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Resolving entropy contributions in nonequilibrium transitions
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We derive a functional for the entropy contributed by any microscopic degrees of freedom as arising from their
measurable pair correlations. Applicable both in and out of equilibrium, this functional yields the maximum
entropy which a system can have given a certain correlation function. When applied to different correlations,
the method allows us to identify the degrees of freedom governing a certain physical regime, thus capturing
and characterizing dynamic transitions. The formalism applies also to systems whose translational invariance
is broken by external forces and whose number of particles may vary. We apply it to experimental results
for jammed bidisperse emulsions, capturing the crossover of this nonequilibrium system from crystalline to
disordered hyperuniform structures as a function of mixture composition. We discover that the cross-correlations
between the positions and sizes of droplets in the emulsion play the central role in the formation of the disordered
hyperuniform states. We discuss implications of the approach for entropy estimation out of equilibrium and for
characterizing transitions in disordered systems.
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I. INTRODUCTION

Macroscopic states of matter differ by the statistics of their
microscopic degrees of freedom (DOFs). Moreover, the phys-
ical mechanism underlying a change of state is reflected in the
roles played by the different DOFs. One way to quantify the
contributions of particular DOFs (or the interactions between
them) to the change of state is through their effect on the
entropy. Unlike temperature and pressure, whose consistent
definitions, and thus measurement, are problematic out of
equilibrium [1–3], the relation between entropy and informa-
tion content is believed to hold for any steady state, regardless
of whether the system is at thermodynamic equilibrium or not.

According to Shannon’s definition [4], the information en-
tropy is given by

H[Ps] = −
∑

s

Ps ln Ps, (1a)

Ps being the probability distribution of finding the system in
the discrete microstate s. The continuous form, relevant in
many physical systems, is

H[P(X)] = −
∫

dX P(X) ln P(X), (1b)

with P(X) being the probability density function of finding
the system around the phase-space point X.

Applying Eqs. (1) directly and, furthermore, resolving the
contributions of the different DOFs, is usually impractical; out
of equilibrium, the required knowledge of Ps [and even more
so, P(X)], is prohibitively hard to acquire by sampling [5–11].
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Recently, several algorithms aiming to estimate entropy of
physical systems have been demonstrated, based on data com-
pression [12–16] or recursive mutual-information estimation
[17]. Since such methods still rely on sampling of microscopic
configurations, they are bound to suffer from undersampling
for real materials due to the high dimensionality and continu-
ity of phase space.

Given that the detailed P(X) is practically unattainable,
we propose to follow the trusted path of statistical mechanics
and consider instead lower-dimensional marginal distribu-
tions, namely, correlation functions (CFs) [18]. Although it
may seem like a severe compromise, this coarse graining has
three important advantages. First, spatial CFs are robustly
measurable in experiments and simulations, without extensive
sampling of microscopic states. Second, they provide a useful
characterization of the structure of matter, both in and out of
equilibrium [18–22]. Third, by supplying different CFs, we
will be able to discern their contributions to the entropy and
determine the dominant factor underlying the changes in the
system.

An illustrative example is the isotropic-to-nematic transi-
tion in a system of hard rods [23,24]. In this transition the
physical mechanism is known, being the competition between
the translational and rotational DOFs over the available phase-
space volume. Resolving the different entropy contributions
from the CF of each DOF, and possibly also their cross-
correlation, would clarify this mechanism were it unknown,
and indicate the transition point at which the rotational DOFs
lose in the entropy competition and become ordered. The con-
tribution of the orientations CF would change considerably
between the two phases, while that of the density CF (i.e., the
structure factor) would hardly change. Later we demonstrate
this idea in a system whose underlying physics is much less
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TABLE I. Examples of possible fields and their corresponding correlation functions, C(q). In all examples, rnm = rn − rm is the inter-
particle separation. The n, m summations are over all N particles. Greek indices correspond to the d spatial axes. Einstein’s summation
rule is applied. The normalization matrices A are computed using Eq. (3b). The unit vector n̂ is the solid angle. The nematic tensor is
Q = (dn̂n̂† − I)/(d − 1). Since Q is symmetric, we rearrange its M = d (d + 1)/2 unique components in a column vector. For binary mixtures,
tn = 1, 2 denotes the type of the nth particle, and the structure factor adopts a matrix form, Si j (q), where i, j = 1, 2 are particle-type labels and
Ni is the number of i-type particles. In the volume-fraction field, an is the nth particle volume, and a2 = ∫

da Pr(a)a2 is the second moment of
the single-particle volume distribution. The correlation function χ (q) is known as the spectral density.

Field jn f (j) C(q)

Density None 1 C ≡ S(q) = 〈 1
N

∑
n,m e−iq·rnm 〉

Velocity vn v Cαβ = (A−1)αγ 〈 1
N

∑
n,m e−iq·rnmvγ ,nvβ,m〉

Orientation n̂n n̂ Cαβ = 〈 d
N

∑
n,m e−iq·rnm n̂α,nn̂β,m〉

Nematic tensor n̂n {Qα�β (n̂)} Ci j = (A−1)ik〈 1
N

∑
n,m e−iq·rnm Qk (n̂n)Qj (n̂m )〉

Mixture composition tn (δt1, δt2)T Ci j ≡ Si j (q) = 〈 1
Ni

∑Ni
n=1

∑Nj
m=1 e−iq·rnm 〉

Volume fraction an a C ≡ χ (q) = 1

a2
〈 1

N

∑
n,m e−iq·rnm anam〉

understood, and whose transitions are less evident in the CFs
per se.

