastic equilibrium, as well as thermal fluctuations. We use the theory to account for the twisted-to-
helical transition of ribbons with spontaneous negative curvature and the effect of fluctuations on the
corresponding critical exponents. The persistence length of such ribbons changes nonmonotonically with
the ribbon’s width, dropping to zero at the transition. This and other statistical properties qualitatively differ
from those of nonfrustrated fluctuating filaments.

DOI: 10.1103/PhysRevLett.116.258105

Slender structures appear on many scales in both natural
and man-made systems. Examples vary from the tendrils
and seedpods of plants [1,2], through man-made responsive
gels and elastomers [3], to nanoscale structures such as
graphene sheets [4] and biomolecular self-assemblies made
of peptides [5], lipids [6,7], and proteins [8]. Many of these
systems are frustrated in the sense that, even when free of
constraints, they contain residual stresses. On the nano-
scale, such frustration is particularly likely, either due to the
way in which the molecular building blocks bind to one
another as they self-assemble [9–11] or because of the
accumulation of defects in crystalline sheets [12,13].
Present theories address the statistical-mechanical prop-

erties of compatible slender structures [14–18] and the
elastic equilibrium of frustrated thin sheets (incompatible
plate theory) [19–21]. In addition, a molecular model was
presented for the self-assembly of chiral amphiphilic
molecules into twisted ribbons [10]. There is no general
theory for the combination of the two, i.e., one which
models the statistical mechanics of frustrated slender
structures. As indicated by the work of Ghafouri and
Bruinsma [22], who modeled a specific case of a frustrated
ribbon, the behavior of such systems is qualitatively
different from that of ordinary semiflexible filaments.
In this Letter, we derive a general theory for the elasticity

and statistical mechanics of frustrated elastic ribbons. A 1D
energy functional is derived from the 2D incompatible plate
theory. It describes any ribbon, irrespective of whether or
not it is frustrated. Motivated by recent measurements on
self-assembled supramolecular structures [11,23–25], we
proceed to apply the model to a specific system possessing
negative spontaneous curvature.
In the formalism of incompatible sheets [19], a 2D elastic

membrane is fully described by its metric a and curvature
tensor b. However, not any choice of a and b corresponds to
a continuous surface in 3D Euclidean space. To form an
intact surface, they must satisfy a set of geometrical

constraints called the Gauss-Minardi-Patterson-Codazzi
(GMPC) equations. Every elastic membrane is equipped
also with two intrinsic reference fields ā and b̄. ā, the
reference metric, encodes the preferred in-plane positions
of neighboring elements, while b̄, the reference curvature,
describes the preferred orientations of these elements. In
general, the reference metric and curvature may not satisfy
the GMPC constraints. In such cases, the membrane is
frustrated, and its configuration can usually comply with
either ā or b̄, but not with both, giving rise to residual
stresses.
The elastic 2D Hamiltonian of a thin elastic membrane is

given by [2,19]

H2D ¼ Y
8ð1 − ν2Þ

ZZ �
tEs þ

t3

3
Eb

�
d2A;

Es ¼ νTr2½ā−1ða − āÞ� þ ð1 − νÞTr½ā−1ða − āÞ�2;
Eb ¼ νTr2½ā−1ðb − b̄Þ� þ ð1 − νÞTr½ā−1ðb − b̄Þ�2; ð1Þ

where Es is the stretching content, Eb the bending content,
Y Young’s modulus, ν Poisson’s ratio, t the thickness of the
sheet (taken as the smallest length scale in the system), and
d2A ¼ ffiffiffiffiffiffiffiffiffiffi

det ā
p

dudv the surface element (u and v being a
coordinate system on the sheet).
We consider a long (length L), narrow (width W), and

thin (thickness t) ribbon, such that t ≪ W ≪ L. We select a
preferable set of coordinates ðx; yÞ ∈ ½0; L� × ½−ðW=2Þ;
ðW=2Þ�, such that the midline of the ribbon is given by
ðx; 0Þ. As a first step, we reduce Eq. (1) into a 1D
Hamiltonian through an expansion of the curvatures around
the midline in small y (compared to the typical radius of
curvature). While performing the expansion, we make sure
that a and b continue to describe an intact surface—i.e.,
that they satisfy the GMPC constraints up to the appropriate
order. Only after this self-consistency is established do we
allow the system to find the preferred configuration.
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Let us consider a ribbon, cut off an elastic membrane
with the reference ā and b̄, and zoom in on an indefinitely
narrow strip around its midline. The deformation of such a
strip can be parametrized by four local curvatures,
ðκg; l; m; nÞ, whose geometrical meanings are illustrated
in Fig. 1, and a Gaussian curvatureK. In particular, κg is the
geodesic curvature of the midline. These curvatures may
vary along the midline; i.e., they all may be functions of x.
The reference metric and curvature of the original mem-
brane impart to these functions a reduced-1D reference
state ðκ̄g; l̄; m̄; n̄Þ and K̄. For a sufficiently narrow ribbon
[specifically, W ≪ ð1=κ̄g; 1=