The goal of the present work is to establish a theoretical
framework for the above. We wish to estimate the entropy
associated with a two-point CF of arbitrary nature. Our strat-
egy is as follows. (a) We look for the information content
of a given CF, i.e., the “entropy cost” of knowing that CF.
We do so by finding the distribution P(X) that maximizes the
Shannon entropy, Eq. (1), under the constraint that it should
yield the given two-point CF. Substituting it back into Eq. (1)
gives the information content, i.e., the entropy bound. Obtain-
ing this expression involves a Gaussian approximation (see
Appendix B). A proof of concept for this step in the simplest
case, where the DOFs are the positions of pointlike particles
and the corresponding two-point CF is the structure factor,
was presented in Ref. [25]. Here we extend the formalism to
the general case of any DOFs and their CFs. (b) Imposing a set
of measured CFs, we obtain a series of entropy upper bounds.
Comparison of the different bounds points at the DOFs which
dominate the physical behavior under consideration, and their
interaction. The DOFs are completely arbitrary, and may in-
clude labels of particle species, their orientation, velocities,
sizes, etc. (see Table I). (c) A tighter upper bound can be
obtained by imposing several CF constraints at once. This
allows us to isolate the contributions of cross-correlations to
the underlying physics.

The formalism can be generalized further to include ad-
ditional constraints, such as imposed inhomogeneity and
fluctuations in the number of particles (see Appendix A). In
addition, as a byproduct, we provide an alternative route for
entropy estimation. By integrating out the unavailable statis-
tics we bypass the undersampling problem.

Indeed maximum-entropy methods have proved useful for
obtaining effective interaction models for complex, out-of-
equilibrium systems, in both experiments (e.g., [26–28]) and
simulations (e.g., [26,29,30]). To date, such methods are ap-
plicable only for maximization over a small set of effective
parameters [26,27,29,30] and in the particular case of the
structure factor [25,31,32].

The paper is constructed as follows. Section II gives the
main result—the entropy functional of a given CF—and de-
scribes how it is implemented. In Sec. III we apply the

formalism to experimental results obtained for a confined
emulsion of polydisperse droplets [33]. In Sec. IV we summa-
rize our findings and discuss the many potential applications
of the method. We defer more technical information to the
Appendixes and Supplemental Material (SM) [34]. In Ap-
pendix A we present the required adjustments to the central
result when translational symmetry is broken, e.g., by an
external field. The detailed derivation of the main result is
given in Appendix B, for the case where the CF is the only
constraint. In the SM we derive the adjusted entropy bound in
the presence of imposed inhomogeneity, and the treatment of a
variable number of particles (grand-canonical ensemble). We
also provide the “recipe” for how the CFs in the experiments
were constructed, along with more experimental snapshots
and figures of the CFs. Finally, the SM presents a toy model
demonstrating the failure of various computational methods
for entropy estimation in the case of a variable number of
particles.

II. GENERAL FORMALISM

The system of interest contains the locations of N particles
[their centers of mass (CMs)] in d dimensions, {rn=1,...,N ∈
Rd}, and possibly an additional set of DOFs that we denote
by { jk,n=1,...,N }. The index k marks the scalar components of
all additional DOFs, and we abbreviate jn = ( j1,n, j2,n, . . .).
For example, in the case of rodlike particles, jn may include
the components of the solid angle, CM velocity, and angular
velocity of the nth rod. The indices may also mark the type
of particle in a many-component mixture. Another important
example are particles, such as polyatomic molecules, which
are made of subparticles (atoms) arranged in certain spatial
conformations [35]. See Table I for examples of correlations
between such DOFs.

To keep the analysis as general as possible, we define the
field

φ(r) =
N∑

n=1

δ(r − rn) f (jn), (2a)

where f is any function (for simplicity, in the form of a
column vector) of the additional DOFs jn. For example, for
the particle-density field f = 1, for the orientation vector field
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f = n̂, and for the nematic tensor field [24], Q = (dn̂n̂T −
I)/(d − 1), f consists of the independent components of Q.
We denote the total number of components within f and φ(r)
by M [i.e., f , φ(r) ∈ CM].

We now construct the two-point CF associated with the
field of Eq. (2a). First, for convenience, the field is Fourier-
transformed into

φ(q) =
N∑

n=1

e−iq·rn f (jn), (2b)

where the uniform (q = 0) mode is excluded [36]. The CF is
a M × M matrix, defined as

C(q) = A−1〈N−1φ(q)φ†(q)〉, (3a)

where 〈·〉 denotes an ensemble average. Note that we in-
clude N within the brackets in case the number of particles
is not fixed. The normalization matrix A ensures that, for
uncorrelated fields (ideal gas), C(q) = I for all q, where I
is the M × M unit matrix. Explicitly, A is the second-moment
matrix of f (j), given by

A = 〈 f (j) f †(j)〉 =
∫

dj Pr(j) f (j) f †(j), (3b)

where Pr(j) is the single-particle marginal distribution of the
DOFs j. Note that the full distribution is not required (only the
second moment of f is) and that j may have either annealed
or quenched statistics. The definitions above hold in more
general settings in which f depends explicitly on q. In fact,
the only condition on f is that A of Eq. (3b) is invertible.

Since the CFs are measurable, e.g., by scattering or sim-
ulations, the q modes are naturally discretized by the system
size. While their number is infinite in principle, only a finite
number of q modes, � = ∑

q �=0 1, are measured in practice.
Constraining such a subset of modes will merely loosen the
entropy bound. The limit of continuous q will be addressed
below as well.

Let us clarify again the notation used above. The bold
symbols are physical vectors, tensors, etc. (e.g., r, Q). The
underlined objects [ f and φ(q)] are column vectors in CM .
Lastly, the calligraphic objects [C(q), A, and I] are M × M
matrices. See again Table I for a few specific examples.

Now that the mathematical structure of the constraints has
been defined, we give our central result—an upper bound on
the thermodynamic entropy S,

S − Sid

〈N〉 � hex. (4)

Here 〈N〉 is the mean number of particles, Sid is the entropy of
the ideal gas, and hex is the excess entropy (per particle) of the
measured two-point CF, C(q) (its information content), which
we find to be approximately

hex[C] = 1

2〈N〉
∑
q �=0

tr{ln [C(q)] + I − C(q)}. (5)

The matrix logarithm appearing in Eq. (5) is handled accord-
ing to tr[ln(·)] = ln[det(·)]. This expression is also applicable
to cases where the number of particles is not fixed. The
inequality in Eq. (4) comes from the fact that the CF may

not constitute the entire information encoded in the system’s
state (as in systems with many-body interactions or out of
equilibrium). The bound is approximate due to a leading-order
(Gaussian) approximation which has been employed (see Ap-
pendix B).

The transition to continuous q is done through
∑

q(·) =
ν
∫

dq(·), where ν = V/(2π )d is the density of q modes, and
V = ∫

dr is the system’s volume. The continuous version of
Eq. (5) is then

hex[C] = 1

2(2π )d ρ̄

∫
q �=0

dq tr{ln [C(q)] + I − C(q)}, (6)

where ρ̄ = 〈N〉/V is the mean density [37].
The detailed derivation of Eq. (5) is given in Appendix B.

Although the setup above may seem complicated, it reflects
the wide applicability of the approach. In practice, once the
commonly used CFs (e.g., structure factor, orientations or ve-
locity CFs; see Table I) are found, they can simply be inserted
into Eq. (5) to obtain useful entropy bounds. This will become
clearer below when we apply Eq. (5) to a specific system.

Equation (5) can be extended to cases where an external
field is present. For example, with f = 1 (density field), the
steady-state density of particles may be nonuniform (e.g., due
to gravity). We can include such a nonuniform steady pro-
file, G(q) = 〈N−1/2φ(q)〉, as another measurable constraint.
In addition, due to the breaking of translational symmetry, the
CF defined in Eq. (3a) would cease to be q diagonal and be-
come C(q, q′) = A−1〈N−1φ(q)φ†(q′)〉. These modifications
are treated in Appendix A. The resulting bound, extending
Eq. (5), is given in Eq. (A3).

III. APPLICATION TO BIDISPERSE MIXTURES

Dense random packings of particles have been a central
issue in statistical physics for years [38]. Recently, disor-
dered random packings close to the jamming point, referred
to as maximally random-jammed, have been found to exhibit
hyperuniformity [33,39–41]—strong suppression of density
fluctuations over large distances [42]. In two dimensions,
densely packed monodisperse disks tend to locally arrange
into hexagonal crystals. However, defects are usually present
in the crystal structure, randomly distributed over space. A
small degree of polydispersity limits the size of the crystalline
domains and reduces the presence of rattlers. Hence, a densely
packed mixture of bidisperse disks is expected to transition,
as a function of the number fraction (NF) and size ratio (SR)
of the two species, between mostly crystalline structures and
disordered structures.

Experiments on jammed quasi-2D emulsions of bidisperse
droplets, confined and flattened between two surfaces in a mi-
crofluidic channel, have demonstrated this optimization [33].
They showed, moreover, that the increase in disorder came
together with stronger hyperuniformity. In this section we
revisit the data from those experiments in light of the present
formalism, to obtain the entropy contributions of the droplets’
different DOFs (position and size), and examine how these
contributions change along the transition.

First, we briefly describe the experimental setup; an ex-
tended description of the experimental devices and conditions
can be found in Ref. [33]. Standard soft photolithography and
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FIG. 1. Bidisperse mixtures. Left: Experimental closeup snapshots of the quasi-2D emulsion for several size ratios SR and number fractions
NF, as indicated. The values of SR and NF are changed using different pressures at the inlet of the microfluidic chip. Center: Distribution
of droplet radii, demonstrating approximate bidispersity. Right: Spectral densities as obtained from experiment (red connected dots) and
simulation (black line). The results from experiment and simulation match qualitatively, the oscillations in the experiment being more damped.
Insets: Closeup on the spectral densities at small q, indicating the presence or absence of hyperuniformity. Data adapted from Ref. [33].

replica-molding techniques are used to create the microflu-
idic device [43]. The pressures applied at the inlets of two
T junctions allow a precise control over the droplet sizes
and their production rates. Downstream, a microfluidic mixer
randomizes the entrance of the droplets into the collection
chamber. The chamber height (10 μm) forces the droplets
to adopt a pancake-like shape, and they assemble into 2D
configurations. Their deformability and the pressure ensure
that the assembly is close to a jammed configuration. Images
are taken inside the observation chamber every 30 seconds in
order for all the droplets to be renewed. Thus, the snapshots
depict uncorrelated configurations. A total of 30 such images
are taken for every set of parameters. For each set we verify
that (a) the two populations of droplets are well mixed, (b)
the droplets maintain a circular shape, and (c) the Fourier
transform of each image has a circular symmetry.

Here we focus on two sets of data. In the first, the size
ratio is kept fixed at SR ≡ Rsmall/Rbig � 0.8 (0.7–0.82), while
the number fraction, NF ≡ Nbig/(Nbig + Nsmall ), is varied. In

the second set, the number fraction is kept fixed at NF �
0.5 (0.4–0.6), while the size ratio is varied. For comparison,
we also study by simulation the corresponding 2D bidisperse
jammed configurations of hard disks. The simulations apply
the freely available code based on the Lubachevsky-Stillinger
algorithm [44,45].

Figure 1 shows three typical bidisperse mixtures. The top
panels correspond to SR = 0.80 and NF = 0.94, such that
most droplets are big. For this high NF, the droplets form a
polycrystalline structure. The crystalline domains are clearly
visible, outlined by line defects which host the small droplets.
Some small droplets can also be found within the crystalline
lattice. The size distribution shows two peaks corresponding
to the two populations of droplets. The standard deviation for
each population is smaller than 0.05, justifying the bidisperse
approximation. The figure also shows the spectral density,

χ (q) = 1

a2

〈
1

N

∑
n,m

e−iq·rnm anam

〉
, (7)
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FIG. 2. Bidisperse mixtures. Entropy bounds as a function of number fraction NF (top panels, for SR � 0.8) and size ratio SR (bottom
panels, for NF � 0.5). Left: Excess entropy per particle, hex, as obtained from the structure factor Sq (experiment in orange © and simulation
in dotted orange line), spectral density χq (blue � and dashed blue line), and mixed correlation function Mq (black 
 and black solid line).
Right: Net entropy contribution of position-area cross-correlations, hcross (experiment in dots, simulations in solid line). The crossover from
positive to negative values relates to the crossover between polycrystalline and disordered hyperuniform states.

where an is the area of droplet n, and a2 is the second moment
of the droplet area distribution. In the terminology of Sec. II,
χ (q) is the CF with f (a) = a; see Table I. The spectral density
shows damped Bragg peaks which are characteristic of a 2D
hexagonal polycrystal. The first peak corresponds to the most
common interdroplet distance, denoted Dm.