ffīffiffiffi
K

p Þ], we may expand in
small distance y perpendicular to the midline and obtain
the following relation between the 2D and reduced-1D
references:

ā ¼
� ð1þ κ̄gyÞ2 − K̄y2 þOðy3Þ 0

0 1

�
;

b̄ ¼
�

l̄ m̄
m̄ n̄

�
þOðyÞ:

While the reference tensors (ā; b̄) are arbitrary, the actual
metric and curvature tensors of a given configuration must
satisfy the GMPC equations. A self-consistent expansion of
these tensors gives [26]

a ¼
� ð1þ κ̄gyÞ2 − ðln −m2Þy2 0

0 1

�
þOðy2Þ; ð2aÞ

b ¼
�

lþm0y mþ n0y

mþ n0y n

�
þOðyÞ; ð2bÞ

where a prime denotes a derivative with respect to x, and we
have set κg ¼ κ̄g, since it is easily shown that deviations

from this equality are too costly energetically. Inserting the
expressions for a, b, ā, b̄ in the 2D Hamiltonian (1) and
integrating over the narrow coordinate y, we end up with a
reduced-1D Hamiltonian

H1D ¼ Y
8ð1 − ν2Þ

Z
dx

�
1

80
tW5ðK̄ − lnþm2Þ2

þ 1

3
t3W

�
2ð1 − νÞ

�
W2

12
ðn0Þ2

−½ðl̄ − lÞðn̄ − nÞ − ðm̄ −mÞ2�
�

þðl̄þ n̄ − n − lÞ2 þW2

12
ðm0Þ2

��
: ð3Þ

Equation (3) is the central result of the present work,
providing the energy functional for a wide range of non-
frustrated as well as frustrated ribbons. The quasi-1D
reduction significantly simplifies the problem, allowing
for an analytical solution in simple cases (such as the one
treated below) and the study of thermal fluctuations around
the minimum.
Equation (3) is considerably simplified when applied to

specific ribbons, or under some common approximations
such as that of an unstretchable ribbon. This limit holds
when the stretching rigidity is much larger than the bending
rigidity, as in the limit of vanishing thickness. It implies
a ¼ ā, leading to elimination of the first integral. If, in
addition, we consider the case with no spontaneous
curvature, i.e., K̄ ¼ κ̄g ¼ l̄ ¼ m̄ ¼ n̄≡ 0, we recover the
known Sadowsky functional [27–29]

H ¼ Y
8ð1 − ν2Þ

Z �
1

3
t3Wðlþ nÞ2

�
dx

¼ Yt3W
24ð1 − ν2Þ

Z ðκ2 þ τ2Þ2
κ2

dx: ð4Þ

We now use the 1D Hamiltonian of Eq. (3) to provide an
analytic description for the system described in Ref. [25].
This is the case of a flat in-plane geometry (i.e., Euclidean
ā) K̄ ¼ 0 and spontaneous twist along the x direction
(which implies a saddle curvature) l̄ ¼ n̄ ¼ 0, m̄ ¼ k0.
Such intrinsic geometry commonly appears in nanoribbons
generated by the self-assembly of chiral molecules. These
include lipids [30], peptides [5], and proteins that form
amyloids [31]. The corresponding reference tensors are

ā ¼
�
1 0

0 1

�
; b̄ ¼

�
0 k0
k0 0

�
: ð5Þ

The Hamiltonian of this specific system, omitting small
derivatives, is given by

FIG. 1. Geometric interpretation of the different curvatures.
Left to right: κg, l and n (opposite signs), m.
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H ¼ Y
8ð1 − ν2Þ

Z �
1

80
tW5ðln −m2Þ2

þ 1

3
t3Wfðlþ nÞ2 − 2ð1 − νÞ½ln − ðk0 −mÞ2�g

�
dx:

ð6Þ

The equilibrium configuration is found by solving
the appropriate Euler-Lagrange equations [26]. By
defining dimensionless parameters ~w ¼ W=W�, ~σ ¼ σi=
k0ðσi ∈ fl; m; ngÞ, where W� ¼ f½320ð1þ νÞ�=½3ð1−
νÞ2�ðt2=k20Þg1=4, the solution gets the nifty form

~n ¼ ~l ¼
�
0 ~w ≤ 1

� 1
2
ð1 − νÞ

ffiffiffiffiffiffiffiffi
~w4−1

p
~w2 ~w > 1;

ð7aÞ

~m¼
� 1

2
ð1− νÞ ½ ~Ξ2ð ~wÞ−ð1−ν2Þ31=3�

32=3ð1þνÞ ~Ξð ~wÞ ~w2 ~w ≤ 1

1
2
ð1− νÞ ~w > 1;

~Ξð ~wÞ ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½81ð1þ νÞ4 ~w4 þ 3ð1− ν2Þ3�

q
þ 9ð1þ νÞ2 ~w2�1=3:

ð7bÞ

We compare in Fig. 2 the resulting dimensionless pitch
and radius of the midline ~P ¼ ð1 − νÞk0ð2πm=m2 þ l2Þ,
~R ¼ ð1 − νÞk0ðl=m2 þ l2Þ, with the solution obtained by
2D finite element numerics. Both describe a ribbon that
changes its shape from twisted to helical as it widens.
Equations (7) describe a continuous (second order)

transition, at W ¼ W� ( ~w ¼ 1), which separates two
regimes: bending dominated (i.e., minimization of the
bending content is favored) and stretching dominated (in
which the solution of the bending-dominated regime is
unstable). The � signs mark a spontaneous symmetry
breaking obtained by flipping a helix inside out (while
preserving chirality). The twist-to-helical transition was
observed in experiments and simulations [2,3,32], and the

scaling of the critical width and existence of these two
regimes were estimated in Ref. [2]. Qualitatively similar
results were obtained within a modified 1D worm-like-
chain model [22]. We use this example to mainly underline
the strength of the general formalism presented here. In
addition, the explicit solution, obtained from a controlled
approximation of the 2D elastic problem, allows us to
safely proceed to study in detail the statistical properties of
the ribbons, on both sides of the transition.
The nature of the elastic transition (Fig. 2) is captured by

its critical exponents, denoted by the conventional symbols
α, β, γ, δ, νw, η [33]. The control parameter of the transition
is the ribbon’s width ~w. Noting that the most singular
behavior is exhibited by the mean curvature ~Ω≡ 1

2
ð~lþ ~nÞ,

we readily find the critical exponents [26]: α ¼ 0, β ¼ 1
2
,

γ ¼ 1, δ ¼ 3.
We now turn to thermal fluctuations of the ribbon around

its ground state. These affect various observable properties
of nanoribbons, such as the distributions of radius and
pitch, as well as the persistence length characterizing the
bending fluctuations of the entire ribbon as a polymerlike
object [34]. We expand the Hamiltonian (3) around its
equilibrium values to second order in the fluctuations
Δσiðσi ∈ fl; m; ngÞ, so that

H ¼ Heq þ
Z

Hð2Þ
ij ΔσiΔσjdx; ð8Þ

whereHð2Þ
ij ¼ ð∂2H=∂σi∂σjÞ, and we adopt the summation

convention. Transforming to Fourier space (x=W� → q),
and keeping only leading contributions near the transition,
we obtain H −Heq ∝

R ðA�jδ ~wj þ B�q2ÞjΔ ~Ωj2dq, where
A�, B� are positive constants with different values below
(−) and above (þ) the transition [26]. This calculation leads
to the modified (but expected) values of exponents: α ¼ 3

2
,

νw ¼ 1
2
, η ¼ 0, while β, γ, δ remain unchanged. Because of

the one-dimensionality of the Hamiltonian, the critical
exponent α has an atypical value. It is readily verified that
the hyperscaling relation 2 − α ¼ νwd is satisfied
with d ¼ 1.
Calculating the fluctuations of the pitch and radius,

within the Gaussian approximation, and integrating outΔn,
we have

hΔ ~P2i ¼ kBT

LYk3=20 t7=2
~H−1
pp; ð9aÞ

hΔ ~R2i ¼ kBT

LYk3=20 t7=2
~H−1
rr ; ð9bÞ

hΔ ~PΔ ~Ri ¼ kBT

LYk3=20 t7=2
~H−1
rp ; ð9cÞ

where ~H is the dimensionless Hamiltonian. The functions
~H−1
ij are shown in Fig. 3(a) as a function of ~w [26].