The middle panels of Fig. 1 show the results for SR = 0.8
and NF = 0.62. This mixture is disordered and does not show
extended crystal-like domains. The size distribution shows
once again approximate bidispersity. The spectral density is
more damped than for NF = 0.94 and does not exhibit the
typical Bragg peaks of hexagonal lattices. At small q it tends
(linearly) toward zero, which is a signature of hyperuniformity
[33,38]. Qualitatively similar behavior is seen for SR = 0.58
and NF = 0.5 in the bottom panels of Fig. 1.

The spectral density obtained in the experiment is more
damped than in the simulations. This is due to residual poly-
dispersity and small deformations present in the experimental
mixture of droplets, which randomize the correlations for
large q, whereas the simulations are carried out for strictly

bidisperse, nondeformable hard disks. The stronger disorder
in the experimental system will translate below into a positive
offset in the excess entropy.

The microscopic DOFs in the experiments and simulations
are the locations of droplet centers, {rn} = {xn, yn}, and their
areas, {an}. The two-point CFs that we consider are the fol-
lowing. (a) The structure factor, S(q), defined with f (a) = 1
in Eqs. (2a). (b) The spectral density, χ (q), with f (a) = a,
which takes into account also the areas of the droplets [18,46];
see Eq. (7). (c) We consider also the mixed CF, M(q), defined
with f (a) = (1, a), imposing S(q) and χ (q) simultaneously
along with the position-area cross-correlations. See the SM
[34] for a detailed description of how these CFs are con-
structed and the way the excess entropies are calculated.

The excess-entropy bounds hex, obtained from the mea-
sured CFs using Eq. (5), are shown in the left panels of Fig. 2.
Data points and lines correspond to results from experiments
and simulations, respectively. To demonstrate the robustness
of the method, we have not ensemble-averaged the CFs; hence
the many data points for each parameters set, showing a small
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spread. Note that by using hex (the excess entropy per particle
relative to the uncorrelated system), the trivial dependencies
of the entropy on the number of particles and field of view are
removed. Note also that the field of view may contain differ-
ent numbers of droplets (see, e.g., the snapshots in Fig. 1),
which highlights the ability of the formalism to treat open
systems.

All three bounds in the left panels of Fig. 2 show the
expected simple trend—as the system gets away from the
ordered crystalline state (i.e., away from NF = 0, 1 in the top
panel, and SR = 1 in the bottom one), the entropy increases.
In the most ordered state, most droplets have six neighboring
droplets, with a sixfold symmetry. Thus positions and cluster
orientations are strongly correlated. When SR decreases or NF
gets further away from 0 or 1, more possibilities open up for
the immediate environment of a droplet. Therefore, the local
orientation and the number of neighbors become less corre-
lated, which increases the excess entropy. The results from
experiments and simulations agree qualitatively. As explained
above, additional disorder in the experimental system leads to
a positive entropy difference with respect to the simulation.
While the distinction between the two phases is seen clearly
also in the CF (the spectral density) of Fig. 1, it is less evident
for close values of NFs and SRs (Figs. S1 and S2 [34]). The
entropy hex, however, and especially hcross, sharply change
in the crossover regions, indicating much more clearly the
trends described above. For instance, for SR > 0.76 (where
a droplet may have six neighbors; see Figs. S1 and S2), while
the spectral density does not seem to change much (the Bragg
peaks still persist), hcross shows a significant drop, suggesting
that the structural information does exist in the CF, but is
subtly buried.

The entropy bounds nicely capture the asymmetry on the
two sides of the symmetric composition NF = 0.5, i.e., NF
and (1 − NF) are not statistically equivalent (top-left panel
of Fig. 2). For example, the measured entropy for NF = 0.2
is higher than the one for NF = 0.8. Indeed, there are more
possibilities to disperse small particles in a polycrystalline
arrangement of big particles than the other way around. The
asymmetry is most prominent for the S(q) bound, which is
“blind” to the difference in particle sizes and reflects the
difference in the number of positional arrangements as if the
difference originated from some underlying interaction. This
asymmetric behavior on the two sides of NF = 0.5 is a feature
concealed in subtle differences between the CFs for different
NFs (see SM [34]). In contrast, the asymmetry is clearly
revealed by the entropy functional.

The mixed CF M(q) gives the lowest bound in both
left panels. It constrains the structure factor and the spectral
density simultaneously (along with cross-correlations), thus
containing more information than each of the other two CFs.
The bounds associated with S(q) and χ (q) cross around NF �
0.5 in both experiment and simulation (top-left panel). This is
because the spectral density is a “reweighting” of the structure
factor in favor of the big particles [see Eq. (7)]. For small NF
(majority of small droplets) this enhances the correlations as
characterized by χ (q), leading to a lower entropy, and the
opposite happens for large NF (majority of large droplets).
Comparing the bounds from S(q) and χ (q) in the bottom-left
panel, we find that the S(q) one is mostly higher in the simula-

tion but slightly lower (better) in the experiment. This too may
be a result of the residual polydispersity in the experiment,
which weakens the correlations as measured by χ (q).

The right panels of Fig. 2 show the net entropy contribu-
tion of the position-area cross-correlations, defined as hcross ≡
hex[M(q)] − hex[S(q)] − hex[χ (q)]. In the absence of cross-
correlations, it is easy to see from Eq. (5) that hex[M(q)]
is equal to hex[S(q)] + hex[χ (q)], leading to hcross = 0. Thus
hcross quantifies the additional information stored in the cross-
correlations. However, hcross as defined above may be negative
or positive [47]. This is because S(q) and χ (q) are CFs of
DOFs which are not independent (both CFs include position
correlations). For example, in the limit of a monodisperse
system, χ (q) and S(q) coincide, and we have hex[M(q)] =
hex[S(q)] = hex[χ (q)], leading to hcross = −hex[S(q)] > 0.
See Fig. 2 at small and large NF, and large SR. Position-area
cross-correlations become strong when the spatial arrange-
ment of nearby droplets is affected by their sizes. For instance,
a droplet can be surrounded by six others when SR is close to
1, and by seven smaller ones if SR < 0.76. This accounts for
the sharp decrease of hcross with decreasing SR (bottom-right
panel).

Overall, the key observation in both right panels of Fig. 2
is the dominant contribution of the cross-correlations between
position and area to the entropy of the heterogeneous, disor-
dered and hyperuniform system.

IV. DISCUSSION

Any measurement provides information on the system of
interest and thus lowers the upper bound on its entropy.
Equations (5), (6), and (A3) quantify this entropy reduction
quite generally when the measurement is of a pair-correlation
function. The extent to which these results are useful has been
examined in Sec. III, where we have used the entropy bounds
to investigate subtle features of a transition out of equilibrium.

The central advantage of the approach presented here is the
ability to not only estimate the entropy but also separate it into
distinct contributions coming from different DOFs and their
intercorrelations. This “finer resolution” intimately connects
the method to the physics of the system under study. When
applied to jammed mixtures (Sec. III), the entropy bounds
have revealed the crucial role played by cross-correlations
between the particles’ positions and sizes. Previous works as-
sociated the formation of disordered hyperuniform structures
solely with strong positional correlations [42]. Our results
suggest that, in polydisperse systems, the entropy reduction
due to hyperuniformity is dominated by strong position-size
cross-correlations.

Another key feature of the formalism is that, by choosing
measurable, concrete constraints (i.e., CFs), we essentially
bypass the undersampling problem of entropy estimation, in-
tegrating out the unconstrained information. Importantly, any
symmetry (or symmetry breaking) reflected in the CFs is by
construction taken into account. The cost of these advantages
is that the method is not a “black box” which can be blindly
applied to any data, but requires knowledge of the system’s
DOFs.

A few important technical advantages should be noted as
well. (a) The computational cost of the method does not scale
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with system size. (b) There is no artificial discretization of
phase space. (c) Generalization to include other observables
is achieved by including the corresponding constraints. This
flexibility, for example, has allowed us to include the effects of
varying particle number and external fields (see Appendix A).

The formalism is restricted in two main respects. (a) It
is limited to upper bounds for the entropy, which might not
always be sufficiently tight to be useful. In such cases one
may improve the bound, e.g., by including higher-order cor-
relations (see, for example, the useful high-order correlations
measured in Ref. [48].) (b) The main results, Eqs. (5), (6), and
(A3), involve a Gaussian approximation. One may improve
them using standard perturbation techniques. Indeed, some
constraints may give rise to equations which cannot be solved
analytically, which will require numerical solutions [32].

The possibilities to apply entropy-bound functionals to ad-
ditional systems are vast. We mention two examples which
seem particularly appealing. Indications of entropy changes
occurring at the glass transition [49,50] may be checked in
more detail, similar to the case of the jammed mixtures in
Sec. III. If such changes are found, one might be able to point
at the dominant DOFs, or their interactions, underlying the
transition. This particular application is likely to require the
inclusion of higher-order correlations. Active matter exhibits
dynamic transitions, such as bacterial swarming [51] and
motility-induced phase separation [52]. Resolving different
contributions to the entropy may provide new insights into
these far-from-equilibrium phenomena.

Finally, it may be possible, and highly desirable, to go
beyond steady states and use a similar approach for time-
dependent phenomena. Thus, for example, the contributions
of different DOFs to the entropy production might be resolved
by exploiting temporal CFs as dynamical constraints.
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APPENDIX A: ENTROPY BOUND FOR
INHOMOGENEOUS SYSTEMS

The purpose of this Appendix is to extend the formalism
described in Sec. II to systems whose translational symmetry
is broken by some externally applied force. The adjusted
bound is given in Eq. (A3) below. In addition, this Ap-
pendix will facilitate the detailed derivation of Eq. (5) in
Appendix B.

As before, the key observable is a two-point CF. We rely
on the setup presented in Sec. II. First, we define the (Fourier
transformed) field of interest following Eqs. (2a). Now, due to
the inhomogeneity, two distinct q modes might have nonzero
correlations. Hence, the CF of Eq. (3a) is extended to include
off-diagonal terms in q,

C(q, q′) = A−1〈N−1φ(q)φ†(q′)〉, (A1a)

where A is the same normalization matrix defined in Eq. (3b).
In addition to the more complex CF, the average field

〈φ(q)〉 may be nonuniform. For example, the steady-state
density of particles (using f = 1) may be inhomogeneous due
to gravity. We characterize these effects by introducing the
average profile,

G(q) = 〈N−1/2φ(q)〉, (A1b)

as another constraint. The CFs and profiles may be available
from experiments (e.g., scattering and absorption, respec-
tively) and simulations. As before, we exclude the uniform
q = 0 mode.

A few additional definitions are required. We recall that
only a finite set {q1, q2, . . . , q�} of q modes is considered. It
is useful to consider q as an additional index in an extended
matrix that treats the � modes q and the M components of f

together. We define the (�M ) × (�M ) matrices Ĉ, Â, and the
unit matrix Î, and similarly the (�M )-long vector Ĝ. These
are just � × � blocks of the M × M matrices C(q, q′), I, and
A, and �-times stacked M-long vector G(q),

Ĉ =

⎛
⎜⎜⎝

C(q1, q1) C(q1, q2) · · · C(q1, q�)
C(q2, q1) C(q2, q2) · · · C(q2, q�)

...
...