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

w̃

˜
P̃

/2
π ,

R

FIG. 2. Pitch (upper curve) and radius (lower curve) of the
ribbon as a function of its width, as obtained from the analytical
1D model (solid lines) and 2D simulations (circles).

PRL 116, 258105 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JUNE 2016

258105-3



At the critical width, the fluctuations of the radius
diverge due to the existence of an infinitely soft mode.
Including the spatial (q) dependence of the fluctuations is
important, as it changes the divergence from j ~w − 1j−1
(q ¼ 0 case) to j ~w − 1j−1=2. Right above the transition
( ~w > 1), the pitch and radius are negatively correlated (i.e.,
changes in the radius usually occur with an opposite change
in the pitch). As the ribbon widens, the correlations change
sign to become positive. This implies a change in the nature
of the system’s eigenmodes, which leads to the following
testable prediction: Close to W�, thermal fluctuations
induce strong winding (under extension) and unwinding
(under compression) of the ribbons. Away from W�, the
trend changes and thermal fluctuations induce unwinding
(under extension).
Having analyzed the fluctuations, we can calculate the

persistence length, characterizing the bending fluctuations

of the ribbon as an effective 1D polymer lp ¼
limL→∞ð1=2LÞhj~rj2i, where ~r is the ribbon’s end-to-end
vector. This is a commonly measured quantity in polymer
solutions, either on the level of a single molecule or on the
ensemble level using scattering. Intuitively, one expects the
stiffness of the midline, and therefore lp, to increase with
the ribbon width, as indeed is found in nonfrustrated
ribbons [18]. Using the same formalism as in Ref. [35],
we find that the persistence length is nonmonotonic in the
width; see Fig. 3(b). Instead of continually increasing, it
drops to 0 at the critical width. We find that near the
transition,

lp ¼ C�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~w − 1j

p
;

where C� are different positive constants below and above
the transition. Again, this result crucially depends on the
integration over all fluctuation wave vectors q (yielding an
exponent of 1=2 instead of 1). Far above the transition,
asymptotically, we have

lp !~w≫1 2

3

Yt3

kBT
W�

ð1 − ν2Þ ~w:

This value is much larger than the one found for equivalent
nonfrustrated ribbons and is a direct consequence of the
frustration. The fluctuation ribbon has additional geomet-
rical correlations, such as the torsional (normal-normal),
normal-binormal, and normal-tangent correlations, all
exhibiting decaying oscillations (not shown).
We conclude with a few possible implications of our

results for future experiments. The pitch and radius
associated with the twist-to-helical transition (Fig. 2) were
measured in macroscopic systems [2]. These observables
can be measured also in nanometric systems such as
the self-assembled peptide ribbons of Refs. [5,9,10,36].
The former work was limited to narrow ribbons below the
transition, while in the latter, the transition was only
qualitatively characterized. Our work provides quantitative
predictions regarding the statistical nature of thermal
ribbons—specifically, the fluctuations in pitch and radius,
and their correlations, and the persistence length of the
ribbon’s axis. The pitch and radius may be observed using
electron microscopies [11,23]. The persistence length and
its anomalous dependence on the ribbon’s width can be
measured using light scattering. In particular, our theory
predicts that, close to the transition, the persistence length
should become very small. Under these conditions, long
ribbons should behave as random coils. The properties of a
suspension of such ribbons should qualitatively change and
resemble a solution of flexible polymers [37].
We expect the results presented here, in particular, the

reduced Hamiltonian of Eq. (3), to be relevant to a range of
biological, chemical, and condensed matter systems, in
which fluctuating frustrated ribbons are known to exist.

FIG. 3. (a) Correlations and fluctuations as a function of ribbon
width, in the case of ν ¼ 0. ~H−1

rr is a solid blue line, ~H−1
rp is a dash-

dotted green line, and ~H−1
pp is a dashed red line. Inset: zoomed out

view. Note that fluctuations in ~P are finite (though discontinu-
ous). For ν ≠ 0, features remain the same, although values vary.
(b) Normalized persistence length ~lp ¼ ð3ð1 − ν2Þ=2ÞðkBT=
Yt3W�Þlp, for different temperatures: ðkBT=Yt3W�Þ ¼ 0.01
(solid blue line) and 100 (dashed red line). The dotted green
line shows the asymptote ~lp ¼ ~w.
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