. . .
...

C(q�, q1) C(q�, q2) · · · C(q�, q�)

⎞
⎟⎟⎠,

Â−1 =

⎛
⎜⎜⎜⎝

A−1 O · · · O
O A−1 · · · O
...

...
. . .

...

O O · · · A−1

⎞
⎟⎟⎟⎠,

Ĝ = ( GT (q1) GT (q2) · · · GT (q�) )T . (A2)

Now that the constraints have been defined and rearranged,
the entropy bound obtained for a two-point CF C(q, q′) and a
steady profile G(q) can be written as

hex[C, G] = 1

2〈N〉 tr�M[ln�M (Ĉ − Â−1ĜĜ
†
) + Î − Ĉ].

(A3)
The detailed derivation is given in the SM [34]. The matrix
logarithm and trace are applied to the objects of Eq. (A2),
and the subscripts �M are a reminder that they are trace
and matrix-log operations performed on (�M ) × (�M ) ma-
trices. The number of particles is allowed to vary, with a
given average number 〈N〉, and with a CF C(q, q′) and steady
profile G(q) which take into account the varying N through
Eqs. (A1).

We may interpret Eq. (A3) by considering two opposite
limits. In systems of single-particle interactions (i.e., in the
presence of a strong external field), the two-point CF becomes
unity, C(q, q′) = Iδ(q − q′) (i.e., Ĉ = Î), and the bound re-
duces to

hex[G] = 1

2〈N〉 tr[ln(Î − Â−1ĜĜ
†
)]

� − 1

2〈N〉
∑
q �=0

G†(q)A−1G(q). (A4)

This agrees to second order (due to the Gaussian ap-
proximation in the derivation) with the trivial result hex =
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− ∫
dr dj Pr(r, j) ln[υ Pr(r, j)], where Pr(r, j) is the joint

single-particle distribution of r and j, and υ = ∫
dr dj. In

the other limit of homogeneous systems, the steady pro-
file is absent, G = 0, and the CF is q-diagonal [as in
Eq. (3a)]. The expression for the entropy bound reduces to
Eq. (5),

hex[C] = 1

2〈N〉
∑
q �=0

tr[ln C(q, q) + I − C(q, q)].

Here the matrix logarithm and trace are of M × M matri-
ces only, and the summation over q is explicitly written.
Comparing to Eq. (A3), we see that, in the absence of a
steady profile (G = 0), the only component in the field’s
“variance,” Ĉ − Â−1ĜĜ

†
, that survives is the second-moment

matrix (its q-diagonal terms), C(q, q). Together, Eqs. (A4)
and (5) demonstrate how Eq. (A3) could be separated into
single-particle and two-particle contributions. Also, they do
not require the more cumbersome and computationally costly
objects of Eq. (A2).

APPENDIX B: DERIVATION OF THE CENTRAL RESULT

Here we give a detailed derivation of the main result—an upper bound for the entropy given a general two-point CF. A
steady-state average field and a grad-canonical ensemble are considered in the SM [34].

Following the main text, we deal with systems whose particles possess more DOFs than just locations. A complete
microscopic configuration is therefore described by {xn} = {rn, jn}, where rn is the spatial position of the nth particle and the
vector jn lists the scalar components of its additional DOFs.

We consider an arbitrary vectorial function of the DOF j, to obtain a field as written in Eq. (2a), φ(r) = ∑
n δ(r − rn) f (jn),

where f ∈ CM is a column vector. A simple example is the case of 3D orientations, j = (ϑ, ϕ), where the function is the
decomposition into spherical harmonics, arranged in a column vector f

l2+(m+l )+1
(j) = Y m

l (ϑ, ϕ). Next, a Fourier transform is

taken to obtain Eq. (2b), φ(q) = ∑
n e−iq·rn f (jn). For shorthand, we replace e−iq·rn f (jn) with a simple ĝ(xn) [the discrete q

absorbed as an index, as in the objects of Eq. (A2)], such that the transformed field is

φ̂ =
∑

n

ĝ(xn). (B1)

Proceeding with this notation, where the position DOF is not written explicitly, highlights the fact that the formalism [and the
bound appearing in Eq. (A3)] applies for nonspatial CFs as well.

The two constraints to be imposed are the following. (a) The CF [Eq. (A1a)],

Ĉ = 〈B̂−1φ̂φ̂
†〉, (B2a)

where B̂ ≡ NÂ = N
∫

dx Pr(x)ĝ(x)ĝ†(x) is a the normalization matrix, and Pr(x) the single-particle distribution. (b) If the
system is inhomogeneous, we additionally constrain the steady-state profile [Eq. (A1b)],

Ĝ = 〈N−1/2φ̂〉. (B2b)

Recall that we exclude the uniform mode (for the spatial field, the q = 0 mode); hence, g is not a complete basis (as one
component is missing). This will come into play in the calculation performed below (at the saddle-point approximation step).

As mentioned in the main text, experimentally, a finite number (�) of q-modes are considered, which only loosens the entropy
bound. Similarly, including only a finite number (M) of the transform’s components, f , would merely loosen the bound, too.

In the examples of 3D orientations, taking f = n̂ implies the inclusion of only the M = 3 terms Y 0,±1
1 , and taking f as the

independent components of the nematic tensor implies the inclusion of the M = 6 terms Y 0
0 ,Y 0,±1,±2

2 . Thus, as established in
Appendix A, Ĝ, φ̂, ĝ(xn) ∈ CM�, and Ĉ, B̂, and Î are M� × M� matrices. While M� ≡ � is finite in practice, for the sake of
the derivation we assume that ĝ(x) (up to adding the uniform mode) is a complete basis for x. (This subtlety is required because
later in the derivation we rely on the existence of the inverse transform.) We will drop the hats of the �-sized column vectors
and � × � matrices; the “hatless” M-sized column vectors and M × M matrices (shown in Sec. II and Appendix A) do not
appear here. The connection to actual physical observables is more evident from the notation adopted in the main text. The more
elaborate notation used here and in the SM [34] makes the detailed derivation more concise.

We maximize the entropy [Eqs. (1)] over the probability density function p(X) of microstates X = {xn}, under two constraints:
(a) normalization,

∫
dXp(X) = 1, and (b) the key constraint—a given CF [Eq. (B2a)],

C = B−1
∫

dXp(X)
N∑

n=1

N∑
m=1

g(xn)g†(xm). (B3)

We denote dX = dX
∏N

n=1 Pr(xn) to allow the case of quenched DOFs, whereby the single-particle distribution Pr(x) serves as
a “weight function.” Similarly, dx = dx Pr(x). In this case p(X) may be interpreted either as the N-particle distribution function
[18], or, up to a change of variables [x → CDF(x), the cumulative distribution function], the copula density [53]. Therefore,
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p(X) is related to the probability density function to find the system in microstate X, P(X) [the one appearing in Eq. (1b)],
through P(X) = p(X)

∏N
n=1 Pr(xn). In the simpler case of annealed DOFs, Pr(x) = 1/υ, where υ = ∫

dx is the phase-space
volume.

The thermodynamic entropy, following Eqs. (1), is

S = −
∫

dX
N∏

n=1

Pr(xn)p(X) ln

[
N∏

n=1

Pr(xn)p(X)

]
= −

∫
dX

N∏
n=1

Pr(xn)p(X) ln p(X) + Ns1, (B4)

where s1 = − ∫
dx Pr(x) ln Pr(x) is the entropy of a single isolated particle (an a priori known constant). In the absence of

interparticle coupling, Ns1 is the only surviving contribution to the entropy; hence, we refer to it as the ideal gas contribution,
Sid = Ns1, and define the excess entropy as

S − Sid = −
∫

dXp(X) ln p(X). (B5)

In order to find the bound Hex � S − Sid, we seek to maximize the Lagrangian

L = −
∫

dXp(X) ln p(X) − η

(∫
dXp(X) − 1

)
− tr

⎡
⎣U†

∫
dXp(X)

⎛
⎝∑

n,m

g(xn)g†(xm) − BC

⎞
⎠
⎤
⎦, (B6)

such that C is the given CF, and find the entropy-maximizing p(X) which reproduces that particular C. Here U (a � × � matrix)
and η (scalar) are the Lagrange multipliers imposing the constraints, and the trace is of � × � matrices. The trace notation is a
convenient shorthand arising from the matrix identity trA†B = ∑

ii′ A∗
ii′Bi′i (the Frobenius matrix inner product). Equation (B6)

is equivalent to imposing every component of BC as a separate constraint. We should solve the equations

δL
δp(X)

= 0,
∂L
∂η

= 0,
∂L
∂U†

= O, (B7)

where (∂/∂U†) denotes �2 partial derivatives with respect to each component of U†.
Taking the variation with respect to p(X) yields

p(X) = e−1−η�(X), �(X) = exp

⎧⎨
⎩−tr

⎡
⎣U†

⎛
⎝∑

n,m

g(xn)g†(xm) − BC

⎞
⎠
⎤
⎦
⎫⎬
⎭. (B8)

Substituting into the normalization condition for p(X), we find

η = ln Z − 1, Z =
∫

dX�(X), (B9)

leading to p(X) = Z−1�(X). We see that Z and U play the analogous roles of the partition function (relative to the ideal gas) and
pair interaction, inside a Boltzmann-like factor. This analogy is a result of the variational procedure, despite the nonequilibrium
setting of the formalism. The main difference from conventional equilibrium calculations is that we do not know the effective
pair interaction, U , which is yet to be found.

Next, consider the derivative of the partition function with respect to the components of U†,

∂ ln Z

∂U†
= Z−1 ∂

∂U†

∫
dX�(X) =

∫
dXp(X)

∑
n,m

g(xn)g†(xm) − BC = O. (B10)

Therefore, solving ∂ ln Z/∂U† = O is equivalent to forcing the constraints on the CF. The maximum entropy is obtained as

Hex = −
∫

dXp(X) ln p(X) =
∫

dXp(X) ln Z −
∫

dXp(X) ln �(X) = ln Z, (B11)

where we used
∫

dXp(X) ln �(X) = 0 upon enforcement of the constraint.
The derivation above shows that p(X) is a critical point for the entropy. We now show that p(X) is indeed a maximum.

Assume that the true distribution is p0(X), which is normalized and satisfies Eq. (B3). Using the inequality ln x − 1 + 1/x � 0
for any x > 0, we first notice that

∫
dXp0(X) ln[p0(X)/p(X)] �

∫
dXp0(X)[1 − p(X)/p0(X)] = 0. Thus, the thermodynamic

excess entropy is bound according to

S − Sid = −
∫

dXp0(X) ln p0(X) � −
∫

dXp0(X) ln p(X) =
∫

dXp0(X) ln Z −
∫

dXp0(X) ln �(X) = ln Z = Hex. (B12)

where we have used
∫

dXp0(X) ln �(X) = 0 since p0(X) gives rise to the same constrained CF. This proof holds for any
additional constraints (including those which we introduce in the SM [34]).
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Since BC is Hermitian by construction, and the Lagrangian is real, only the Hermitian part of U survives. In addition,
transposing U amounts to relabeling the constraints. Henceforth, we will drop the †.

Thus we have found the relation between the bound on the excess entropy Hex and the effective partition function Z , and
between Z and the Lagrange multiplier U and the constraint C. The procedure continues as follows. (a) Perform the integral of
Eq. (B9) explicitly and find Z as a functional of C and U . (b) Obtain U as a function of C using Eq. (B10) and, consequently, find
Z in terms of C alone. (c) Obtain H [Eq. (B11)] as a functional of C. A similar calculation was carried out in Ref. [25]. There, C
was limited to the number density field, as the only DOF was the particles’ locations, and the CF was the structure factor. Here C
is the field of a general DOF j. In the SM [34] we also include a steady inhomogeneous field and a varying number of particles.

Similar to Ref. [25] we transform to integration over fields, φ = ∑
n g(xn), which we introduce through a functional delta,

δ

[
φ −

∑
n

g(xn)

]
= (2π )−�

∫
Dψ exp

[
iψ†

(
φ −

∑
n

g(xn)

)]
, (B13)

where ψ (a �-component column vector) is the conjugate field. These fields are no longer functions of individual particles’
positions, but rather functions of the modes. For later convenience, we add and subtract the uniform mode, which by construction
satisfies φ

0
= ∑

n g
0
(xn) = N for any xn. Some arbitrary value for the corresponding ψ

0
may be assumed. The partition function

becomes

Z = (2π )−�etr UBC
∫

dXDφDψ exp

[
iψ̃

†

(
φ̃ −

∑
n

g̃(xn)

)
− φ†Uφ

]
, (B14)

where the tilde indicates that g̃(x) is the complete transform (i.e., including the uniform mode which we have been excluding
thus far). Therefore, g̃(x), φ̃, and ψ̃ have � + 1 components. The “tildeless” g, φ, and ψ still exclude the uniform mode, and as
before are of size �. The integral over the configurations can be rewritten as

∫
dX exp

(
−iψ̃

†
N∑

n=1

g̃(xn)

)
=
[∫

dxe−iψ̃
†
g̃(x)

]N

=
[

1 +
∫

dx(e−iψ̃
†
g̃(x) − 1)

]N N→∞,Pr(x)∼υ−1→0,Ndx∼1;ψ̃→0−−−−−−−−−−−−−−−−−−−→ exp

[
N
∫

dx(e−iψ̃
†
g̃(x) − 1)

]
. (B15)

We are left with the field integrals,

Z = (2π )−�etr UBC
∫

DφDψ exp

[
N
∫

dx
(

e−iψ̃
†
g̃(x) − 1

)
+ iψ̃

†
φ̃ − φ†Uφ

]
. (B16)

One course of action is to first perform the exact Gaussian integral over φ and remain with a non-Gaussian integral over ψ .
The next step in Ref. [25] was to take the Gaussian approximation for this integral, thus including the leading-order fluctuations.
An alternative course of action (involving the same level of approximation) is to first perform a saddle-point approximation for
ψ , and then take a Gaussian approximation for φ. For the sake of this Appendix, both methods are equally convenient, but in
the SM [34] (including the constraint on a steady profile G), the latter turns out to be much easier. The former method could be
found in Ref. [25], and the latter is shown below. These approximations—saddle point in ψ and Gaussian in φ—are the only
ones employed.

We rewrite the partition function as

Z = (2π )−�etr UBC
∫

Dφe−φ†Uφ

∫
Dψe−F [ψ̃ ;φ̃], (B17a)

F [ψ̃ ; φ̃] = −N
∫

dx(e−iψ̃
†
g̃(x) − 1) − iψ̃

†
φ̃. (B17b)

In the saddle point approximation, we seek ψ̃ = ψ̃
sp

(φ̃) that minimizes the effective free energy, F [ψ̃
sp

(φ̃); φ̃], for each φ̃, and

then take leading order corrections. The equation for ψ̃
sp

is

i
∂F

∂ψ̃
† = 0 = φ̃ − N

∫
dxg̃(x)e−iψ̃

†

sp
g̃(x)

. (B18)

Since the transform g̃(x) is a complete basis, there exists the dual object b̃(x) such that b̃
†
(x)g̃(x′) = δ(x − x′)/ Pr(x)

[and
∫

dxg̃(x)b̃
†
(x) = Ĩ, being the (� + 1) × (� + 1) unit matrix], where again Pr(x) serves as the weight function. As an

example, consider the simple particle-density field, where g̃
q
(r) = e−iq·r, such that b̃q(r) = e−iq·r and Pr(r) = 1/V , and, indeed,
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∑
q b̃

∗
q(r)g̃

q
(r) = δ(r − r′)/ Pr(r) [and

∫
dr Pr(r)g̃

q
(r)b̃

∗
q′ (r) = δqq′]. With the help of b̃(x), we can solve Eq. (B18) as

ψ̃
†

sp
(φ̃) = i

∫
dx ln[N−1b̃

†
(x)φ̃]b̃

†
(x). (B19)

We now expand the free energy around the saddle point, ψ̃
sp

,

F [ψ̃
sp

(φ̃); φ̃] = N
∫

dx

⎡
⎣ b̃

†
(x)φ̃

N
ln

⎛
⎝ b̃

†
(x)φ̃

N

⎞
⎠ + 1 − b̃

†
(x)φ̃

N

⎤
⎦ � 1

2
φ†B−1φ, (B20a)

δ2F

δψ†δψ
=
∫

dxg̃(x)g̃†(x)b̃
†
(x)φ̃ � B. (B20b)

We have kept terms to quadratic order in ψ and φ, φ
0

has naturally disappeared, and fluctuations in ψ
0

are irrelevant. The
approximate free energy reads

F [ψ ; φ] � 1
2φ†B−1φ + 1

2ψ†Bψ. (B21)

Substituting Eq. (B21) in Eq. (B17a), we obtain the partition function

Z � (2π )−�etr UBC
∫

Dφe− 1
2 φ†(2U+B−1 )φ

∫
Dψe− 1

2 ψ†Bψ = exp

(
tr

[
UBC − 1

2
ln (2UB + I )

])
, (B22)

where we have used the matrix property, det[exp(·)] = exp[tr(·)].
Thus we have found Z as a functional of U and C. From Eq. (B10), we obtain the effective pair potential,

U � 1
2 (C−1 − I )B−1. (B23)

Substitution of Eq. (B23) in Eq. (B22), and the result in Eq. (B11) gives

hex[C] � 1

2N
tr[ln C + I − C], (B24)

which is the desired bound, Eq. (A3) (with G = 0 and 〈N〉 = N). In the SM [34], we derive the bound for a nonzero G, and for
the grand-canonical ensemble.
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